首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigated, using guinea-pig spermatozoa as a model, whether phospholipase A2 (PLA2) is involved in progesterone or zona pellucida (ZP)-stimulated acrosomal exocytosis, if progesterone enhances ZP-induced activation of PLA2, and mechanisms underlying PLA2 regulation. Spermatozoa were capacitated and labeled in low Ca2+ medium with [14C]choline chloride or [14C]arachidonic acid, washed, and then exposed to millimolar Ca2+ and progesterone and/or ZP. Each agonist stimulated decrease of phosphatidylcholine (PC) and release of arachidonic acid and lysoPC, indicative of PLA2 activation. Aristolochic acid (a PLA2 inhibitor) abrogated lipid changes and exocytosis, indicating that these lipid changes are essential for exocytosis. Exposure of spermatozoa to submaximal concentrations of both progesterone and ZP resulted in a synergistic increase of arachidonic acid and lysoPC releases, and exocytosis, suggesting that, under natural conditions, both agonists interact to bring about acrosomal exocytosis. Progesterone-induced PLA2 activation appears to be mediated by a GABA(A)-like receptor, because bicuculline (a GABA(A) receptor antagonist) blocked arachidonic acid release and exocytosis. In agreement with this, GABA mimicked progesterone actions. ZP-induced activation of PLA2 seemed to be transduced via G(i) proteins because pertussis toxin blocked arachidonic acid release and acrosomal exocytosis. PLA2 may be regulated by PKC because progesterone- or ZP-induced release of arachidonic acid was blocked by the PKC inhibitors staurosporine or chelerythrine chloride. PLA2 could also be regulated by the cAMP-PKA pathway; inclusion of the PKA inhibitor 14-22 amide or H-89 led to a reduction in arachidonic acid release or exocytosis after progesterone or ZP. Taken together, these results suggest that PLA2 plays an essential role in progesterone or ZP-stimulated exocytosis with progesterone priming ZP action.  相似文献   

2.
Chen WY  Ni Y  Pan YM  Shi QX  Yuan YY  Chen AJ  Mao LZ  Yu SQ  Roldan ER 《FEBS letters》2005,579(21):4692-4700
We investigated whether GABA activates phospholipase A2 (PLA2) during acrosomal exocytosis, and if the MEK-ERK1/2 pathway modulates PLA2 activation initiated by GABA, progesterone or zona pellucida (ZP). In guinea pig spermatozoa prelabelled with [14C]arachidonic acid or [14C]choline chloride, GABA stimulated a decrease in phosphatidylcholine (PC), and release of arachidonic acid and lysoPC, during exocytosis. These lipid changes are indicative of PLA2 activation and appear essential for exocytosis since inclusion of aristolochic acid (a PLA2 inhibitor) abrogated them, along with exocytosis. GABA activation of PLA2 seems to be mediated, at least in part, by diacylglycerol (DAG) and protein kinase C since inclusion of the DAG kinase inhibitor R59022 enhanced PLA2 activity and exocytosis stimulated by GABA, whereas exposure to staurosporine decreased both. GABA-, progesterone- and ZP-induced release of arachidonic acid and exocytosis were prevented by U0126 and PD98059 (MEK inhibitors). Taken together, our results suggest that PLA2 plays a fundamental role in agonist-stimulated exocytosis and that MEK-ERK1/2 are involved in PLA2 regulation during this process.  相似文献   

3.
We have investigated the production of diacylglycerol (DAG) and phosphatidate (PtdOH) during the exocytosis of the sperm acrosome. Ram spermatozoa treated with Ca2+ and the ionophore A23187 experienced a rapid breakdown of the polyphosphoinositides (PPIs), and a rise in [32P]Pi-labelled PtdOH and DAG mass; PtdOH mass, however, was unaffected. Treatment with Ca2+/A23187 and the DAG kinase inhibitor R59022 resulted in a dose-dependent increase in DAG mass and a concomitant decrease in [32P]PtdOH; such treatment showed a dose-dependent stimulation of acrosomal exocytosis. Pre-incubation with exogenous PtdOHs before stimulation with Ca2+/A23187 did not affect the time-course of exocytosis, whereas treatment with Ca2+/A23187 and exogenous DAGs (dioctanoylglycerol, oleoyl-acetyl-glycerol, or dioleoylglycerol) resulted in a dose-dependent stimulation of acrosomal exocytosis. Our results suggest that DAG, rather than PtdOH, is the important metabolite generated upon PPI hydrolysis; however, since spermatozoa lack protein kinase C, the target of DAG in most cells, a role for DAG in acrosomal exocytosis is as yet unclear.  相似文献   

4.
Mouse spermatozoa stimulated with epidermal growth factor (EGF) or zona pellucida (ZP) experienced phosphatidylinositol 4,5-bisphosphate hydrolysis, diacylglycerol (DAG) generation and acrosomal exocytosis. The agonists showed additive effects but the action of EGF is likely to be mediated by a distinct receptor because maximal stimulation achieved with EGF was enhanced further by ZP. Generation of DAG and exocytosis stimulated by EGF were inhibited by tyrphostin A48, indicating that tyrosine kinase activity mediates EGF action. On the other hand, pertussis toxin did not affect the EGF-induced formation of DAG or exocytosis, ruling out the involvement of sperm Gi-like proteins. These results indicate that EGF could be an important co-factor in the initiation of exocytosis in spermatozoa.  相似文献   

5.
To determine if lysophosphatidylcholine (lysoPC) is able to induce proinflammatory changes in monocytes, its ability to stimulate arachidonic acid (AA) release, a product of phospholipase A2 (PLA(2)) activity, has been analyzed. LysoPC increased AA release in THP-1 and Mono Mac6 cells in a time- and concentration-dependent manner. The monocytes expressed both secretory and cytosolic PLA(2) enzymes and AA release was strongly reduced by cellular pretreatment with different PLA(2) inhibitors and by pertussis toxin, an inhibitor of G(i)-protein activation. This indicates that both cytosolic and secretory PLA(2) enzymes regulate specific lysoPC receptor-induced AA release, suggesting lysoPC participation in monocyte proinflammatory activation.  相似文献   

6.
We employed confocal laser-scanning microscopy to monitor cholecystokinin (CCK)-evoked Ca(2+) signals in fluo-3-loaded mouse pancreatic acinar cells. CCK-8-induced Ca(2+) signals start at the luminal cell pole and subsequently spread toward the basolateral membrane. Ca(2+) waves elicited by stimulation of high-affinity CCK receptors (h.a.CCK-R) with 20 pM CCK-8 spread with a slower rate than those induced by activation of low-affinity CCK receptors (l.a. CCK-R) with 10 nM CCK-8. However, the magnitude of the initial Ca(2+) release was the same at both CCK-8 concentrations, suggesting that the secondary Ca(2+) release from intracellular stores is modulated by activation of different intracellular pathways in response to low and high CCK-8 concentrations. Our experiments suggest that the propagation of Ca(2+) waves is modulated by protein kinase C (PKC) and arachidonic acid (AA). The data indicate that h.a. CCK-R are linked to phospholipase C (PLC) and phospholipase A(2) (PLA(2)) cascades, whereas l.a.CCK-R are coupled to PLC and phospholipase D (PLD) cascades. The products of PLA(2) and PLD activation, AA and diacylglycerol (DAG), cause inhibition of Ca(2+) wave propagation by yet unknown mechanisms.  相似文献   

7.
In the mouse and several other species, including man, capacitated acrosome-intact spermatozoa interact with natural [soluble zona pellucida (ZP) and progesterone (P4)] and synthetic [neoglycoproteins (ngps) and calcium (Ca(2+)) ionophore] agonists, prior to the initiation of a Ca(2+)-dependent signal transduction cascade. The net result is the fusion of the sperm plasma membrane overlying the outer acrosomal membrane at multiple sites and exocytosis of acrosomal contents [i.e., induction of the acrosome reaction (AR)]. This step is believed to be a prerequisite that enables the acrosome-reacted spermatozoon to penetrate the ZP and fertilize the egg. Although the rat is one of the most commonly used laboratory animals, very little is known about the chemical nature of agonists that induce the AR in this species. The lack of this information is primarily due to the fact that the rat sperm acrosome is a relatively thin structure. Thus, it is difficult to assess the status of the sperm acrosome in this species. In this report, we describe the use of a Coomassie brilliant blue dye staining procedure to assess the status of the rat sperm acrosome by light microscopy. The procedure is highly reproducible and has allowed us to determine the effects of carbohydrate (ngps and mouse ZP) and noncarbohydrate (P4 and Ca(2+) ionophore) agonists on capacitated spermatozoa. In addition, we have used a pharmacological approach to examine the functional significance of calmodulin (CaM), a Ca(2+)-binding protein, in induction of the AR in spermatozoa. Data presented in this report demonstrate that several ngps, solubilized mZP, P4, and Ca(2+) ionophores induce the AR in rat spermatozoa. Furthermore, we demonstrate that, whereas CaM antagonists blocked P4-induced AR, most of the inhibitors used had no significant effect on the Ca(2+) ionophore-induced (nonphysiological) AR.  相似文献   

8.
Synaptoneurosomes obtained from the cortex of rat brain prelabeled with [14C]arachidonic acid [( 14C]AA) were used as a source of substrate and enzyme in studies on the regulation of AA release. A significant amount of AA is liberated in the presence of 2 mM EGTA, independently of Ca2+, primarily from phosphatidic acid and polyphosphoinositides (poly-PI). Quinacrine, an inhibitor of phospholipase A2 (PLA2), suppressed AA release by about 60% and neomycin, a putative inhibitor of phospholipase C (PLC), reduced AA release by about 30%. An additive effect was exhibited when both inhibitors were given together. Ca2+ activated AA release. The level of Ca2+ present in the synaptoneurosomal preparation (endogenous level) and 5 microM CaCl2 enhance AA liberation by approximately 25%, whereas 2 mM CaCl2 resulted in a 50% increase in AA release relative to EGTA. The source for Ca(2+)-dependent AA release is predominantly phosphatidylinositol (PI); however, a small pool may also be liberated from neutral lipids. Carbachol, an agonist of the cholinergic receptor, stimulated Ca(2+)-dependent AA release by about 17%. Bradykinin enhanced the effect of carbachol by about 10-15%. This agonist-mediated AA release occurs specifically from phosphoinositides (PI + poly-PI). Quinacrine almost completely suppresses calcium-and carbachol-mediated AA release. Neomycin inhibits this process by about 30% and totally suppresses the effect of bradykinin. Our results indicate that both phospholipases PLA2 and PLC with subsequent action of DAG lipase are responsible for Ca(2+)-independent AA release. Ca(2+)-dependent and carbachol-mediated AA liberation occurs mainly as the result of PLA2 action. A small pool of AA is probably also released by PLC, which seems to be exclusively responsible for the effect of bradykinin.  相似文献   

9.
Capacitation has been correlated with the activation of a cAMP-PKA-dependent signaling pathway leading to protein tyrosine phosphorylation. The ability to exhibit this response to cAMP matures during epididymal maturation in concert with the ability of the spermatozoa to capacitate. In this study, we have addressed the mechanisms by which spermatozoa gain the potential to activate this signaling pathway during epididymal maturation. In a modified Tyrode's medium containing 1.7 mM calcium, caput spermatozoa had significantly higher [Ca2+]i than caudal cells and could not tyrosine phosphorylate in response to cAMP. However, in calcium-depleted medium both caput and caudal cells could exhibit a cAMP-dependent phosphorylation response. The inhibitory effect of calcium on tyrosine phosphorylation was also observed in caudal spermatozoa using thapsigargin, a Ca(2+)-ATPase inhibitor that increased [Ca2+]i and precipitated a corresponding decrease in phosphotyrosine expression. We also demonstrate that despite the activation of tyrosine phosphorylation in caput spermatozoa, these cells remain nonfunctional in terms of motility, sperm-egg recognition and acrosomal exocytosis. These results demonstrate that the signaling pathway leading to tyrosine phosphorylation in mouse spermatozoa is negatively regulated by [Ca2+]i, and that maturation mechanisms that control [Ca2+]i within the spermatozoon are critically important during epididymal transit.  相似文献   

10.
Calcium influx is required for the mammalian sperm acrosome reaction (AR), an exocytotic event occurring in the sperm head prior to fertilization. We show here that thapsigargin, a highly specific inhibitor of the microsomal Ca(2+)-Mg(2+)-ATPase (Ca(2+) pump), can initiate acrosomal exocytosis in capacitated bovine and ram spermatozoa. Initiation of acrosomal exocytosis by thapsigargin requires an influx of Ca(2+), since incubation of cells in the absence of added Ca(2+) or in the presence of the calcium channel blocker, La(3+), completely inhibited thapsigargin-induced acrosomal exocytosis. ATP-Dependent calcium accumulation into nonmitochondrial stores was detected in permeabilized sperm in the presence of ATP and mitochondrial uncoupler. This activity was inhibited by thapsigargin. Thapsigargin elevated the intracellular Ca(2+) concentration ([Ca(2+)](i)), and this increase was inhibited when extracellular Ca(2+) was chelated by EGTA, indicating that this rise in Ca(2+) is derived from the external medium. This rise of [Ca(2+)](i) took place first in the head and later in the midpiece of the spermatozoon. However, immunostaining using a polyclonal antibody directed against the purified inositol 1,4,5-tris-phosphate receptor (IP(3)-R) identified specific staining in the acrosome region, in the postacrosome, and along the tail, but not in the midpiece region. No staining in the acrosome region was observed in sperm without acrosome, indicating that the acrosome cap was stained in intact sperm. The presence of IP(3)-R in the anterior acrosomal region as well as the induction, by thapsigargin, of intracellular Ca(2+) elevation in the acrosomal region and acrosomal exocytosis, implicates the acrosome as a potential cellular Ca(2+) store. We suggest here that the cytosolic Ca(2+) is actively transported into the acrosome by an ATP-dependent, thapsigargin-sensitive Ca(2+) pump and that the accumulated Ca(2+) is released from the acrosome via an IP(3)-gated calcium channel. The ability of thapsigargin to increase [Ca(2+)](i) could be due to depletion of Ca(2+) in the acrosome, resulting in the opening of a capacitative calcium entry channel in the plasma membrane. The effect of thapsigargin on elevated [Ca(2+)](i) in capacitated cells was 2-fold higher than that in noncapacitated sperm, suggesting that the intracellular Ca pump is active during capacitation and that this pump may have a role in regulating [Ca(2+)](i) during capacitation and the AR.  相似文献   

11.
Mammalian spermatozoa require extracellular Ca2+, some of which must be internalized, to undergo complete capacitation. At a critical threshold, a rise in intracellular Ca2+ will trigger acrosomal exocytosis. We used chlortetracycline (CTC) fluorescence patterns to assess changes in the capacitation state of mouse spermatozoa after incubation under various conditions that would affect their intracellular Ca2+ concentrations. Under standard conditions with 1.80 mmol CaCl2l-1 known to support capacitation within 120 min and subsequent fertilization in vitro, a rise in the number of capacitated, acrosome-intact cells (B pattern) was observed over the first 60 min, followed by a decline. A detectable increase in capacitated, acrosome-reacted cells (AR pattern) coincided with the maximum of B pattern cells and a continued rise was observed over the following 60 min. With incubation in 3.60 mmol Ca2+l-1, the rise in AR cells began at 30 min, suggesting that this treatment accelerates capacitation. Introduction of ionophore A23187 at 15 min to cells in standard Ca2+ produced a similar but even more rapid response, with a maximum in B pattern cells and a noticeable rise in AR cells within 10 min. Thus ionophore-treated cells proceed through capacitation, but do so very quickly. However, ionophore in the presence of 90 mumol Ca2+l-1 could promote transition from the uncapacitated F pattern to the capacitated B pattern, but could not trigger acrosomal exocytosis, indicating that the latter requires high extracellular Ca2+. After preincubation in Ca(2+)-deficient medium, most cells exhibited the uncapacitated F pattern and the introduction of millimolar Ca2+ altered this distribution only slowly, over a period of 50 min. In contrast, preincubation in 90 mumol Ca2+l-1 resulted in a minority of F pattern cells and, within 10 min of millimolar Ca2+ introduction, a significant increase in AR cells was observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The ability of strontium (Sr(2+)) to replace calcium (Ca(2+)) in maintaining human sperm function has still not been completely characterized. In the present study, acrosome reaction (AR) inducibility in response to human follicular fluid (hFF) was compared in spermatozoa incubated in either Ca(2+)- or Sr(2+)-containing media. Other events related to sperm capacitation, such as protein tyrosine phosphorylation and hyperactivation as well as zona pellucida (ZP) recognition under both conditions, were also analyzed. Spermatozoa incubated overnight in the presence of Sr(2+) were unable to undergo the AR when exposed to hFF. Nevertheless, when spermatozoa were incubated under this condition and then transferred to medium with Ca(2+), sperm response to hFF was similar to that of cells incubated throughout in the presence of Ca(2+). The sperm protein tyrosine phosphorylation patterns and the percentages of sperm motility and hyperactivation were similar after incubation in Ca(2+)- or Sr(2+)-containing media. Under both conditions, the same binding capacity to homologous ZP was observed. Similar results were obtained when EGTA was added in order to chelate traces of Ca(2+) present in Sr(2+) medium. From these results, it can be concluded that Sr(2+) can replace Ca(2+) in supporting capacitation-related events and ZP binding, but not hFF-induced AR of human spermatozoa.  相似文献   

13.
The acrosome reaction (AR) is a special exocytotic process promoted by signal transduction pathways studied in many laboratories. Progesterone (P4) is one of the trigger molecules proposed. Upon the binding of P4 to its receptor, several molecules could be activated, including G-proteins, phospholipase A(2) (PLA(2)), and phospholipase C (PLC). The role of these molecules was analyzed in this study using the Chlortetracycline (CTC) protocol to detect and quantify the AR. Incubation of capacitated sperm cells with GTPgammas (GTPgammas, a mimetic of G-protein activation), arachidonic acid (AA, product of PLA(2) action), or phorbol ester (PMA, an activator of PLC) for 15 min increased the AR to a similar percentage as P4. Conversely, a decrease in the AR was detected when sperm cells were incubated with P4 after preincubation with: GDPbetaS (GDP, an inhibitor of G-protein activation), ONO RS-82 (ONO, an inhibitor of PLA(2)), or neomycin (Neo, an inhibitor of PLC) for 15 min. To analyze the activation sequence of G proteins, PLA(2), and PLC combinations of these mimetic/inhibitors were used during successive incubation periods. Inhibition promoted by GDP, ONO, and Neo were overcome by 15-min incubation with GTPgammas, AA, or PMA, respectively. But GTPgammas or P4 did not reverse the inhibition due to incubation with Neo and ONO. Interestingly, this dual inhibition was reverted by another 15-min incubation with AA or PMA. Results presented here could indicate that the AR triggered by P4 is driven by activation of G-proteins, that in turn activate PLA(2) and PLC simultaneously, that finally promote acrosomal exocytosis.  相似文献   

14.
The mammalian sperm acrosome reaction (AR) is an essential event prior to sperm-egg fusion at fertilization, and it is primarily dependent on an increase in intracellular Ca2+ concentration ([Ca2+]i). Spatiotemporal aspects of the [Ca2+]i increase during the AR induced by solubilized zona pellucida (ZP) in hamster spermatozoa were precisely investigated with a Ca2+ imaging technique using confocal laser scanning microscopy with two fluorescent Ca2+ indicators. A rapid rise in [Ca2+]i occurred immediately after the application of ZP solution through a micropipette. The rise was always initiated in the sperm head, even when the application was directed toward the tail. The elevated [Ca2+]i was little attenuated during measurement for 30-40 s. Acrosomal exocytosis was detected as a sudden decrease of fluorescence in the acrosomal vesicle approximately 20 s after the onset of the [Ca2+]i rise. High-resolution imaging revealed that the [Ca2+]i rise in the sperm head began at the region around the equatorial segment and spread over the posterior region of the head within 0.6 s, whereas Ca2+ concentration in the acrosomal vesicle appeared to be unaltered. The [Ca2+]i rise was completely abolished under Ca2+-free extracellular conditions, indicating that it is totally attributable to Ca2+ influx. Nifedipine, an inhibitor of L-type Ca2+ channels, did not affect the rising phase of the ZP-induced Ca2+ response, but accelerated the decline of the [Ca2+]i rise and inhibited acrosomal exocytosis. The present study provides implicative information about the spatial organization of functional molecules involved in the signal transduction in mammalian AR.  相似文献   

15.
The presence of ATP in the genital tract fluid of mammals provokes questions regarding its function in the fertilization process. We investigated the effect of extracellular ATP (ATPe) on the activation of bovine spermatozoa. A signal transduction mechanism for ATP involving the receptor-mediated release of second messengers is described. Treatment of spermatozoa with ATP, uridine triphosphate (UTP), or 2-methylthio-ATP resulted in a concentration-dependent increase of acrosomal exocytosis, whereas treatment with either AMP or adenosine induced little exocytosis. This suggested that the receptor involved is of the P2 and not the P1 type. Several lines of evidence also suggest that the ATP purinoceptor is of the P2y and not the P2x type. First, the acrosome reaction was induced by the P2y-agonists ATP, UTP, or 2-methylthio-ATP, but no effects were shown by the P2x-agonists alpha,beta-methylene-ATP or beta,gamma-methylene-ATP. Second, ATP-induced acrosomal exocytosis was inhibited by the P2y antagonists, but not by the P2x antagonists. Third, enhanced Ca2+ uptake into the cells was observed with ATP and 2-methylthio-ATP, but not with beta,gamma-methylene-ATP. Additionally, ATP induced elevation of intracellular Ca2+ and cAMP, and the effect on cAMP was predominantly enhanced by including Ca2+ and the Ca2+-ionophore A23187 in the incubation medium. Extracellular ATP also activates protein kinase Calpha (PKCalpha), and the acrosome reaction, stimulated by ATPe, is inhibited by a PKC-specific inhibitor. In summary, we suggest that ATPe activates the P2 purinoceptor that elevates [Ca2+]i, which leads to PKCalpha activation and culminates in acrosomal exocytosis.  相似文献   

16.
G-proteins, calcium, and phospholipase A2 (PLA2) have all been implicated in the cascade of signaling events leading to the acrosome reaction in human spermatozoa. In order to study the role of Ca+2 and PLA2 during the acrosome reaction triggered by G-proteins, we treated human spermatozoa incubated for 3 hr under capacitating conditions with several reagents (GTPgammaS, A23187, ONO-RS-082, arachidonic acid, BAPTA-AM, and TPEN), alone or in different combinations. Our results suggest that GTP-binding proteins require Ca+2 and PLA2 to accomplish their stimulatory effect, and that Ca+2 is also required when the acrosome reaction--bypassing the action of PLA2--is stimulated by AA. Accordingly, when treated with GTPgammaS or AA, the cells loaded with Fura 2-AM showed a steady increase of [Ca+2]i. On the other hand, a massive influx of Ca+2 was completely unable to induce the acrosome reaction if PLA2 was inhibited, suggesting that both an increase of [Ca+2]i and PLA2 activation are required for the acrosome reaction to occur.  相似文献   

17.
To delineate the functional aspects of zona pellucida (ZP) glycoproteins during fertilization in human, in the present study, fluorochrome-conjugated Escherichia coli (E. coli)- and baculovirus-expressed recombinant human ZP glycoprotein-2 (ZP2), -3 (ZP3), and -4 (ZP4) were employed. In an immunofluorescence assay, capacitated human sperm exhibited binding of the baculovirus-expressed recombinant ZP3 as well as ZP4 to either acrosomal cap or equatorial region whereas acrosome-reacted sperm failed to show any binding to the acrosomal cap. Using double labeling experiments, simultaneous binding of ZP3 and ZP4 to the acrosomal cap was observed suggesting the possibility of different binding sites of these proteins on the sperm surface. No binding of ZP2 was observed to the capacitated sperm. However, acrosome-reacted sperm (20.00 +/- 1.93%) showed binding of ZP2 that was restricted to only equatorial region. Interestingly, E. coli-expressed recombinant human zona proteins also showed very similar binding profiles. Competitive inhibition studies with unlabeled recombinant human zona proteins revealed the specificity of the above binding characteristics. Binding characteristics have been further validated by an indirect immunofluorescence assay using native human heat solubilized isolated zona pellucida. Employing baculovirus-expressed recombinant ZP3 and ZP4 with reduced N-linked glycosylation and respective E. coli-expressed recombinant proteins, it was observed that glycosylation is required for induction of acrosomal exocytosis but its absence may not compromise on their binding ability. These studies have revealed the binding profile of individual human zona protein to spermatozoa and further strengthened the importance of glycosylation of zona proteins for acrosomal exocytosis in spermatozoa.  相似文献   

18.
Although phospholipase A(2) (PLA(2)) is of importance for insulin secretion, it is not established how it relates to other signalling mechanisms. This study examined the crosstalk between PLA(2) and the cyclic AMP (cAMP)-protein kinase A (PKA) pathway in isolated rat islets. Forskolin, IBMX, and dbcAMP reduced [(3)H]arachidonic acid ([(3)H]AA) efflux from prelabelled islets during PLA(2) activation by mellitin or cholecystokinin (CCK-8), while efflux induced by carbachol was unaffected. The PKA inhibitor myrPKI(14-22) prevented this reduction of CCK-8-induced efflux. Glucagon-like peptide-1 (GLP-1), gastric inhibitory polypeptide (GIP), and vasoactive intestinal polypeptide (VIP) diminished CCK-8-induced efflux. Also in the absence of Ca(2+), forskolin/IBMX and dbcAMP reduced CCK-8-induced efflux. In parallel with effects on [(3)H]AA, the expected additive insulin secretion induced by mellitin or CCK-8 in combination with forskolin or GLP-1, respectively, was reduced. In conclusion, the cAMP-PKA pathway restrains both Ca(2+)-dependent and Ca(2+)-independent PLA(2) activation, indicating a regulating crosstalk between these two pathways.  相似文献   

19.
Previous studies suggested a role for calcium in CYP2E1-dependent toxicity. The possible role of phospholipase A2 (PLA2) activation in this toxicity was investigated. HepG2 cells that overexpress CYP2E1 (E47 cells) exposed to arachidonic acid (AA) +Fe-NTA showed higher toxicity than control HepG2 cells not expressing CYP2E1 (C34 cells). This toxicity was inhibited by the PLA2 inhibitors aristolochic acid, quinacrine, and PTK. PLA2 activity assessed by release of preloaded [3H]AA after treatment with AA+Fe was higher in the CYP2E1 expressing HepG2 cells. This [3H]AA release was inhibited by PLA2 inhibitors, alpha-tocopherol, and by depleting Ca2+ from the cells (intracellular + extracellular sources), but not by removal of extracellular calcium alone. Toxicity was preceded by an increase in intracellular calcium caused by influx from the extracellular space, and this was prevented by PLA2 inhibitors. PLA2 inhibitors also blocked mitochondrial damage in the CYP2E1-expressing HepG2 cells exposed to AA+Fe. Ca2+ depletion and removal of extracellular calcium inhibited toxicity at early time periods, although a delayed toxicity was evident at later times in Ca2+-free medium. This later toxicity was also inhibited by PLA2 inhibitors. Analogous to PLA2 activity, Ca2+ depletion but not removal of extracellular calcium alone prevented the activation of calpain activity by AA+Fe. These results suggest that release of stored calcium by AA+Fe, induced by lipid peroxidation, can initially activate calpain and PLA2 activity, that PLA2 activation is critical for a subsequent increased influx of extracellular Ca2+, and that the combination of increased PLA2 and calpain activity, increased calcium and oxidative stress cause mitochondrial damage, that ultimately produces the rapid toxicity of AA+Fe in CYP2E1-expressing HepG2 cells.  相似文献   

20.
The objective of this investigation was to determine the role of secretory and cytosolic isoforms of phospholipase A(2) (PLA(2)) in the induction of arachidonic acid (AA) and leukotriene synthesis in human eosinophils and the mechanism of PLA(2) activation by mitogen-activated protein kinase (MAPK) isoforms in this process. Pharmacological activation of eosinophils with fMLP caused increased AA release in a concentration (EC(50) = 8.5 nM)- and time-dependent (t(1/2) = 3.5 min) manner. Both fMLP-induced AA release and leukotriene C(4) (LTC(4)) secretion were inhibited concentration dependently by arachidonic trifluoromethyl ketone, a cytosolic PLA(2) (cPLA(2)) inhibitor; however, inhibition of neither the 14-kDa secretory phospholipase A(2) by 3-(3-acetamide-1-benzyl-2-ethylindolyl-5-oxy)propanephosphonic acid nor cytosolic Ca(2+)-independent phospholipase A(2) inhibition by bromoenol lactone blocked hydrolysis of AA or subsequent leukotriene synthesis. Pretreatment of eosinophils with a mitogen-activated protein/extracellular signal-regulated protein kinase (ERK) kinase inhibitor, U0126, or a p38 MAPK inhibitor, SB203580, suppressed both AA production and LTC(4) release. fMLP induced phosphorylation of MAPK isoforms, ERK1/2 and p38, which were evident after 30 s, maximal at 1-5 min, and declined thereafter. fMLP stimulation also increased cPLA(2) activity in eosinophils, which was inhibited completely by 30 microM arachidonic trifluoromethyl ketone. Preincubation of eosinophils with U0126 or SB203580 blocked fMLP-enhanced cPLA(2) activity. Furthermore, inhibition of Ras, an upstream GTP-binding protein of ERK, also suppressed fMLP-stimulated AA release. These findings demonstrate that cPLA(2) activation causes AA hydrolysis and LTC(4) secretion. We also find that cPLA(2) activation caused by fMLP occurs subsequent to and is dependent upon ERK1/2 and p38 MAPK activation. Other PLA(2) isoforms native to human eosinophils possess no significant activity in the stimulated production of AA or LTC(4).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号