首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary The high capillary density of the hypoxic adapted mole rat may provide an efficient oxygen extraction system that permits the maintenance of a normal metabolic rate during hypoxia. We compared myocardial function and energetics in the isolated working heart of the mole rat with that of the white rat during oxygenation (567 torr O2) and 3 hypoxic periods of 319, 232 and 155 torr O2, each followed by a reoxygenation period. Control hearts were perfused for a similar time but with oxygenated buffer. The control oxygenated mole rat heart had higher coronary flow (CF), systolic pressure and myocardial O2 consumption and lower coronary resistance compared with the heart of the white rat. The hypoxic heart of the mole rat had higher CF, aortic flow, stroke volume, , mechanical power and efficiency, and lower coronary resistance compared with the hypoxic heart of the white rat. The better performance of the hypoxic mole rat heart was not due to a more efficient O2 extraction but was associated with a lower coronary resistance. The findings correlate with the known cardiac physiology of the intact mole rat.  相似文献   

3.
Measurement of rat plasma adenosine levels during normoxia and hypoxia.   总被引:1,自引:0,他引:1  
A stop solution containing EDTA, EGTA, dipyridamole, erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) and d,l-alpha-glycerophosphate has been used to prevent adenosine formation and loss from rat femoral arterial blood samples prepared for measurement of plasma adenosine levels. The femoral arterial plasma adenosine concentration in normoxic rats was 79.2 +/- 12.7 nM. During a 5 min period of hypoxia (8% oxygen) plasma adenosine increased to 190.2 +/- 32.2 nM. A resting plasma adenosine level of circa 80 nM, which is 10X lower than most previous estimates, approximates the threshold levels of adenosine required for arterial dilation.  相似文献   

4.
5.
Acclimatization to hypoxia requires time to complete the adaptation mechanisms that influence oxygen (O(2)) transport and O(2) utilization. Although decreasing hemoglobin (Hb) O(2) affinity would favor the release of O(2) to the tissues, increasing Hb O(2) affinity would augment arterial O(2) saturation during hypoxia. This study was designed to test the hypothesis that pharmacologically increasing the Hb O(2) affinity will augment O(2) transport during severe hypoxia (10 and 5% inspired O(2)) compared with normal Hb O(2) affinity. RBC Hb O(2) affinity was increased by infusion of 20 mg/kg of 5-hydroxymethyl-2-furfural (5HMF). Control animals received only the vehicle. The effects of increasing Hb O(2) affinity were studied in the hamster window chamber model, in terms of systemic and microvascular hemodynamics and partial pressures of O(2) (Po(2)). Pimonidazole binding to hypoxic areas of mice heart and brain was also studied. 5HMF decreased the Po(2) at which the Hb is 50% saturated with O(2) by 12.6 mmHg. During 10 and 5% O(2) hypoxia, 5HMF increased arterial blood O(2) saturation by 35 and 48% from the vehicle group, respectively. During 5% O(2) hypoxia, blood pressure and heart rate were 58 and 30% higher for 5HMF compared with the vehicle. In addition, 5HMF preserved microvascular blood flow, whereas blood flow decreased to 40% of baseline in the vehicle group. Consequently, perivascular Po(2) was three times higher in the 5HMF group compared with the control group at 5% O(2) hypoxia. 5HMF also reduced heart and brain hypoxic areas in mice. Therefore, increased Hb O(2) affinity resulted in hemodynamics and oxygenation benefits during severe hypoxia. This acute acclimatization process may have implications in survival during severe environmental hypoxia when logistic constraints prevent chronic acclimatization.  相似文献   

6.
Hu Y  Zou F  Cai CQ  Wu HY  Yun HX  Chen YT  Jin GE  Ge RL 《生理学报》2006,58(5):477-482
本文旨在研究大鼠传导性肺动脉平滑肌细胞(pulmonary artery smooth muscle cells,PASMCs)的电生理特征及对急性低氧的反应。用酶解法急性分离出1-2级分支的PASMCs,通过全细胞膜片钳方法研究常氧及急性低氧状况下细胞钾电流的差异,并在常氧下先后使用iBTX和4-AP阻断大电导钙激活钾离子(large conductance Ca-activated K^+,BKCa)通道及延迟整流性钾离子(delayed rectifier K^+,KDR)通道后,观察细胞钾电流特征。根据细胞的大小、形态及电生理特征可将PASMCs分为Ⅰ、Ⅱ、Ⅲ类。iBTX对Ⅰ类细胞几乎无作用,而4-AP几乎完全阻断它的钾电流;Ⅱ类细胞的钾电流在加入iBTX后大部分被抑制,其余的对4.AP敏感;Ⅲ类细胞的钾电流对iBTX及4-AP均敏感。急性低氧对三类细胞的钾电流均有不同程度的抑制,并使Ⅰ类细胞的膜电位显著升高,而Ⅱ、Ⅲ类细胞膜电位升高的程度不如Ⅰ类显著。结果表明,传导性肺动脉有3种形态及电生理特性不同的PASMCs,在急性低氧时其钾电流不同程度地受到抑制,同时静息膜电位也有不同程度去极化,这些可能参与急性低氧时传导性肺动脉舒缩反应的调节。KDR及BKCa通道在3种细胞中的比例不同可能是急性低氧对3种PASMCs影响不同的离子基础。  相似文献   

7.
Sildenafil causes pulmonary vasodilation, thus potentially reducing impairments of hypoxia-induced pulmonary hypertension on exercise performance at altitude. The purpose of this study was to determine the effects of sildenafil during normoxic and hypoxic exercise. We hypothesized that 1) sildenafil would have no significant effects on normoxic exercise, and 2) sildenafil would improve cardiac output, arterial oxygen saturation (SaO2), and performance during hypoxic exercise. Ten trained men performed one practice and three experimental trials at sea level (SL) and simulated high altitude (HA) of 3,874 m. Each cycling test consisted of a set-work-rate portion (55% work capacity: 1 h SL, 30 min HA) followed immediately by a time trial (10 km SL, 6 km HA). Double-blinded capsules (placebo, 50, or 100 mg) were taken 1 h before exercise in a randomly counterbalanced order. For HA, subjects also began breathing hypoxic gas (12.8% oxygen) 1 h before exercise. At SL, sildenafil had no effects on any cardiovascular or performance measures. At HA, sildenafil increased stroke volume (measured by impedance cardiography), cardiac output, and SaO2 during set-work-rate exercise. Sildenafil lowered 6-km time-trial time by 15% (P<0.05). SaO2 was also higher during the time trial (P<0.05) in response to sildenafil, despite higher work rates. Post hoc analyses revealed two subject groups, sildenafil responders and nonresponders, who improved time-trial performance by 39% (P<0.05) and 1.0%, respectively. No dose-response effects were observed. During cycling exercise in acute hypoxia, sildenafil can greatly improve cardiovascular function, SaO2, and performance for certain individuals.  相似文献   

8.
9.
We determined changes in rat plantaris, diaphragm, and intercostal muscle metabolites following exercise of various intensities and durations, in normoxia and hypoxia (FIO2 = 0.12). Marked alveolar hyperventilation occurred during all exercise conditions, suggesting that respiratory muscle motor activity was high. [ATP] was maintained at rest levels in all muscles during all normoxic and hypoxic exercise bouts, but at the expense of creatine phosphate (CP) in plantaris muscle and diaphragm muscle following brief exercise at maximum O2 uptake (VO2max) in normoxia. In normoxic exercise plantaris [glycogen] fell as exercise exceeded 60% VO2max, and was reduced to less than 50% control during exhaustive endurance exercise (68% VO2max for 54 min and 84% for 38 min). Respiratory muscle [glycogen] was unchanged at VO2max as well as during either type of endurance exercise. Glucose 6-phosphate (G6P) rose consistently during heavy exercise in diaphragm but not in plantaris. With all types of exercise greater than 84% VO2max, lactate concentration ([LA]) in all three muscles rose to the same extent as arterial [LA], except at VO2max, where respiratory muscle [LA] rose to less than half that in arterial blood or plantaris. Exhaustive exercise in hypoxia caused marked hyperventilation and reduced arterial O2 content; glycogen fell in plantaris (20% of control) and in diaphragm (58%) and intercostals (44%). We conclude that respiratory muscle glycogen stores are spared during exhaustive exercise in the face of substantial glycogen utilization in plantaris, even under conditions of extreme hyperventilation and reduced O2 transport. This sparing effect is due primarily to G6P inhibition of glycogen phosphorylase in diaphragm muscle. The presence of elevated [LA] in the absence of glycogen utilization suggests that increased lactate uptake, rather than lactate production, occurred in the respiratory muscles during exhaustive exercise.  相似文献   

10.

Background

It is well known that hypoxic exercise in healthy individuals increases limb blood flow, leg oxygen extraction and limb vascular conductance during knee extension exercise. However, the effect of hypoxia on cardiac output, and total vascular conductance is less clear. Furthermore, the oxygen delivery response to hypoxic exercise in well trained individuals is not well known. Therefore our aim was to determine the cardiac output (Doppler echocardiography), vascular conductance, limb blood flow (Doppler echocardiography) and muscle oxygenation response during hypoxic knee extension in normally active and endurance-trained males.

Methods

Ten normally active and nine endurance-trained males (VO2max = 46.1 and 65.5 mL/kg/min, respectively) performed 2 leg knee extension at 25, 50, 75 and 100% of their maximum intensity in both normoxic and hypoxic conditions (FIO2 = 15%; randomized order). Results were analyzed with a 2-way mixed model ANOVA (group × intensity).

Results

The main finding was that in normally active individuals hypoxic sub-maximal exercise (25 – 75% of maximum intensity) brought about a 3 fold increase in limb blood flow but decreased stroke volume compared to normoxia. In the trained group there were no significant changes in stroke volume, cardiac output and limb blood flow at sub-maximal intensities (compared to normoxia). During maximal intensity hypoxic exercise limb blood flow increased approximately 300 mL/min compared to maximal intensity normoxic exercise.

Conclusion

Cardiorespiratory fitness likely influences the oxygen delivery response to hypoxic exercise both at a systemic and limb level. The increase in limb blood flow during maximal exercise in hypoxia (both active and trained individuals) suggests a hypoxic stimulus that is not present in normoxic conditions.
  相似文献   

11.
12.
The effect of severe acute hypoxia (fractional concentration of inspired oxygen equalled 0.104) was studied in nine male subjects performing an incremental exercise test. For power outputs over 125 W, all the subjects in a state of hypoxia showed a decrease in oxygen consumption ( O2) relative to exercise intensity compared with normoxia (P < 0.05). This would suggest an increased anaerobic metabolism as an energy source during hypoxic exercise. During submaximal exercise, for a given O2, higher blood lactate concentrations were found in hypoxia than in normoxia (P < 0.05). In consequence, the onset of blood lactate accumulation (OBLA) was shifted to a lower O2 ( O2 1.77 l·min–1 in hypoxia vs 3.10 l·min–1 in normoxia). Lactate concentration increases relative to minute ventilation ( E) responses were significantly higher during hypoxia than in normoxia (P < 0.05). At OBLA, E during hypoxia was 25% lower than in the normoxic test. This study would suggest that in hypoxia subjects are able to use an increased anaerobic metabolism to maintain exercise performance.  相似文献   

13.
We tested whether blood flow to skeletal muscle would increase in proportion to an increase in O2 uptake caused by 2,4-dinitrophenol (DNP). We further tested the metabolic control in the face of a central challenge, hypoxic hypoxia. Three injections of DNP were made at 30-min intervals into the arterial supply of the left hindlimb in anesthetized dogs. Similar experiments were done on a second group of dogs ventilated with 12% O2-88% N2 (DNP and hypoxia). A third group served as time controls. Limb O2 uptake increased in a linear fashion in the DNP group with each injection. The increase in limb O2 uptake fell off with the second and third injections in the DNP and hypoxia group and appeared to be limited by the hypoxia. Limb blood flow increased only with the last injection in that group and not at all in the DNP group. Limb vascular resistance decreased in both the experimental groups relative to the time-related changes in the control group. This became more marked as the O2 extraction ratio exceeded 0.5. Even in the absence of nerve stimulation and active muscle contractions, both distribution and resistance control vessels responded in a coordinated fashion to an increase in O2 uptake. Mild hypoxia enhanced these responses but also appeared to limit a fraction of O2 uptake that may not have been concerned with maintaining tissue energy levels.  相似文献   

14.
15.
Fulco, Charles S., Steven F. Lewis, Peter N. Frykman, RobertBoushel, Sinclair Smith, Everett A. Harman, Allen Cymerman, and Kent B. Pandolf. Muscle fatigue and exhaustion during dynamic leg exercisein normoxia and hypobaric hypoxia. J. Appl. Physiol. 81(5): 1891-1900, 1996.Using anexercise device that integrates maximal voluntary static contraction(MVC) of knee extensor muscles with dynamic knee extension, we comparedprogressive muscle fatigue, i.e., rate of decline in force-generatingcapacity, in normoxia (758 Torr) and hypobaric hypoxia (464 Torr).Eight healthy men performed exhaustive constant work rate kneeextension (21 ± 3 W, 79 ± 2 and 87 ± 2% of 1-leg kneeextension O2 peak uptake fornormoxia and hypobaria, respectively) from knee angles of90-150° at a rate of 1 Hz. MVC (90° knee angle) wasperformed before dynamic exercise and during 5-s pauses every 2 minof dynamic exercise. MVC force was 578 ± 29 N in normoxia and 569 ± 29 N in hypobaria before exercise and fell, at exhaustion, to similar levels (265 ± 10 and 284 ± 20 N for normoxia andhypobaria, respectively; P > 0.05)that were higher (P < 0.01) thanpeak force of constant work rate knee extension (98 ± 10 N, 18 ± 3% of MVC). Time to exhaustion was 56% shorter for hypobariathan for normoxia (19 ± 5 vs. 43 ± 7 min, respectively;P < 0.01), and rate of right leg MVC fall wasnearly twofold greater for hypobaria than for normoxia (mean slope = 22.3 vs. 11.9 N/min, respectively;P < 0.05). With increasing durationof dynamic exercise for normoxia and hypobaria, integratedelectromyographic activity during MVC fell progressively with MVCforce, implying attenuated maximal muscle excitation. Exhaustion, perse, was postulated to relate more closely to impaired shorteningvelocity than to failure of force-generating capacity.

  相似文献   

16.
The role of nitric oxide (NO) and reactive oxygen species (ROS) in regulating capillary perfusion was studied in the hamster cheek pouch model during normoxia and after 20 min of exposure to 10% O2-90% N2. We measured PO2 by using phosphorescence quenching microscopy and ROS production in systemic blood. Identical experiments were performed after treatment with the NO synthase inhibitor NG-monomethyl-L-arginine (L-NMMA) and after the reinfusion of the NO donor 2,2'-(hydroxynitrosohydrazono)bis-etanamine (DETA/NO) after treatment with L-NMMA. Hypoxia caused a significant decrease in the systemic PO2. During normoxia, arteriolar intravascular PO2 decreased progressively from 47.0 +/- 3.5 mmHg in the larger arterioles to 28.0 +/- 2.5 mmHg in the terminal arterioles; conversely, intravascular PO2 was 7-14 mmHg and approximately uniform in all arterioles. Tissue PO2 was 85% of baseline. Hypoxia significantly dilated arterioles, reduced blood flow, and increased capillary perfusion (15%) and ROS (72%) relative to baseline. Administration of L-NMMA during hypoxia further reduced capillary perfusion to 47% of baseline and increased ROS to 34% of baseline, both changes being significant. Tissue PO2 was reduced by 33% versus the hypoxic group. Administration of DETA/NO after L-NMMA caused vasodilation, normalized ROS, and increased capillary perfusion and tissue PO2. These results indicate that during normoxia, oxygen is supplied to the tissue mostly by the arterioles, whereas in hypoxia, oxygen is supplied to tissue by capillaries by a NO concentration-dependent mechanism that controls capillary perfusion and tissue PO2, involving capillary endothelial cell responses to the decrease in lipid peroxide formation controlled by NO availability during low PO2 conditions.  相似文献   

17.
18.
19.
In this study, the response of the sarcoplasmic reticulum (SR) to prolonged exercise, performed in normoxia (inspired O(2) fraction = 0.21) and hypoxia (inspired O(2) fraction = 0.14) was studied in homogenates prepared from the vastus lateralis muscle in 10 untrained men (peak O(2) consumption = 3.09 +/- 0.25 l/min). In normoxia, performed at 48 +/- 2.2% peak O(2) consumption, maximal Ca(2+)-dependent ATPase activity was reduced by approximately 25% at 30 min of exercise compared with rest (168 +/- 10 vs. 126 +/- 8 micromol.g protein(-1) x min(-1)), with no further reductions observed at 90 min (129 +/- 6 micromol x g protein(-1) x min(-1)). No changes were observed in the Hill coefficient or in the Ca(2+) concentration at half-maximal activity. The reduction in maximal Ca(2+)-dependent ATPase activity at 30 min of exercise was accompanied by oxalate-dependent reductions (P < 0.05) in Ca(2+) uptake by approximately 20% (370 +/- 22 vs. 298 +/- 25 micromol x g protein(-1) x min(-1)). Ca(2+) release, induced by 4-chloro-m-cresol and assessed into fast and slow phases, was decreased (P < 0.05) by approximately 16 and approximately 32%, respectively, by 90 min of exercise. No differences were found between normoxia and hypoxia for any of the SR properties examined. It is concluded that the disturbances induced in SR Ca(2+) cycling with prolonged moderate-intensity exercise in human muscle during normoxia are not modified when the exercise is performed in hypoxia.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号