首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lee WY  Koh EJ  Lee SM 《Nitric oxide》2012,26(1):1-8
This study examined the cytoprotective mechanisms of a combination of ischemic preconditioning (IPC) and allopurinol against liver injury caused by ischemia/reperfusion (I/R). Allopurinol (50 mg/kg) was intraperitoneally administered 18 and 1 h before sustained ischemia. A rat liver was preconditioned by 10 min of ischemia, followed by 10 min of reperfusion, and then subjected to 90 min of ischemia, followed by 5 h of reperfusion. Rats were pretreated with adenosine deaminase (ADA), 3,7-dimethyl-1-[2-propargyl]-xanthine (DMPX), and N-nitro-l-arginine methyl ester (l-NAME) before IPC. Hepatic nitrite and nitrate and eNOS protein expression levels were increased by the combination of IPC and allopurinol. This increase was attenuated by ADA, DMPX, and l-NAME. I/R induced an increase in alanine aminotransferase activity, whereas it decreased the hepatic glutathione level. A combination of IPC and allopurinol attenuated these changes, which were abolished by ADA, DMPX, and l-NAME. The increase in the liver wet weight-to-dry weight ratio after I/R was attenuated by the combination of IPC and allopurinol. In contrast, hepatic bile flow was decreased after I/R, which was attenuated by the combination of IPC and allopurinol. These changes were restored by l-NAME. I/R induced a decrease in the level of mitochondrial dehydrogenase, whereas it increased mitochondrial swelling. A combination of IPC and allopurinol attenuated these changes, which were restored by ADA, DMPX, and l-NAME. Our findings suggest that a combination of IPC and allopurinol reduces post-ischemic hepatic injury by enhancing NO generation.  相似文献   

2.
Hydrogen sulfide protects rat lung from ischemia-reperfusion injury   总被引:2,自引:0,他引:2  
Fu Z  Liu X  Geng B  Fang L  Tang C 《Life sciences》2008,82(23-24):1196-1202
Recent studies have indicated that hydrogen sulfide (H(2)S) is capable of modulating many physiological processes, which prompted us to investigate the potential of H(2)S as a lung protective agent. To explore changes in the generation of endogenous H(2)S and the role of H(2)S in the pathogenesis of pulmonary ischemia-reperfusion (I/R) injury in rats, we built an isolated rat lung I/R model. Lungs were subjected to 45 min ischemia followed by reperfusion (45 min) and were pretreated with H(2)S (50 micromol/l or 100 micromol/l) or an irreversible inhibitor of cystathionine-gamma-lyase (CSE), propargylglycine (PPG; 2 mmol/l). We examined indices of lung injury: lung histological change, perfusion flow rate, ratio of lung wet weight to dry weight (w/d), and lung compliance. H(2)S content and CSE protein expression in lung tissues were measured. Malondialdehyde (MDA) content, activities of superoxide dismutase (SOD) and catalase (CAT), and restraint of superoxide anion (O(2)(-)) production in lung tissues were measured to reflect oxidative stress. In the current study, we demonstrated that H(2)S content and CSE activity in lungs after I/R were significantly higher than those in the control group. Preperfusion with H(2)S attenuated the lung I/R injury while preperfusion with PPG aggravated the lung I/R injury. H(2)S preperfusion reduced I/R-induced MDA production and potentiated SOD and CAT activities and the restraint of O(2)(-) production in the lungs under I/R, which attenuated lung oxidative injury. These findings suggest that endogenous CSE/H(2)S pathway might be involved in the pathogenesis of lung I/R injury and that administration of H(2)S might be of clinical benefit in lung I/R injury.  相似文献   

3.
Previous studies have proved that activation of aldehyde dehydrogenase two (ALDH2) can attenuate oxidative stress through clearance of cytotoxic aldehydes, and can protect against cardiac, cerebral, and lung ischemia/reperfusion (I/R) injuries. In this study, we investigated the effects of the ALDH2 activator Alda-1 on hepatic I/R injury. Partial warm ischemia was performed in the left and middle hepatic lobes of Sprague-Dawley rats for 1?h, followed by 6?h of reperfusion. Rats received either Alda-1 or vehicle by intravenous injection 30?min before ischemia. Blood and tissue samples of the rats were collected after 6-h reperfusion. Histological injury, proinflammatory cytokines, reactive oxygen species (ROS), cellular apoptosis, ALDH2 expression and activity, 4-hydroxy-trans-2-nonenal (4-HNE) and malondialdehyde (MDA) were measured. BRL-3A hepatocytes were subjected to hypoxia/reoxygenation (H/R). Cell viability, ROS, and mitochondrial membrane potential were determined. Pretreatment with Alda-1 significantly alleviated I/R-induced elevations of alanine aminotransferase and aspartate amino transferase, and significantly blunted the pathological injury of the liver. Moreover, Alda-1 significantly inhibited ROS and proinflammatory cytokines production, 4-HNE and MDA accumulation, and apoptosis. Increased ALDH2 activity was found after Alda-1 administration. No significant changes in ALDH2 expression were observed after I/R. ROS was also higher in H/R cells than in control cells, which was aggravated upon treatment with 4-HNE, and reduced by Alda-1 treatment. Cell viability and mitochondrial membrane potential were inhibited in H/R cells, which was attenuated upon Alda-1 treatment. Activation of ALDH2 by Alda-1 attenuates hepatic I/R injury via clearance of cytotoxic aldehydes.  相似文献   

4.
The aim of this study was to investigate the role of nitric oxide (NO) in hepatic ischemia-reperfusion (I/R) injury in rats. Immunohistochemistry was used to examine the protein expression of endothelial and inducible nitric oxide synthases (eNOS, iNOS) and nitrotyrosine after I/R challenges to the liver, and blood levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactic dehydrogenase (LDH), hydroxyl radical and NO were measured before ischemia and after reperfusion. Ischemia was induced by occlusion of the common hepatic artery and portal vein for 40 min, followed by reperfusion for 90 min. Reperfusion of the liver induced a significant increase in the blood concentrations of AST, ALT, LDH (n = 8; P < 0.001), hydroxyl radical (n = 8; P < 0.001) and NO (n = 8; P < 0.01). The eNOS, iNOS, nitrotyrosine, SOD1 and SOD2 protein expression was also found to increase significantly after reperfusion (n = 3). Administration of the NOS inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME) (n = 8) had a protective effect on the I/R-related injury, but the NO donor L-arginine (L-Arg) (n = 8) potentiated the damage caused by I/R. These results suggest that reperfusion of the liver induces expression of NOS, which is related to the elevation of blood NO. The increase in hydroxyl radical concentration was accompanied by an increase in antioxidant enzyme expression (SOD1 and SOD2), and an increase in nitrotyrosine expression was also observed, reflecting the increased production of NO and oxygen radicals. We concluded from the protective effect of L-NAME and the potentiation by L-Arg that NOS expression and increases in NO and hydroxyl radical production have deleterious effects on the response to I/R in the liver.  相似文献   

5.
Hepatic ischemia and reperfusion injury (I/R) is accompanied by excessive reactive oxygen species and resultant sterile inflammation. Chlorogenic acid (CGA), one of the most abundant polyphenols in the human diet, has been shown to exert potent anti-inflammatory, antibacterial and antioxidant activities. Thus, the purpose of the present study was to investigate protective effects of CGA and its molecular mechanisms against hepatic I/R injury. Rats were subjected to 60 min of partial hepatic ischemia followed by 5 h of reperfusion. CGA (2.5, 5 and 10 mg/kg, ip) was administered twice: 10 min prior to ischemia and 10 min before reperfusion. CGA treatment resulted in marked improvement of hepatic function and histology, and suppressed oxidative stress, as indicated by hepatic lipid peroxidation and glutathione level. Levels of serum tumor necrosis factor-α, inducible nitric oxide synthase and cyclooxygenase-2 protein and mRNA expressions were up-regulated after I/R; these effects were attenuated by CGA. Immunoblot results showed that CGA reduced I/R-induced toll-like receptor 4 overexpression, nuclear translocation of nuclear factor kappa B and interferon regulatory factor-1, high-mobility group box-1 release into extracellular milieu, and enhanced heme oxygenase-1 expression and nuclear translocation of nuclear factor erythroid 2-related factor 2. Our results suggest that CGA alleviates I/R-induced liver injury and that this protection is likely due to inhibition of inflammatory response and enhancement of antioxidant defense systems. Therefore, CGA might have potential as an agent for use in clinical treatment of hepatic I/R injury.  相似文献   

6.
Vitamin D, most commonly associated with the growth and remodeling of bone, has been shown to ameliorate ischemia/reperfusion injury (IRI) in some tissues, yet its underlying mechanism remains elusive. This study was designed to examine the protective effect of vitamin D, if any, against hepatic IRI in rats and the underlying mechanism involved. Adult female Wistar rats were randomly divided into control, sham-operated (sham), ischemia/reperfusion (I/R), and ischemic-reperfused vitamin D-treated (vit D) groups. Rats in the I/R and vit D groups were subjected to partial (70 %) hepatic ischemia for 45 min, followed by 1 h of reperfusion. Vitamin D was given to rats orally in a dose of 500 IU/kg daily for 2 weeks before being subjected to I/R. Markers of liver damage, oxidative stress, inflammation and apoptosis were evaluated. Hepatic morphology was also examined. Vit D-treated rats had significantly lower serum levels of alanine aminotransferase, aspartate aminotransferase, and γ glutamyl transferase compared to rats in the I/R group. Also, vit D-treated rats showed a significant decrease in malondialdehyde, interleukin-1 beta, interleukin-6, tumor necrosis factor-α, nuclear factor κB, B cell leukemia/lymphoma 2-associated X protein, cytochrome c, and caspase-3 levels, with higher levels of glutathione peroxidase and B cell lymphoma 2 protein levels in liver tissues compared to I/R rats. Histological examination showed less damaged liver tissues with amelioration of apoptotic signs in the vit D group compared to the I/R group. In conclusion, vitamin D supplementation ameliorates hepatic IRI mostly by alleviating the inflammatory-apoptotic response mediated by the oxidative reperfusion injury insult.  相似文献   

7.

Background

Liver ischemia reperfusion (I/R) injury is a common pathophysiological process in many clinical settings. Carvacrol, a food additive commonly used in essential oils, has displayed antimicrobials, antitumor and antidepressant-like activities. In the present study, we investigated the protective effects of carvacrol on I/R injury in the Wistar rat livers and an in vitro hypoxia/restoration (H/R) model.

Methods

The hepatoportal vein, hepatic arterial and hepatic duct of Wistar rats were isolated and clamped for 30 min, followed by a 2 h reperfusion. Buffalo rat liver (BRL) cells were incubated under hypoxia for 4 h, followed normoxic conditions for 10 h to establish the H/R model in vitro. Liver injury was evaluated by measuring serum levels of alanine aminotransferase (ALT) and aspatate aminotransferase (AST), and hepatic levels of superoxide dismutase (SOD), catalase (CAT), glutathione (GSH) and malondiadehyde (MDA), and hepatic histology and TUNEL staining. MTT assay, flow cytometric analysis and Hoechst 33258 staining were used to evaluate the proliferation and apoptosis of BRL cells in vitro. Protein expression was examined by Western Blot analysis.

Results

Carvacrol protected against I/R-induced liver damage, evidenced by significantly reducing the serum levels of ALT and AST, histological alterations and apoptosis of liver cells in I/R rats. Carvacrol exhibited anti-oxidative activity in the I/R rats, reflected by significantly reducing the activity of SOD and the content of MDA, and restoring the activity of CAT and the content of GSH, in I/R rats. In the in vitro assays, carvacrol restored the viability and inhibited the apoptosis of BRL cells, which were subjected to a mimic I/R injury induced by hypoxia. In the investigation on molecular mechanisms, carvacrol downregulated the expression of Bax and upregulated the expression of Bcl-2, thus inhibited the activation of caspase-3. Carvacrol was also shown to enhance the phosphorylation of Akt.

Conclusion

The results suggest that carvacrol could alleviate I/R-induced liver injury by its anti-oxidative and anti-apoptotic activities, and warrant a further investigation for using carvacrol to protect I/R injury in clinic.  相似文献   

8.
Cinaciguat (BAY 58-2667) is a novel nitric oxide (NO)-independent activator of soluble guanylate cyclase (sGC), which induces cGMP-generation and vasodilation in diseased vessels. We tested the hypothesis that cinaciguat might trigger protection against ischemia/reperfusion (I/R) in the heart and adult cardiomyocytes through cGMP/protein kinase G (PKG)-dependent generation of hydrogen sulfide (H(2)S). Adult New Zealand White rabbits were pretreated with 1 or 10 μg/kg cinaciguat (iv) or 10% DMSO (vehicle) 15 min before I/R or with 10 μg/kg cinaciguat (iv) at reperfusion. Additionally, adult male ICR mice were treated with either cinaciguat (10 μg/kg ip) or vehicle 30 min before I/R or at the onset of reperfusion (10 μg/kg iv). The PKG inhibitor KT5283 (KT; 1 mg/kg ip) or dl-propargylglycine (PAG; 50 mg/kg ip) the inhibitor of the H(2)S-producing enzyme cystathionine-γ-lyase (CSE) were given 10 and 30 min before cinaciguat. Cardiac function and infarct size were assessed by echocardiography and tetrazolium staining, respectively. Primary adult mouse cardiomyocytes were isolated and treated with cinaciguat before simulated ischemia/reoxygenation. Cinaciguat caused 63 and 41% reduction of infarct size when given before I/R and at reperfusion in rabbits, respectively. In mice, cinaciguat pretreatment caused a more robust 80% reduction in infarct size vs. 63% reduction when given at reperfusion and preserved cardiac function following I/R, which were blocked by KT and PAG. Cinaciguat also caused an increase in myocardial PKG activity and CSE expression. In cardiomyocytes, cinaciguat (50 nM) reduced necrosis and apoptosis and increased H(2)S levels, which was abrogated by KT. Cinaciguat is a novel molecule to induce H(2)S generation and a powerful protection against I/R injury in heart.  相似文献   

9.
This study examined the effects of ischemic preconditioning (IPC), allopurinol (Allo) or a combination of both on the extent of mitochondrial injury caused by hepatic ischemia/reperfusion (I/R). I/R increased the serum aminotransferase activity and the level of mitochondrial lipid peroxidation, whereas it decreased the mitochondrial glutathione level. Either IPC or Allo alone attenuated these changes with Allo+IPC having a synergistic effect. Allo increased the serum nitrite and nitrate level after brief ischemia. The significant peroxide production observed after 10 min of reperfusion after sustained ischemia was markedly attenuated by Allo+IPC. The mitochondria isolated after I/R were swollen, which was reduced by Allo+IPC. At the end of ischemia, the hepatic ATP level was lower and there was significant xanthine accumulation, which was attenuated by Allo+IPC. These results suggest that IPC and Allo act synergistically to protect cells against mitochondrial injury and preserve the hepatic energy metabolism during hepatic I/R.  相似文献   

10.
MicroRNAs (miRNAs) participate in the pathological process of liver ischemia/reperfusion (I/R) injury. MiR-449b-5p is the target miRNA of high mobility group box 1 (HMGB1). Its role and molecular mechanism in liver I/R injury remain unidentified. In this study, we found a protective effect of miR-449b-5p against hepatic I/R injury. HMGB1 expression significantly increased, whereas miR-449b-5p dramatically decreased in patients after liver transplant and in L02 cells exposed to hypoxia/reoxygenation (H/R). A dual-luciferase reporter assay confirmed the direct interaction between miR-449b-5p and the 3′ untranslated region of HMGB1 messenger RNA. We also found that overexpression of miR-449b-5p significantly promoted cell viability and inhibited cell apoptosis of L02 cells exposed to H/R. Moreover, miR-449b-5p repressed HMGB1 protein expression and nuclear factor-κB (NF-κB) pathway activation in these L02 cells. In an in vivo rat model of hepatic I/R injury, overexpression of miR-449b-5p significantly decreased alanine aminotransferase and aspartate aminotransferase and inhibited the HMGB1/NF-κB pathway. Our study thus suggests that miR-449b-5p alleviated hepatic I/R injury by targeting HMGB1 and deactivating the NF-κB pathway, which may provide a novel and promising therapeutic target for hepatic I/R injury.  相似文献   

11.
The present study was designed to assess the role of endothelial cell and inducible nitric oxide synthase (eNOS, iNOS)-derived NO in ischemia/reperfusion (I/R)-induced pro-inflammatory cytokine expression and tissue injury in a murine model of hepatic I/R. Forty-five min of partial hepatic ischemia and 3 h of reperfusion resulted in a significant increase in liver injury as assessed by serum alanine aminotransferase and histopathology which occurred in the absence of neutrophil infiltration. Both iNOS and eNOS deficient mice exhibited enhanced liver injury when compared to their wild type (wt) controls again in the absence of neutrophil infiltration. Interestingly, message expression for both tumor necrosis factor-alpha (TNF-alpha) and interleukin 12 (IL-12) were enhanced in eNOS, but not iNOS-deficient mice at 1 h post-ischemia when compared to their wt controls. In addition, eNOS message expression appeared to be up-regulated between 1 and 3 h ofreperfusion in wt mice while iNOS deficient mice exhibited substantial increases at I but not 3 h. Taken together, these data demonstrate the ability of eNOS and iNOS to protect the post-ischemic liver, however their mechanisms of action may be very different.  相似文献   

12.
13.
MicroRNA-125b (miR-125b), which was previously proved to be a potential immunomodulator in various disease, attenuated mouse hepatic ischemia/reperfusion (I/R) injury in this study. miR-125b was decreased in RAW 264.7 cells exposed to hypoxia/reoxygenation (H/R). The expression of IL-1β, IL-6 and TNF-α in both serum and supernate were reduced in miR-125b over-expression groups. The hepatic histopathological changes were reduced in miR-125b agomir groups. In the miR-125b antagomir groups, serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were significantly elevated compared with negative control (NC) groups. The protein expression of TNF receptor-associated factor 6 (TRAF6), IL-1β and the phosphorylation of p65 (p-p65) were suppressed by the up-regulation of miR-125b. Furthermore, the nuclear translocation of p-p65, measured by immunofluorescence, was enhanced by the miR-125b inhibitors. In conclusion, our study indicates that miR-125b protects liver from hepatic I/R injury via inhibiting TRAF6 and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signal pathway.  相似文献   

14.
Endoplasmic reticulum (ER) stress is activated during and contributes to ischemia-reperfusion (I/R) injury. Attenuation of ER stress-induced apoptosis protects the heart against I/R injury. Using apelin, a ligand used to activate the apelin APJ receptor, which is known to be cardioprotective, this study was designed to investigate 1) the time course of changes in I/R injury after ER stress; 2) whether apelin infusion protects the heart against I/R injury via modulation of ER stress-dependent apoptosis signaling pathways; and 3) how phosphatidylinositol 3-kinase (PI3K)/Akt, endothelial nitric oxide synthase (eNOS), AMP-activated protein kinase (AMPK), and ERK activation are involved in the protection offered by apelin treatment. The results showed that, using an in vivo rat I/R model induced by 30 min of ischemia followed by reperfusion, infarct size (IS) increased from 2 h of reperfusion (34.85 ± 2.14%) to 12 h of reperfusion (48.98 ± 3.35, P < 0.05), which was associated with an abrupt increase in ER stress-dependent apoptosis activation, as evidenced by increased CCAAT/enhancer-binding protein homologous protein (CHOP), caspase-12, and JNK activation (CHOP: 2.49-fold increase, caspase-12: 2.09-fold increase, and JNK: 3.38-fold increase, P < 0.05, respectively). Administration of apelin at 1 μg/kg not only completely abolished the activation of ER stress-induced apoptosis signaling pathways at 2 h of reperfusion but also significantly attenuated time-related changes at 24 h of reperfusion. Using pharmacological inhibition, we also demonstrated that PI3K/Akt, AMPK, and ERK activation were involved in the protection against I/R injury via inhibition of ER stress-dependent apoptosis activation. In contrast, although eNOS activation played a role in decreasing IS at 2 h of reperfusion, it failed to modify either IS or ER stress-induced apoptosis signaling pathways at 24 h after reperfusion.  相似文献   

15.
Zhu XY  Yan XH  Chen SJ 《生理学报》2008,60(2):221-227
为探讨硫化氢(hydrogen sulfide,H2S)对大鼠心肌缺血,再灌注(ischemia/reperfusion,I/R)损伤的保护作用及机制,雄性Sprague-Dawley大鼠被随机分为对照组(假手术组)、I/R组、2.8μmol/kg体重NaHS干预组、14 μmol/kg体重NaHS干预组.结扎冠状动脉前降支30 min后,松扎再灌注60 min,心电图Ⅱ导联检测和TTC染色测定心肌梗死面积评价制作的心肌I/R模型:测定血浆中H2S浓度变化;监测血流动力学指标(LVSP,LV±dp/dtmax);HE染色和透射电镜观察心肌形态学改变;免疫组织化学方法测定心肌组织中c-Fos蛋白表达.结果显示:心肌I/R后血浆中H2S浓度明显低于对照组[(30.32±5.26)vs(58.28±7.86)μmol/L,P<0.05]:2.8和14μmol/kg体重NaHS均可显著改善I/R引起的心功能改变,且14μmol/kg体重NaHS较2.8 μmol/kg体重NaHS作用强;14 μmol/kg体重NaHS明显减轻心肌形态学及超微结构损伤,同时降低大鼠I/R心肌组织中c-Fos蛋白表达(0.20±0.06vs0.32±0.10,P<0.05).以上结果提示,H2S对大鼠心肌的I/R损伤有保护作用,这可能与其降低c-Fos蛋白表达有关.  相似文献   

16.
The contribution of acidosis to the development of reperfusion injury is controversial. In this study, we examined the effects of respiratory acidosis and hypoxia in a frequently used in vivo liver ischemia and reperfusion (I/R) injury rat model. Rats were anesthetized with intraperitoneal anesthetics and subjected to partial liver ischemia (70%) for 60 min and subsequent reperfusion for 90 min under the following conditions: 1) no acidosis and normoxia, maintained by controlled ventilation; 2) acidosis and normoxia, maintained by passive supply with oxygen; 3) no acidosis and hypoxia, maintained by bicarbonate administration without respiratory support; and 4) acidosis and hypoxia, i.e., without respiratory support or pH correction. Changes in plasma aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels were measured as parameters of hepatocellular injury, and bile secretion was monitored. AST and ALT levels were lowest in the ventilated rats and highest in the bicarbonate-treated rats. No differences in bile secretion were found between groups. Our results suggest that respiratory acidosis significantly enhanced liver I/R injury under normoxic conditions, whereas respiratory acidosis significantly reduced liver I/R injury under hypoxic conditions.  相似文献   

17.
Role of nitric oxide in liver ischemia and reperfusion injury   总被引:5,自引:0,他引:5  
The present study was designed to assess the role of endothelial cell and inducible nitric oxide synthase (eNOS, iNOS)-derived NO in ischemia/reperfusion (I/R)-induced pro-inflammatory cytokine expression and tissue injury in a murine model of hepatic I/R. Forty-five min of partial hepatic ischemia and 3 h of reperfusion resulted in a significant increase in liver injury as assessed by serum alanine aminotransferase and histopathology which occurred in the absence of neutrophil infiltration. Both iNOS and eNOS deficient mice exhibited enhanced liver injury when compared to their wild type (wt) controls again in the absence of neutrophil infiltration. Interestingly, message expression for both tumor necrosis factor-alpha (TNF-) and interleukin 12 (IL-12) were enhanced in eNOS, but not iNOS-deficient mice at 1 h post-ischemia when compared to their wt controls. In addition, eNOS message expression appeared to be up-regulated between 1 and 3 h of reperfusion in wt mice while iNOS deficient mice exhibited substantial increases at 1 but not 3 h. Taken together, these data demonstrate the ability of eNOS and iNOS to protect the post-ischemic liver, however their mechanisms of action may be very different.  相似文献   

18.
Liver ischemia/reperfusion (I/R) injury is a serious clinical problem. The reactive oxygen species (ROS) and tumor necrosis factor alpha (TNF-α) are important mediators in liver I/R injury. This study was designed to investigate the effect of preischemic treatment with fenofibrate (Peroxisome proliferator-activated receptor- α agonist) on the oxidative stress and inflammatory response to hepatic I/R injury in rats. Hepatic I/R was induced by clamping the blood supply of the left lateral and median lobes of the liver for 60 min, followed by reperfusion for 4 h. Each animal group was pretreated with a single dose of fenofibrate (50 mg/kg body weight) intraperitoneally 1 h before ischemia. At the end of reperfusion, blood samples and liver tissues were obtained to assess serum alanine aminotransferase (ALT), TNF-α, hepatic malondialdehyde (MDA) and superoxide dismutase activity (SOD). Liver specimens were obtained and processed for light and electron microscopic study. Hepatic I/R induced a significant elevation of serum ALT and TNF-α with significant elevation of hepatic MDA and reduction of SOD activity. Histopathological examination revealed hepatic inflammation, necrosis and apoptosis. Preischemic treatment with fenofibrate at a dose of 50 mg/kg significantly attenuated the biochemical and structural alterations of I/R-induced liver injury.  相似文献   

19.
Dysregulated expression of matrix metalloproteinases (MMPs) is closely associated with the pathogenesis of renal ischemia/reperfusion injury (I/R). The production of excessive reactive oxygen species (ROS) causes tissue damage. Increased ROS production causes activation of p38 mitogen-activated protein kinase (MAPK) signaling, which participates in gene regulation of MMPs, especially MMP-2 and MMP-9 (gelatinases). Taurine (2-aminoethanesulfonic acid) in mammalian cells functions in bile acid conjugation, maintenance of calcium homeostasis, osmoregulation, membrane stabilization, and antioxidation, antiinflammatory, and antiapoptotic action. We investigated the effects of taurine and the possible role of p38 MAPK signaling on regulation of MMP-2 and MMP-9 in a renal I/R injury model in rats. Rats were divided into three groups: sham, I/R, and I/R + taurine treated. After a right nephrectomy, I/R was induced by clamping the left renal pedicle for 1 h followed by 6 h reperfusion. Taurine was administered 45 min prior to induction of ischemia. Renal function was assessed by serum creatinine and blood urea nitrogen (BUN) levels. Tubule injury and structural changes were evaluated by light microscopy. Malondialdehyde (MDA) levels were analyzed by high performance liquid chromatography (HPLC). Superoxide dismutase (SOD) activity levels were measured using a colorimetric kit. mRNA expression of MMP-2 and MMP-9 was determined by real-time polymerase chain reaction. MMP-2 and MMP-9 activities were measured using a fluorimetric kit. Phosphorylated p38 (p-p38) and total p38 MAPK protein expressions were evaluated by western blot. Taurine pretreatment significantly attenuated renal dysfunction and histologic damage, such as renal tubule dilation and loss of brush borders. The pretreatment also decreased the MDA level and attenuated the reduction of SOD activity in the kidney during I/R. Taurine pretreatment also decreased significantly both MMP-2 and MMP-9 mRNA expression and MMP-9 activity induced by I/R. In addition, the activity of p38 MAPK signaling was down-regulated significantly by taurine administration. Inhibition of MMP-2 and MMP-9 expression and MMP-9 activity caused by taurine may be associated with suppression of p38 MAPK activation during I/R induced renal injury in rats. Therefore, taurine administration may prove to be a strategy for attenuating renal I/R injury.  相似文献   

20.
The interleukin-1 receptor-like protein ST2 exists in both membrane-bound (ST2L) and soluble form (sST2). ST2L has been found to play an important regulatory role in Th2-type immune response, but the function of soluble form of ST2 remains to be elucidated. In this study, we report the protective effect of soluble ST2 on warm hepatic ischemia/reperfusion injury. We constructed a eukaryotic expression plasmid, psST2-Fc, which expresses functional murine soluble ST2-human IgG1 Fc (sST2-Fc) fusion protein. The liver damage after ischemia/reperfusion was significantly attenuated by the expression of this plasmid in vivo. sST2-Fc remarkably inhibited the activation of Kupffer cells and the production of proinflammatory mediators TNF-alpha and IL-6. Furthermore, the levels of TLR4 mRNA and the nuclear translocation of NF-kappaB were also suppressed by pretreatment with sST2-Fc. These results thus identified soluble ST2 as a negative regulator in hepatic I/R injury, possibly via ST2-TLR4 pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号