首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eradication of bacteria in the lower respiratory tract depends on the coordinated expression of proinflammatory cytokines and consequent neutrophilic inflammation. To determine the roles of the NF-kappaB subunit RelA in facilitating these events, we infected RelA-deficient mice (generated on a TNFR1-deficient background) with Streptococcus pneumoniae. RelA deficiency decreased cytokine expression, alveolar neutrophil emigration, and lung bacterial killing. S. pneumoniae killing was also diminished in the lungs of mice expressing a dominant-negative form of IkappaBalpha in airway epithelial cells, implicating this cell type as an important locus of NF-kappaB activation during pneumonia. To study mechanisms of epithelial RelA activation, we stimulated a murine alveolar epithelial cell line (MLE-15) with bronchoalveolar lavage fluid (BALF) harvested from mice infected with S. pneumoniae. Pneumonic BALF, but not S. pneumoniae, induced degradation of IkappaBalpha and IkappaBbeta and rapid nuclear accumulation of RelA. Moreover, BALF-induced RelA activity was completely abolished following combined but not individual neutralization of TNF and IL-1 signaling, suggesting either cytokine is sufficient and necessary for alveolar epithelial RelA activation during pneumonia. Our results demonstrate that RelA is essential for the host defense response to pneumococcus in the lungs and that RelA in airway epithelial cells is primarily activated by TNF and IL-1.  相似文献   

2.
3.
Mice deficient in the RelA (p65) subunit of NF-kappaB die during embryonic development. Fetal liver (FL) hemopoietic precursors from these mice were used to generate RelA-deficient lymphocytes by adoptive transfer into lethally irradiated mature lymphocyte-deficient recombination-activating gene-1(-/-) mice. Strikingly, RelA(-/-) lymphocyte generation was greatly diminished compared with that of RelA(+/+) lymphocytes. The most dramatic reduction was noticed in the numbers of developing B cells, which were considerably increased when RelA(-/-) FL cells that were also TNFR1 deficient were used. The role of RelA was further investigated in FL-derived developing B cells in vitro. Our results show that RelA is a major component of constitutive and TNF-alpha-induced kappaB site-binding activity in developing B cells, and provide evidence for a direct role of TNF-alpha in killing RelA(-/-) B cells. The absence of RelA significantly reduced mRNA expression of the antiapoptotic genes cellular FLICE-inhibitory protein and Bcl-2. Retroviral transduction of RelA(-/-) B cells with either cFLIP or Bcl-2 significantly reduced TNF-alpha killing. Together, these results indicate that RelA plays a crucial role in regulating developing B cell survival by inhibiting TNF-alpha cytotoxicity.  相似文献   

4.
The early response cytokines, TNF and IL-1, have overlapping biologic effects that may function to propagate, amplify, and coordinate host responses to microbial challenges. To determine whether signaling from these early response cytokines is essential to orchestrating innate immune responses to intrapulmonary bacteria, the early inflammatory events induced by instillation of Escherichia coli into the lungs were compared in wild-type (WT) mice and mice deficient in both TNF receptor 1 (TNFR1) and the type I IL-1 receptor (IL1R1). Neutrophil emigration and edema accumulation induced by E. coli were significantly compromised by TNFR1/IL1R1 deficiency. Neutrophil numbers in the circulation and within alveolar septae did not differ between WT and TNFR1/IL1R1 mice, suggesting that decreased neutrophil emigration did not result from decreased sequestration or delivery of intravascular neutrophils. The nuclear translocation of NF-kappa B and the expression of the chemokine macrophage inflammatory protein-2 did not differ between WT and TNFR1/IL1R1 lungs. However, the concentration of the chemokine KC was significantly decreased in the bronchoalveolar lavage fluids of TNFR1/IL1R1 mice compared with that in WT mice. Thus, while many of the molecular and cellular responses to E. coli in the lungs did not require signaling by either TNFR1 or IL1R1, early response cytokine signaling was critical to KC expression in the pulmonary air spaces and neutrophil emigration from the alveolar septae.  相似文献   

5.
We investigated the requirement for tumor necrosis factor-alpha (TNF-alpha) and interleukin (IL)-1 receptors in the pathogenesis of the pulmonary and hepatic responses to Escherichia coli lipopolysaccharide (LPS) by studying wild-type mice and mice deficient in TNF type 1 receptor [TNFR1 knockout (KO)] or both TNF type 1 and IL-1 receptors (TNFR1/IL-1R KO). In lung tissue, NF-kappaB activation was similar among the groups after exposure to aerosolized LPS. After intraperitoneal injection of LPS, NF-kappaB activation in liver was attenuated in TNFR1 KO mice and further diminished in TNFR1/IL-1R KO mice; however, in lung tissue, no impairment in NF-kappaB activation was found in TNFR1 KO mice and only a modest decrease was found in TNFR1/IL-1R KO mice. Lung concentrations of KC and macrophage-inflammatory peptide 2 were lower in TNFR1 KO and TNFR1/IL-1R KO mice after aerosolized and intraperitoneal LPS. We conclude that LPS-induced NF-kappaB activation in liver is mediated through TNF-alpha- and IL-1 receptor-dependent pathways, but, in the lung, LPS-induced NF-kappaB activation is largely independent of these receptors.  相似文献   

6.
Toll-like receptors (TLR) initiate rapid innate immune responses by recognizing microbial products. These events in turn lead to the development of an efficient adaptive immune response through the up-regulation of a number of costimulatory molecules, including members of the TNF/TNFR superfamily, on the surface of an APC. TNFR-associated factor 6 (TRAF6) is a common signaling adapter used by members of both the TNFR and the TLR/IL-1R superfamilies, and as such plays a critical role in the development of immune responses. As TRAF6-deficient mice die prematurely, we generated chimeras reconstituted with TRAF6-deficient fetal liver cells to analyze functions of TRAF6 in vivo in the hemopoietic compartment. We found that TRAF6-deficient chimeras develop a progressive lethal inflammatory disease associated with massive organ infiltration and activation of CD4(+) T cells in a Th2-polarized phenotype, and a defect in IL-18 responsiveness. When recombination-activating gene 2(-/-) blastocysts were complemented with TRAF6-deficient embryonic stem cells, a marked elevation of activated CD4(+) T cells and progressive inflammatory disease were also observed. Moreover, T cell activation and lethal inflammation were not reversed in mixed chimeric mice generated from normal and TRAF6-deficient fetal liver cells. These results suggest that deletion of TRAF6 induces a dominant Th2-type polarized autoimmune response. Therefore, in addition to playing a critical role in innate and adaptive immunity, TRAF6 is likely to play a previously unrecognized role in the maintenance of self-tolerance.  相似文献   

7.
Recently we reported that Toll-like receptor 4 (TLR4)-positive immune cells of unknown identity were responsible for the LPS-induced depression of cardiac myocyte shortening. The aim of this study is to identify the TLR4-positive cell type that is responsible for the LPS-induced cardiac dysfunction. Neither neutrophil depletion alone nor mast cell deficiency had any impact on the impairment of myocyte shortening during LPS treatment. In contrast, LPS-treated, macrophage-deficient mice demonstrated a partial reduction in shortening compared with saline-treated, macrophage-deficient mice. Because the removal of macrophages could only partially restore myocyte shortening, we also investigated the effects of removing both neutrophils and macrophages on myocyte shortening. Interestingly, endotoxemic, neutrophil-depleted, and macrophage-deficient mice had completely restored myocyte shortening. Because both macrophages and neutrophils can produce nitric oxide (NO) and TNF-alpha, we examined LPS-treated inducible NO synthase knockout (iNOSKO) mice and TNF receptor (TNFR)-deficient mice. Eliminating both TNFR1 and TNFR2 was required to restore myocyte shortening during LPS treatment, whereas iNOS deficiency had no effect. These data suggest that macrophages and to a lesser degree neutrophils cause cardiac impairment, presumably via TNF-alpha.  相似文献   

8.
9.
We investigated the impact of inflammatory signaling in airway epithelial cells on host defense against Pseudomonas aeruginosa, a major cause of nosocomial pneumonia. In mice, airway instillation of P. aeruginosa resulted in NF-kappaB activation in the lungs that was primarily localized to the bronchial epithelium at 4 h, but was present in a variety of cell types by 24 h. We modulated NF-kappaB activity in airway epithelium by intratracheal delivery of adenoviral vectors expressing RelA (AdRelA) or a dominant inhibitor of NF-kappaB before P. aeruginosa infection. Bacterial clearance was enhanced by up-regulation of NF-kappaB activity following AdRelA administration and was impaired by treatment with a dominant inhibitor of NF-kappaB. The TNF-alpha concentration in lung lavage was increased by AdRelA treatment and beneficial effects of NF-kappaB up-regulation were abrogated in TNF-alpha-deficient mice. In contrast, NF-kappaB inhibition reduced MIP-2 expression and neutrophil influx following P. aeruginosa infection. Therefore, inflammatory signaling through the NF-kappaB pathway in airway epithelial cells critically regulates the innate immune response to P. aeruginosa.  相似文献   

10.
To evaluate the possibility that NF-kappaB subunits p50 and p65 have a role in limiting the systemic inflammatory response induced by endotoxin, we compared the susceptibility of wild-type (WT), p65+/-, p50-/-, and p50-/-p65+/- (3X) mice to LPS-induced shock. Interestingly, whereas p65+/- mice were no more sensitive than WT mice to LPS-induced shock, 3X mice were exquisitely sensitive to the toxic effects of LPS. Mice lacking p50 alone displayed an intermediate phenotype. Sensitivity to LPS was a property of the innate immune system and was characterized by elevated circulating levels of TNF in both p50-/- and 3X mice. The ability of LPS to induce shock depended upon TNF, and 3X mice were significantly more sensitive to the toxic effects of TNF than were p50-deficient mice. The expression of several LPS-inducible proinflammatory genes, including IFN-gamma, was significantly higher within the spleens of p50-/- mice than in the spleens of WT mice, and interestingly, the expression of IFN-gamma was augmented still further within the spleens of 3X mice. These results demonstrate that NF-kappaB subunits p50 and p65 have critical inhibitory functions during the systemic response to LPS and raise the possibility that these functions could be essential in preventing mortality associated with systemic inflammatory response syndromes.  相似文献   

11.
Genetic and biochemical analyses show that IL-23p19 plays a central role in mediating bacteria-induced colitis in interleukin-10-deficient (IL-10(-/-)) mice. The molecular mechanisms responsible for the dysregulated innate host response leading to enhanced IL-23 gene expression in IL-10(-/-) mice are poorly understood. In this study, we investigated the role of Bcl3 in controlling LPS-induced IL-23p19 gene expression in bone marrow-derived dendritic cells (BMDC) isolated from IL-10(-/-) mice. We report higher IL-23p19 mRNA accumulation and protein secretion in LPS-stimulated BMDC isolated from IL-10(-/-) compared with WT mice. Lipopolysaccharide (LPS)-induced B cell leukemia 3 (Bcl3) expression was strongly impaired (90% decrease) in IL-10(-/-) BMDC compared with WT BMDC. Chromatin immunoprecipitation demonstrated enhanced RelA binding to the IL-23p19 promoter in IL-10(-/-) compared with WT BMDC. Bcl3 overexpression decreased LPS-induced IL-23p19 gene expression in IL-10(-/-) BMDC, which correlated with enhanced NF-kappaB p50 binding and decreased RelA binding to the gene promoter. Conversely, Bcl3 knockdown enhanced LPS-induced IL-23p19 gene expression in WT BMDC. Moreover, LPS-induced IL-23p19 gene expression was significantly enhanced in Bcl3(-/-) BMDC compared with WT BMDC. In conclusion, enhanced LPS-induced IL-23p19 gene expression in IL-10(-/-) mice is due to impaired Bcl3 expression leading to diminished p50 and enhanced RelA recruitment to the IL-23p19 promoter.  相似文献   

12.
13.
14.
Bone metabolism and the immune system have a correlative relationship, and both are controlled by various common cytokines, such as IFNs and ILs, produced in the bone microenvironments. The suppressor of cytokine signaling-1 (SOCS1) and SOCS3 are negative regulators of such cytokines. Although SOCSs are shown to be induced during osteoclast differentiation, their physiological roles in osteoclast differentiation and function have not been clarified. Thus, we examined the roles of SOCS1 and SOCS3 in osteoclastogenesis using SOCS1- and SOCS3-deficient mice. IFN-gamma-mediated inhibition of osteoclast differentiation from bone marrow-derived monocytes (BMMs) was strongly enhanced in SOCS1-deficient BMMs, but was diminished in SOCS1-overexpressing BMMs. Moreover, LPS-induced osteoclastogenesis and bone destruction in vivo were suppressed in SOCS1(+/-) mice compared with those in wild-type mice, suggesting that SOCS1 antagonizes the inhibitory effect of IFN-gamma on osteoclastogenesis. SOCS3 did not alter the inhibitory effect of IFNs in osteoclastogenesis in both gain and loss of functional assays; however, the suppressive effect of IL-6 on osteoclast differentiation was greater in SOCS3-deficient BMMs than in wild-type BMMs in vitro. In addition, IL-6 significantly prevented LPS-induced bone destruction in SOCS3-deficient mice, although it failed in wild-type mice in vivo. In SOCS3-deficient BMMs, expression levels of TNF-receptor-associated factor-6 and IkappaB were drastically reduced and receptor activator of the NF-kappaB ligand-induced IkappaB phosphorylation was severely impaired in the presence of IL-6. These data suggest that both SOCS1 and SOCS3 regulate osteoclastogenesis by blocking the inhibitory effect of inflammatory cytokines on receptor activator of the NF-kappaB ligand-mediated osteoclast differentiation signals. Selective suppression of SOCS1 and SOCS3 in osteoclast precursors may be a possible therapeutic strategy for inflammatory bone destruction.  相似文献   

15.
Despite the lack of a proinflammatory response to LPS, CD14-deficient mice clear Gram-negative bacteria (Escherichia coli 0111) at least 10 times more efficiently than normal mice. In this study, we show that this is due to an early and intense recruitment of neutrophils following the injection of Gram-negative bacteria or LPS in CD14-deficient mice; in contrast, neutrophil infiltration is delayed by 24 h in normal mice. Similar results of early LPS-induced PMN infiltration and enhanced clearance of E. coli were seen in Toll-like receptor (TLR) 4-deficient mice. Furthermore, the lipid A moiety of LPS induced early neutrophil infiltration not only in CD14-deficient and TLR-4-deficient mice, but also in normal mice. In conclusion, the lipid A component of LPS stimulates a unique and critical pathway of innate immune responses that is independent of CD14 and TLR4 and results in early neutrophil infiltration and enhanced bacterial clearance.  相似文献   

16.
Germinal centers (GCs) have been identified as site at which the somatic mutation of immunoglobulins occurs.However, somatic mutations in immunoglobulins have also been observed in animals that normally do not harbor germinal centers. This clearly indicates that somatic mutations can occur in the absence of germinal centers.We therefore attempted to determine whether or not GCs exist in TNFR1-deficient mice, and are essential for the somatic mutation of immunoglobulins, using (4-hydroxy-3-nitropheny)acetyl-ovalbumin (NP-OVA). Both wild-type and TNFR1-deficient mice were immunized with NPOVA, and then examined with regard to the existence of GCs. No typical B-cell follicles were detected in the TNFR1-deficient mice. Cell proliferation was detected throughout all splenic tissue types, and no in vivo immunecomplex retention was observed in the TNFR1-deficient mice. All of these data strongly suggest that no GCs were formed in the TNFR1-deficient mice. Although TNFR1-deficient mice are unable to form GCs, serological analyses indicated that affinity maturation had been achieved in both the wild-type and TNFR1-deficient mice. We therefore isolated and sequenced several DNA clones from wild-type and the TNFR1-deficient mice. Eight out of 12 wild-type clones, and 11 out of 14 clones of the TNFR-1-deficient mice contained mutations at the CDR1 site. Thus, the wild-type and TNFR1-deficient mice were not extremely different with regard to types and rates of somatic mutation. Also, high-affinity antibodies were detected in both types of mice. Collectively, our data appear to show that affinity maturation may occur in TNFR1-deficient mice, which completely lack GCs.  相似文献   

17.
We hypothesized that CD18 deficiency would impair the ability of neutrophils to emigrate from pulmonary blood vessels during certain pneumonias. To directly compare the abilities of wild-type (WT) and CD18-deficient neutrophils to emigrate, mice with both types of leukocytes in their blood were generated by reconstituting the hemopoietic systems of lethally irradiated C57BL/6 mice with mixtures of fetal liver cells from WT and CD18-deficient mice. Percentages of CD18-deficient neutrophils in the circulating and emigrated pools were compared during experimental pneumonias. Similar percentages were observed in the blood and bronchoalveolar lavage fluid 6 or 24 h after intratracheal instillation of Streptococcus pneumoniae, demonstrating that no site on the CD18 molecule was required for either its adhesive or its signaling functions during neutrophil emigration. However, 6 h after instillation of Escherichia coli LPS or Pseudomonas aeruginosa, the percentage of CD18-deficient neutrophils in the bronchoalveolar lavage fluid was only about one-fourth of that observed in the blood. This difference persisted for at least 24 h after instillation of E. coli LPS. Thus, neutrophil emigration elicited by the Gram-negative stimuli E. coli LPS or P. aeruginosa was compromised by deficiency of CD18. These data, based on comparing WT and gene-targeted CD18-deficient neutrophils within the same animals, provide evidence for molecular pathways regulating neutrophil emigration, which could not be appreciated in previous studies with pharmacological blockade or genetic deficiency of CD18.  相似文献   

18.
Myeloid differentiation factor 88 (MyD88) is an adapter molecule required for signal transduction via Toll-like receptors (TLRs) and receptors of the IL-1 family. Consequently, MyD88-deficient mice are highly susceptible to bacterial infections, including systemic infection with Staphylococcus aureus. To determine the role of MyD88 in innate immunity to bacterial pneumonia, we exposed MyD88-deficient and wild-type mice to aerosolized Pseudomonas aeruginosa or S. aureus. As predicted, MyD88-deficient mice failed to mount an early cytokine or inflammatory response or to control bacterial replication after infection with P. aeruginosa, which resulted in necrotizing pneumonia and death. By contrast, MyD88-deficient mice controlled S. aureus infection despite blunted local cytokine and inflammatory responses. Thus, whereas MyD88-dependent signaling is integral to the initiation of cytokine and inflammatory responses to both pathogens following infection of the lower respiratory tract, MyD88 is essential for innate immunity to P. aeruginosa but not S. aureus.  相似文献   

19.
The group IV cytoplasmic protein-tyrosine kinase Fer has been linked to cellular signaling responses to many different stimuli, including growth factors and cytokines. However, the biological relevance of Fer activation in vivo has not been demonstrated to date. Recently, we generated a transgenic mouse line in which Fer protein is expressed but lacks catalytic activity. Homozygous mutant mice were viable and fertile, and showed no overt defects. In this study, we used intravital microscopy to examine the role of Fer kinase in leukocyte recruitment (rolling adhesion and emigration) in response to LPS challenge in skeletal muscle microcirculation. In addition, we measured vascular permeability changes (FITC-albumin leakage, venular-to-interstitial space) in response to Ag to examine general endothelial cell function. Local administration of LPS induced decreased leukocyte rolling velocity and increased leukocyte adhesion and emigration in wild-type mice. LPS-induced changes in leukocyte rolling velocity and rolling flux were not significantly different in Fer mutants. However, LPS-induced leukocyte adhesion (23 +/- 3 vs 11 +/- 3 cells/100 microm) and emigration (100 +/- 5 vs 28 +/- 7 cells/field) were significantly elevated in Fer-mutant mice relative to wild-type mice, respectively, suggesting an essential role for the Fer kinase in regulating inflammation-induced leukocyte emigration. Vascular permeability increases in response to Ag were similar between the two groups, indicating that the ability of endothelial cells to retract is intact in the absence of Fer kinase. These data provide the first evidence for a biological role for Fer in regulation of leukocyte recruitment during the innate immune response.  相似文献   

20.
During infection, inflammation is essential for host defense, but it can injure tissues and compromise organ function. TNF-alpha and IL-1 (alpha and beta) are early response cytokines that facilitate inflammation. To determine the roles of these cytokines with overlapping functions, we generated mice deficient in all of the three receptors mediating their effects (TNFR1, TNFR2, and IL-1RI). During Escherichia coli pneumonia, receptor deficiency decreased neutrophil recruitment and edema accumulation to half of the levels observed in wild-type mice. Thus these receptors contributed to maximal responses, but substantial inflammation progressed independently of them. Receptor deficiency compromised antibacterial efficacy for some infectious doses. Decreased ventilation during E. coli pneumonia was not affected by receptor deficiency. However, the loss of lung compliance during pneumonia was substantially attenuated by receptor deficiency. Thus during E. coli pneumonia in mice, the lack of signaling from TNF-alpha and IL-1 decreases inflammation and preserves lung compliance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号