首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract: Sciatic nerves from 13-day-old rats were incubated in vitro with [35S]methionine in the presence or absence of 0.22 μM monensin and total paniculate and myelin fractions prepared. The total particulate was further subfractionated by continuous density gradient centrifugation, after which the maximal specific activities of three marker enzymes, 2′,3′-cyclic nucleotide phospho-diesterase (myelin), 5′-nucleotidase (plasma membrane), and cerebroside sulphotransferase were recovered at 0.72, 0.82, and 0.92 M sucrose, respectively. The radiolabelled proteins present in the gradient subtractions were analysed by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and fluorography, and bands corresponding to the P0 and myelin basic proteins were identified by co-migration with unlabelled myelin marker proteins on both one-dimensional SDS-PAGE and two-dimensional nonequilibrium isoelectric focussing/SDS-PAGE systems. Following a 90-min incubation with [35S]methionine, newly synthesized myelin basic proteins were recovered in fractions between 0.5 and 0.7 M sucrose; this distribution was unaltered by monensin. In contrast, the distribution of newly synthesized P0 protein across the gradients was influenced by monensin: a bimodal distribution across the control gradients with peaks of recovery of 0.60 and 0.82 M sucrose was altered to give a single peak at an intermediate density of 0.72 M sucrose. The total proportions of newly synthesized P0 and myelin basic proteins (MBP) present across the entire gradients were calculated from the fluorograms, and the ratio was found to be 2.8 P0: (LBP + SBP), in both the presence and absence of the ionophore. However, only 70% and 50% of the control levels of MBP and P0 were recovered with a purified myelin fraction after incubation with monensin. The results are discussed with reference to different intracellular transport processes for the P0 glycoprotein and the MBP within the Schwann cell, and also to the differential compartmentation of the sites of synthesis and membrane export within the Golgi body.  相似文献   

2.
H H Berlet 《FEBS letters》1986,194(2):297-300
Purified human myelin was incubated with exogenous myelin basic protein (MBP) at pH 4.0 to see if there is acid proteinase activity associated with myelin. Following incubation for 12 h up to 70% of MBP was degraded. On electrophoresis peptide fragments of MBP between 15.8 and 9.4 kDa were consistent with an endopeptic cleavage of MBP. Unlike the exogenous substrate MBP associated with myelin was only slightly degraded under the experimental conditions used. The results show that proteinase activity associated with isolated myelin may be elicited and further evaluated by using MBP as enzyme substrate.  相似文献   

3.
Abstract— A small basic protein (mol.wt. 12,000), referred to as the P2 protein, was extracted with dilute acid from delipidated bovine root myelin and purified by ion exchange chromatography on cellulose phosphate. It appeared homogeneous on polyacrylamide gel electrophoresis. The P2 protein had a distinctly different amino acid composition than the larger basic protein (mol.wt. 18,000), referred to as the P1 protein, that is also present in peripheral nerve myelin. It contained relatively more hydrophobic residues and much less histidine and proline. The P2 protein conjugated with peroxidase was bound by lymph node cells and infiltrates in rabbits sensitized with whole bovine root myelin. No binding was evident with the bovine central nervous system myelin basic protein. Chemically and immunologically, the P2 protein appears to be specific to peripheral nervous system myelin. The isolated P2 protein produced mild clinical symptoms of experimental allergic neuritis, but no histological evidence of disease. It was suggested that the P2 protein is an important antigen for experimental allergic neuritis, and that its antigenic determinants are likely to be conformation-dependent.  相似文献   

4.
The addition of solutions of bovine myelin basic protein to suspensions of unilamellar vesicles prepared from whole myelin suspensions results in the rapid equilibrium association of the vesicles into dimers, followed by time-dependent aggregation reactions. Other cationic proteins also induce the dimerization of the vesicles and equilibrium constants for dimer formation are obtained for bovine myelin basic protein, lysozyme, polyhistidine and myelin basic protein from carp, which differs from the bovine protein in that it contains no methylarginine residues. The bovine protein is more efficient at inducing dimer formation than the carp protein by approximately 0.93 kcal/mole; the carp protein is approximately as effective as the other cationic proteins examined. Complete methylation of the bovine MBP by AdoMet:MBP methyltransferase increases the interaction between MBP and the membrane by approximately 0.13 kcal/mole, consistent with the suggestion that a large portion of the free energy difference between the carp and bovine proteins arises from favorable interactions involving the methylarginine residues.  相似文献   

5.
It has been suggested that phosphorylation of myelin basic protein (MBP) in CNS is catalyzed by protein kinase C (PKC). In order to demonstrate that PKC in the myelin phosphorylates MBP, PKC was partially purified from rat CNS myelin by solubilization with Triton X-100 followed by a DEAE-cellulose column. MBP and histone III-S were phosphorylated in the presence of Ca2+ and phospholipid by rat myelin PKC. High voltage electrophoresis revealed that the phosphoamino acids in MBP by this kinase was serine residue, which is known to be the amino acid phosphorylated by PKC. The activity of PKC extracted from myelin was inhibited by the addition of psychosine to the incubation mixture. To confirm the presence of PKC molecule and to identify the isoform of PKC in the myelin, the solubilized myelin fraction was applied on SDS-PAGE, transferred to a nitrocellulose sheet and stained with anti-PKC monoclonal antibodies. Rat CNS myelin contained the PKC of about 80 kDa (intact PKC), and no proteolytic fragments were observed. PKC isozymes in myelin were type II and III. A developmental study from 14 to 42 postnatal days showed that PKC activity in CNS myelin seemed to parallel the deposition of myelin protein.  相似文献   

6.
The enzyme S-adenosylmethionine (AdoMet): myelin basic protein (MBP) methyltransferase was purified 250-fold from bovine brain with an overall yield of 130%, relative to crude supernatant. The purification involves acid-base and (NH4)2SO4 precipitation, chromatography over Sephadex G-100 and DEAE-cellulose, followed by preparative isoelectric focusing. The enzyme has a pI of 5.60 +/- 0.05, and the Mr is estimated to be between 71,000 (from SDS/polyacrylamide-gel electrophoresis) and 74,500 (from gel filtration). The enzyme is stable at 37 degrees C for over 2 h, is stable frozen and does not require metal ions or reductants. The enzyme shows a high specificity for MBP and does not accept polyarginine as a substrate; F1 histone is methylated at 37% of the rate of MBP. Methylation occurs on an arginine residue in a single h.p.l.c.-resolvable peptide from the tryptic cleavage of MBP. Simple saturation kinetics are observed with respect to both substrates, with Km values of 18 microM and 32 microM for MBP and AdoMet respectively. The simplest kinetic mechanism that is consistent with the data requires ordered rapid-equilibrium binding, with AdoMet as the first substrate. The enzyme isolated in this work is different, both physically and kinetically, from the histone-specific arginine methyltransferases described by other workers. A new, simple, assay system for the methylation of MBP is described.  相似文献   

7.
Chromatographic studies were performed to measure myelin basic protein (MBP) interactions by covalently binding a number of different proteins to Sepharose and passing radioactive bovine MBP over these columns. Studies at a variety of pH values, ionic strengths and temperatures revealed that the bovine MBP could interact with itself as well as cytochrome c, lysozyme, and ovalbumin. Chromatographic profiles of elution volume vs. pH revealed that the interaction between MBP and these immobilized proteins was biphasic. The self-association of MBP was found to be strongest between pH 7.4 and 8.1 and at an elevated temperature. Titration of the amino acid residues responsible for the association of MBP with other proteins revealed apparent pKs ranging from 6.10 to 6.70. A pH dependence study at an elevated temperature shifted the apparent pK of the MBP interaction to a lower value with all the proteins except ovalbumin. After destroying 60% of the histidine residues in MBP by photooxidation and passing125I-labeled photooxidized MBP over Sepharose columns containing immobilized protein, the second phase in binding was decreased significantly with immobilized cytochrome c, lysozyme, and MBP and to a smaller extent with ovalbumin. These results are consistent with the involvement of deprotonated histidine residues in the MBP-protein associations.  相似文献   

8.
Cyclic AMP-sensitive protein kinase activity has been found in suspensions of purified rabbit peripheral myelin. The enzyme phosphorylated the P0, Y, X, P1, and P2 myelin proteins. Kinase activity, which was maximal at physiological pH, 2.5 mM Mg2+, and 2 M cAMP, was stimulated three-fold over basal levels by cyclic AMP. Addition of calcium or EGTA had no effect on the enzyme activity in the presence or absence of cyclic AMP. Cyclic GMP also did not stimulated endogenous or exogenous protein phosphorylation. Theophylline, an inhibitor of 3,5-cyclic nucleotide phosphodiesterase activity, increased protein kinase activity in the presence of cyclic AMP. These data show that PNS myelin proteins can be phosphorylated in situ by a protein kinase system whose activity is stimulated selectively by cyclic AMP.  相似文献   

9.
The interactions of phosphatidylcholine (PC) to regions of the myelin basic protein (MBP) was examined. In solid phase binding assays the nature of the binding of unilamellar vesicles of14C-labeled phosphatidylcholine to bovine 18.5 kDa MBP, its N- and C-terminal peptide fragments, photooxidized 18.5 kDa MBP and the mouse 14 kDa protein, with an internal deletion of residues 117–157, was studied. The data were analyzed by computer-generated Scatchard plots in which non-specific binding was eliminated. Non-cooperative, low affinity binding of PC vesicles to MBP was observed, and this binding found to be sensitive to pH and ionic changes. At an ionic strength of 0.1 and pH 7.4, the binding of PC to the 14 kDa mouse MBP exhibited a Kd similar to that obtained with both the N-terminal and photooxidized 18.5 kDa bovine MBP. The studies indicated that the sites of PC interaction with MBP are located in the N-terminal region of the protein. The C-terminal region appeared to modulate the strength of the interaction slightly. Under similar conditions, lysozyme did not bind PC liposomes, and histone bound them nonspecifically.  相似文献   

10.
A calcium-activated neutral proteinase was purified from myelin of bovine brain white matter. Myelin purified in the presence of EDTA (2 mM) was homogenized in 50 mM Trisacetate buffer at pH 7.5, containing 4 mM EDTA, 1 mM NaN3, 5 mM -mercaptoethanol and 0.1% Triton X-100 for two hours. After centrifugation at 87,000g for 1 hour, the supernatant was subjected to purification through successive column chromatography as follows: i) DEAE-cellulose, ii) Ultrogel (AC-34) filtration, iii) Phenyl-Sepharose, iv) a second DEAE-cellulose. The enzyme activity was assayed using azocasein as substrate. The myelin enzyme was purified 2072-fold and SDS-PAGE analysis of the purified enzyme revealed a major subunit of 72–76 K. The enzyme was inhibited by iodoacetate (1 mM), leupeptin (1 mM), E-64C (1.6 mM), EGTA (1 mM), antipain (2 mM) and endogenous inhibitor calpastatin (2 g). It required 0.8 mM Ca2+ for half-maximal activation and 5 mM Ca2+ for optimal activation. Mg2+ (5 mM) was ineffective while Zn2+ and Hg2+ were inhibitory. The pH optimum was ranged from 7.5–8.5. Treatment of myelin with Triton X-100 increased the enzyme activity by 10-fold suggesting it is membrane bound whereas the purufied enzyme was not activated by Triton X-100 treatment. The presence of CANP in myelin may mediate the turnover of myelin proteins and myelin breakdown in degenerative brain diseases.  相似文献   

11.
Z2+ appears to stabilize the myelin sheath but the mechanism of this effect is unknown. In a previous report we have shown that zinc binds to CNS myelin basic protein (MBP) in the presence of phosphate and this results in MBP aggregation. For this paper we used a solid phase zinc blotting assay to identify which myelin proteins bind zinc. MBP and a 58 kDa band were found to be the major targets of65Zn binding. Moreover, using fluorescence, light scattering and electron microscopy we investigated the binding of zinc and other cations to purified MBP in solution. Among the cations tested for their ability to interfere with the binding of zinc, the most effective were cadmium, mercury and copper, but only cadmium and mercury increased the scattering intensity, whereas MBP aggregation was not inhibited by copper ions. Thus, the effect of zinc on the formation of MBP clusters seems to be specific.  相似文献   

12.
The interactions of the 18.5 kDa isoform of myelin basic protein (MBP) with calmodulin (CaM) in vitro have been investigated using glutaraldehyde or dithiobis[succinimidylpropionate] (DSP) cross-linking, and SDS-polyacrylamide gel electrophoresis. The following forms of MBP were used: the natural bovine C1 charge isomer (bMBP/C1) and a recombinant murine product (rmMBP), and their fragments generated by digestion with cathepsin D (EC 3.4.23.5). In physiological buffers (10 mM HEPES-NaOH, pH 7.4, 5 mM CaCl2, 0.0035% glutaraldehyde; or 50 mM HEPES-NaOH, pH 7.4, 100 mM NaCl, 1 mM CaCl2, 0.0035% DSP), MBP and CaM interacted primarily in a 1:1 molar ratio, consistent with previous studies that used 6 M urea, i.e. denaturing conditions. Moreover, the appearance of higher-order bands (not previously observed) suggested that the mechanism of interaction of the two proteins involved a series of relatively complex equilibria, resulting in 2:1 ratios of MBP to CaM. This observation would explain the cooperativity of association inferred from fluorescence studies [13]. Our results demonstrated further that the interaction involved the C-terminal domain of MBP, again in a primarily 1:1 molar ratio with CaM, consistent with our identification of a CaM-binding motif at the C-terminus.  相似文献   

13.
Synthetic peptide analogs of the bovine myelin basic protein (MBP) corresponding to residues 104-118 were found to specifically inhibit phospholipid/ Ca2+-dependent protein kinase (protein kinase C). The peptides [Ala107]MBP (104-118) and [Ala113]MBP (104-118) inhibited protein phosphorylation of intact MBP, histone H1 and peptide phosphorylation with MBP(104-123), MBP(104-118) or [Ala105]MBP (104-118) as substrates. The inhibitor peptides [Ala107]MBP(104-118) and [Ala113]MBP (104-118), containing alanine in place of the arginine recognition sites, apparently inhibited the enzyme noncompetitively with respect to substrates, with IC50 values ranging from 46-145 and 28-62 microM, respectively. These peptide analogs did not inhibit cyclic AMP-dependent protein kinase or myosin light chain kinase but inhibited phospholipid/Ca2+-dependent phosphorylation of endogenous proteins in the total, solubilized fraction of rat brain.  相似文献   

14.
Sodium chloride extracts obtained from purified bovine brain myelin were found to contain proteolytic activity capable of degrading isolated myelin basic protein as assessed by SDS gel electrophoresis. Using gels copolymerized with gelatin as substrate, two bands at about 54 and 117-125 KDa, respectively, were detected. Activity corresponding to the 54 KDa band was inhibited by zinc. Data presented in this article suggest that proteolytic activity can be released from the myelin sheath in water-soluble form and recognize MBP as substrate.  相似文献   

15.
L-Aspartate and L-serine were found to undergo amino acid racemization in brain myelin basic protein (MBP) of aging humans. The observed racemization was different in each chromatographically purified MBP isoform. Pepsin digestion of MBP produced three peptides, each of which exhibited different degrees of racemization of the same amino acids. MBP isolated by the same method from rat and guinea pig brain showed little accumulation of D-amino acids. Total MBP isolated from SDS-polyacrylamide disc gel electrophoresis of total human myelin proteins (delipidated myelin) was racemized to the same extent as purified MBP, indicating that the racemization observed was not an artifact of the isolation procedure. Myelin proteolipid protein from the same gel was racemized approximately half as much as MBP. The age and environment of the aspartates and serines in myelin proteins may strongly affect their observed racemizations.  相似文献   

16.
Axonal injury is one of the key features of traumatic brain injury (TBI), yet little is known about the integrity of the myelin sheath. We report that the 21.5 and 18.5-kDa myelin basic protein (MBP) isoforms degrade into N-terminal fragments (of 10 and 8 kDa) in the ipsilateral hippocampus and cortex between 2 h and 3 days after controlled cortical impact (in a rat model of TBI), but exhibit no degradation contralaterally. Using N-terminal microsequencing and mass spectrometry, we identified a novel in vivo MBP cleavage site between Phe114 and Lys115. A MBP C-terminal fragment-specific antibody was then raised and shown to specifically detect MBP fragments in affected brain regions following TBI. In vitro naive brain lysate and purified MBP digestion showed that MBP is sensitive to calpain, producing the characteristic MBP fragments observed in TBI. We hypothesize that TBI-mediated axonal injury causes secondary structural damage to the adjacent myelin membrane, instigating MBP degradation. This could initiate myelin sheath instability and demyelination, which might further promote axonal vulnerability.  相似文献   

17.
Conformation and aggregation of bovine myelin proteins   总被引:3,自引:0,他引:3  
CD and PMR spectra were obtained on three major protein fractions of bovine CNS myelin: the basic A-1 protein, the Folch-Lees proteolipid apoprotein (APL), and the Wolfgram proteolipid protein (WPP). Most PMR peaks of the A-1 broadened on going from D2O to salt solutions or to 100% 2-Chloroethanol (2-CE). CD spectra showed no α-helix in water or salt solutions, but showed 42% in 2-CE. The APL showed no PMR in D2O, but did show aromatic amino acid peaks in 1.5% SDS. CD spectra showed 37% α-helix in both cases. The PMR of the WPP in 1.5% SDS showed aromatic amino acids, and the CD showed <20% α-helix. All three proteins showed sharp PMR spectra in trifluoroacetic acid with α-CH chemical shifts characteristic of random coils. It was concluded that the A-1 and the APL aggregate.  相似文献   

18.
Ganglioside-modulated protein phosphorylation in myelin   总被引:5,自引:0,他引:5  
Gangliosides have profound effects on the phosphorylation of several proteins in myelin. Addition of polysialogangliosides to purified guinea pig brain myelin enhanced the endogenous phosphorylation of a 62-kDa phosphoprotein, but completely inhibited the phosphorylation of myelin basic protein (MBP) (18.5 kDa). The ganglioside-stimulated phosphorylation of the 62-kDa protein was dose-dependent and -specific. Asialo-GM1, ceramide trihexosides, N-acetylneuraminic acid, or colominic acid alone could not mimic this effect, suggesting that the activation process requires both the hydrophobic head group and the anionic character of the gangliosides. Studies on the time course of this reaction revealed that it was a rapid and reversible process and was affected only very slightly by Ca2+. Thus, the stimulatory effect of gangliosides may not involve Ca2+-gangliosides complexes or proteolysis, but may be mediated through an activation of a ganglioside-dependent protein kinase or due to substrate protein-glycolipid interaction. Modulation of the phosphorylation of MBP by gangliosides varies with the states of phosphorylation of this protein. Prior addition of ganglioside to myelin inhibited the phosphorylation of MBP. However, addition of gangliosides to myelin subsequent to maximal phosphorylation of MBP retarded the dephosphorylation of this protein. Phosphorylation of isolated MBP by protein kinase C was stimulated by gangliosides, provided phosphatidylserine was present. In contrast, the glycolipid inhibited the phosphorylation of a unique site catalyzed by cAMP-dependent protein kinase. This site was distinct from those phosphorylated by protein kinase C and was also sensitive to chymotryptic cleavage. Although the exact physiological significance of protein phosphorylation in myelin has yet to be established, gangliosides may play an important role in the modulation of this reversible post-translational modification mechanism.  相似文献   

19.
Myelin basic protein (MBP) is predominantly found in the membranes of the myelin sheath of the central nervous system and is involved in important protein-protein and protein-lipid interactions in vivo and in vitro. Furthermore, divalent transition metal ions, especially Zn2+ and Cu2+, seem to directly affect the MBP-mediated formation and stabilization of the myelin sheath of the central nervous system. MBP belongs to the realm of intrinsically disordered proteins, and only fragmentary information is available regarding its partial structure(s) or supramolecular arrangements. Here, using standard continuous wave and modern pulse electron paramagnetic resonance methods, as well as dynamic light scattering, we demonstrate the uptake and specific coordination of two Cu2+ atoms or one Zn2+ atom per MBP molecule in solution. In the presence of phosphates, further addition of divalent metal ions above a characteristic threshold of four Cu2+ atoms or two Zn2+ atoms per MBP molecule leads to the formation of large MBP aggregates within the protein solution. In vivo, MBP-MBP interactions may thus be mediated by divalent cations.  相似文献   

20.
The conduction of impulses along axons of nerves is facilitated by the myelin sheath, composed of proteins and lipid. Myelin basic proteins (MBPs) are extrinsic membrane proteins that play an important role in the structural organization of the myelin sheath. In the central nervous system, MBPs account for 30-40% of total protein. The traditional method of MBP isolation involves the use of chloroform-ethanol, which would destroy the native form of MBP. A modified method for maintaining its native form was developed. The white matter of porcine brain was directly extracted by buffers containing different concentrations of sodium chloride owing to MBP solubilized at high concentration of NaCl. The MBP was further purified by cation exchange chromatography and buffers containing glycine and salts. Purified MBP were consistently obtained by this method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号