首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
During germ cell differentiation in mice, the genome undergoes specific epigenetic modifications. These include demethylation of imprinted genes and subsequent establishment of parental allele-specific methylation. The mouse Igf2r gene is an imprinted gene that shows maternal-specific expression. Maternal-specific methylation of differentially methylated region 2 (DMR2) of this gene may be necessary for its maternal-specific expression. Before the allele-specific methylation is established, DMR2 is demethylated in both male and female primordial germ cells (PGCs) by 13.5 days post coitum (dpc), indicating that the demethylation of this region occurs earlier in PGC development. The timing of the demethylation has been, however, unknown. In this study, we attempted to determine the timing of methylation erasure of Igf2r DMR2 in developing PGCs, using transgenic mice expressing green fluorescent protein specifically in the germ line. We purified migrating PGCs from the transgenic mice and examined the methylation status of DMR2. The results show that some CpG sites within DMR2 start demethylation at 9.5 dpc in some migrating PGCs, before the cells colonize genital ridges, and the progression of demethylation is rapid after colonization of the genital ridges. To examine whether the gonadal environment is involved in demethylation, we analyzed the methylation of DMR2 after culturing migrating PGCs in the absence of a gonadal environment. These culture experiments support the idea that a gonadal environment is not required for demethylation of the region in at least a fraction of PGCs.  相似文献   

3.
Genomic imprinting is widespread amongst mammals, but has not yet been found in birds. To gain a broader understanding of the origin and significance of imprinting, we have characterized three genes, from three separate imprinted clusters in eutherian mammals in the developing fetus and placenta of an Australian marsupial, the tammar wallaby Macropus eugenii. Imprinted gene orthologues of human and mouse p57(KIP2), IGF2 and PEG1/MEST genes were isolated. p57(KIP2) did not show stable monoallelic expression suggesting that it is not imprinted in marsupials. In contrast, there was paternal-specific expression of IGF2 in almost all tissues, but the biased paternal expression of IGF2 in the fetal head and placenta, demonstrates the occurrence of tissue-specific imprinting, as occurs in mice and humans. There was also paternal-biased expression of PEG1/MESTalpha. The differentially methylated region (DMR) of the human and mouse PEG1/MEST promoter is absent in the wallaby. These data confirm the existence of common imprinted regions in eutherians and marsupials during development, but suggest that the regulatory mechanisms that control imprinted gene expression differ between these two groups of mammals.  相似文献   

4.
We have investigated the sequences of the mouse and human H19 imprinting control regions (ICRs) to see whether they contain nucleosome positioning information pertinent to their function as a methylation-regulated chromatin boundary. Positioning signals were identified by an in vitro approach that employs reconstituted chromatin to comprehensively describe the contribution of the DNA to the most basic, underlying level of chromatin structure. Signals in the DNA sequence of both ICRs directed nucleosomes to flank and encompass the short conserved sequences that constitute the binding sites for the zinc finger protein CTCF, an essential mediator of insulator activity. The repeat structure of the human ICR presented a conserved array of strong positioning signals that would preferentially flank these CTCF binding sites with positioned nucleosomes, a chromatin structure that would tend to maintain their accessibility. Conversely, all four CTCF binding sites in the mouse sequence were located close to the centre of positioning signals that were stronger than those in their flanks; these binding sites might therefore be expected to be more readily incorporated into positioned nucleosomes. We found that CpG methylation did not effect widespread repositioning of nucleosomes on either ICR, indicating that allelic methylation patterns were unlikely to establish allele-specific chromatin structures for H19 by operating directly upon the underlying DNA-histone interactions; instead, epigenetic modulation of ICR chromatin structure is likely to be mediated principally at higher levels of control. DNA methylation did, however, both promote and inhibit nucleosome positioning at several sites in both ICRs and substantially negated one of the strongest nucleosome positioning signals in the human sequence, observations that underline the fact that this epigenetic modification can, nevertheless, directly and decisively modulate core histone-DNA interactions within the nucleosome.  相似文献   

5.
Genome-wide epigenetic reprogramming is required for successful preimplantation development. Inappropriate or deficient chromatin regulation can result in defective lineage specification and loss of genomic imprinting, compromising normal development. Here we report that two members of the RNA polymerase II associated factor, homolog (Saccharomyces cerevisiae) complex (PAF1 complex) components, Ctr9 and Rtf1, are required during mammalian preimplantation development. We demonstrate that Ctr9-deficient embryos fail to correctly specify lineages at the blastocyst stage. Expression of some lineage specific factors is markedly reduced in Ctr9 knockdown embryos, including Eomes, Elf5 and Sox2, while others are inappropriately expressed (Oct4, Nanog, Gata6, Fgf4 and Sox17). We also show that several imprinted genes (Mest, Peg3, Snrpn and Meg3) are aberrantly expressed although allele specific DNA methylation is not altered. We document a loss of histone H3 lysine 36 trimethylation (H3K36me3) in Ctr9-deficient embryos and confirm that knockdown of either Setd2 or Rtf1 results in similar phenotypes. These findings show that the PAF1 complex is required for mammalian development, likely through regulation of H3K36me3, and indicate functional conservation of the PAF1 complex from yeast to mammals in vivo.  相似文献   

6.
7.
In different mammalian species, in vitro culture and manipulation can lead to aberrant fetal and peri-natal development. It has been postulated that these diverse abnormalities are caused by epigenetic alterations and that these could affect genes that are regulated by genomic imprinting. To explore this hypothesis relative to somatic cell nuclear transfer in sheep, we investigated whether the ovine H19-IGF2 and IGF2R loci are imprinted and analysed their DNA methylation status in cloned lambs. A comparison between parthenogenetic and control concepti established that imprinting at these two growth-related loci is evolutionarily conserved in sheep. As in humans and mice, IGF2R and H19 comprise differentially methylated regions (DMRs) that are methylated on one of the two parental alleles predominantly. In tongue tissue from 12 out of 13 cloned lambs analysed, the DMR in the second intron of IGF2R had strongly reduced levels of DNA methylation. The DMR located upstream of the ovine H19 gene was found to be similarly organised as in humans and mice, with multiple CTCF binding sites. At this DMR, however, aberrant methylation was observed in only one of the cloned lambs. Although the underlying mechanisms remain to be determined, our data indicate that somatic cell nuclear transfer procedures can lead to epigenetic deregulation at imprinted loci.  相似文献   

8.
9.
10.
EJ Gleason  EM Kramer 《Gene》2012,507(1):54-60
Epigenetic regulation is important for maintaining gene expression patterns in multicellular organisms. The Polycomb Group (PcG) proteins form several complexes with important and deeply conserved epigenetic functions in both the plant and animal kingdoms. The plant Polycomb Repressive Complex 2 (PRC2) contains four core proteins, Enhancer of Zeste (E(z)), Suppressor of Zeste 12 (Su(z)12), Extra Sex Combs (ESC), and Multicopy Suppressor of IRA 1 (MSI1), and functions in many developmental transitions. In some plant species, including rice and Arabidopsis, duplications in the core PRC2 proteins allow the formation of PRC2s with distinct developmental functions. In addition, members of the plant specific VEL PHD family have been shown to associate with the PRC2 complex in Arabidopsis and may play a role in targeting the PRC2 to specific loci. Here we examine the evolution and expression of the PRC2 and VEL PHD families in Aquilegia, a member of the lower eudicot order Ranunculales and an emerging model for the investigation of plant ecology, evolution and developmental genetics. We find that Aquilegia has a relatively simple PRC2 with only one homolog of Su(z)12, ESC and MSI1 and two ancient copies of E(z), AqSWN and AqCLF. Aquilegia has four members of the VEL PHD family, three of which appear to be closely related to Arabidopsis proteins known to associate with the PRC2. The PRC2 and VEL PHD family proteins are expressed at a relatively constant level throughout Aquilegia vulgaris development, with the VEL PHD family and MSI1 expressed at higher levels during and after vernalization and in the inflorescence. Both AqSWN and AqCLF are expressed in Aquilegia endosperm but neither copy is imprinted.  相似文献   

11.
On February 11, 2020, the World Health Organization officially announced the coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as an emerging recent pandemic illness, which currently has approximately taken the life of two million persons in more than 200 countries. Medical, clinical, and scientific efforts have focused on searching for new prevention and treatment strategies. Regenerative medicine and tissue engineering focused on using stem cells (SCs) have become a promising tool, and the regenerative and immunoregulatory capabilities of mesenchymal SCs (MSCs) and their exosomes have been demonstrated. Moreover, it has been essential to establishing models to reproduce the viral life cycle and mimic the pathology of COVID-19 to understand the virus's behavior. The fields of pluripotent SCs (PSCs), induced PSCs (iPSCs), and artificial iPSCs have been used for this purpose in the development of infection models or organoids. Nevertheless, some inconveniences have been declared in SC use; for example, it has been reported that SARS-CoV-2 enters human cells through the angiotensin-converting enzyme 2 receptor, which is highly expressed in MSCs, so it is important to continue investigating the employment of SCs in COVID-19, taking into consideration their advantages and disadvantages. In this review, we expose the use of different kinds of SCs and their derivatives for studying the SARS-CoV-2 behavior and develop treatments to counter COVID-19.  相似文献   

12.
DNA methylation is linked to homocysteine metabolism through the generation of S-adenosylmethionine (AdoMet) and S-Adenosylhomocysteine (AdoHcy). The ratio of AdoMet/AdoHcy is often considered an indicator of tissue methylation capacity. The goal of this study is to determine the relationship of tissue AdoMet and AdoHcy concentrations to allele-specific methylation and expression of genomically imprinted H19/Igf2. Expression of H19/Igf2 is regulated by a differentially methylated domain (DMD), with H19 paternally imprinted and Igf2 maternally imprinted. F1 hybrid C57BL/6J x Castaneous/EiJ (Cast) mice with (+/−), and without (+/+), heterozygous disruption of cystathionine-β-synthase (Cbs) were fed a control diet or a diet (called HH) to induce hyperhomocysteinemia and changes in tissue AdoMet and AdoHcy. F1 Cast x Cbs+/− mice fed the HH diet had significantly higher plasma total homocysteine concentrations, higher liver AdoHcy, and lower AdoMet/AdoHcy ratios and this was accompanied by lower liver maternal H19 DMD allele methylation, lower liver Igf2 mRNA levels, and loss of Igf2 maternal imprinting. In contrast, we found no significant differences in AdoMet and AdoHcy in brain between the diet groups but F1 Cast x Cbs+/− mice fed the HH diet had higher maternal H19 DMD methylation and lower H19 mRNA levels in brain. A significant negative relationship between AdoHcy and maternal H19 DMD allele methylation was found in liver but not in brain. These findings suggest the relationship of AdoMet and AdoHcy to gene-specific DNA methylation is tissue-specific and that changes in DNA methylation can occur without changes in AdoMet and AdoHcy.  相似文献   

13.
14.
The mouse insulin-like growth factor II (Igf2) and H19 genes are located adjacent to each other on chromosome 7q11-13 and are reciprocally imprinted. It is believed that the allelic expression of these two genes is regulated by the binding of CTCF insulators to four parent-specific DNA methylation sites in an imprinting control center (ICR) located between these two genes. Although monoallelically expressed in peripheral tissues, Igf2 is biallelically transcribed in the CNS. In this study, we examined the allelic DNA methylation and CTCF binding in the Igf2/H19 imprinting center in CNS, hypothesizing that the aberrant CTCF binding as one of the mechanisms leads to biallelic expression of Igf2 in CNS. Using hybrid F1 mice (M. spretus males x C57BL/6 females), we showed that in CNS, CTCF binding sites in the ICR were methylated exclusively on the paternal allele, and CTCF bound only to the unmethylated maternal allele, showing no differences from the imprinted peripheral tissues. Among three other epigenetic modifications examined, histone H3 lysine 9 methylation correlated well with Igf2 allelic expression in CNS. These results suggest that CTCF binding to the ICR alone is not sufficient to insulate the Igf2 maternal promoter and to regulate the allelic expression of the gene in the CNS, thus challenging the aberrant CTCF binding as a common mechanism for lack of Igf2 imprinting in CNS. Further studies should be focused on the identification of factors that are involved in histone methylation and CTCF-associated factors that may be needed to coordinate Igf2 imprinting.  相似文献   

15.
16.
17.
 The molecular mechanism leading to the imprinted expression of genes is poorly understood. While no conserved cis-acting elements have been identified within the known loci, many imprinted genes are located near directly repetitive sequence elements, suggesting that such repeats might play a role in imprinted gene expression. The maternally expressed mouse H19 gene is located approximately 1.5 kb downstream from a 461-bp G-rich repetitive element. We have used a transgenic model to investigate whether this element is essential for H19 imprinting. Previous results demonstrated that a transgene, which contains 14 kb of H19 sequence, exhibits parent-of-origin specific expression and methylation analogous to the endogenous H19 imprinting pattern. Here, we have generated transgenes lacking the G-rich repeat. One transgene, containing a deletion of the G-rich repetitive element but which includes an additional 1.7 kb of 5’H19 sequence, is imprinted similarly to the endogenous H19 gene. To determine whether the G-rich repeat is conserved in other imprinted mammalian H19 homologues, additional 5’ flanking sequences were cloned from the rat and human. This element is conserved in the rat but not in human DNA. These results suggest that the 461-bp G-rich repetitive element is not essential for H19 imprinting. Received: 26 August 1998 / Accepted: 14 December 1998  相似文献   

18.
Current protocols for DNA methylation analysis are either labor intensive or limited to the measurement of only one or two CpG positions. Pyrosequencing is a real-time sequencing technology that can overcome these limitations and be used as an epigenotype-mapping tool. Initial experiments demonstrated reliable quantification of the degree of DNA methylation when 2-6 CpGs were analyzed. We sought to improve the sequencing protocol so as to analyze as many CpGs as possible in a single sequencing run. By using an improved enzyme mix and adding single-stranded DNA-binding protein to the reaction, we obtained reproducible results for as many as 10 successive CpGs in a single sequencing reaction spanning up to 75 nucleotides. A minimum amount of 10 ng of bisulfite-treated DNA is necessary to obtain good reproducibility and avoid preferential amplification. We applied the assay to the analysis of DNA methylation patterns in four CpG islands in the vicinity of IGF2 and H19 genes. This allowed accurate and quantitative de novo sequencing of the methylation state of each CpG, showing reproducible variations of methylation state in contiguous CpGs, and proved to be a useful adjunct to current technologies.  相似文献   

19.
Summary The mutation him-6(e1423) leads to generalized chromosomal nondisjunction during meiosis in oogenesis and spermatogenesis of C. elegans. As a result, gametes nullisomic or disomic for each of the six chromosomes occur at appreciable frequency. Crosses utilizing marked him-6 strains were used to generate and identify exceptional euploid progeny which had received both homologues of a marked autosome either from the male parent or from the female parent. Examples of all ten possible exceptions were identified and found to be viable and fertile. These results (together with previous data for the X chromosome) indicate that major chromosomal imprinting effects do not occur during gametogenesis in this organism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号