首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alpha(1)-acid glycoprotein (AGP) is a glycoprotein that consists of 183 amino acid residues and five carbohydrate chains and binds to neutral and basic drugs. We examined the structural properties and ligand-binding capacity of AGP in interactions with reverse micelles. Also, detailed information was obtained by comparing several different states of AGP. Interaction with reverse micelles induced a unique conformational transition (beta-sheet to alpha-helices) in AGP and decreased the binding capacity for the basic drug, chlorpromazine and the steroid hormone, progesterone to AGP. These structural conformations are very similar to those observed under conditions of acidity and high ionic strength (pH 2.0, 1.5 M NaCl). This structure seems to be an intermediate between the native state and the denatured state, possibly a molten globule. The present results suggest that when AGP interacts with the biomembrane, it undergoes a structural transition to a unique structure that differs from the native and denatured states and has a reduced ligand-binding capacity.  相似文献   

2.
Human α1-acid glycoprotein (AGP) is an acute phase plasma glycoprotein containing two disulfide bridges. As a member of the lipocalin superfamily, it binds and transports several basic and neutral ligands, but a number of other activities have also been described. Thanks to its binding properties, AGP is also a good candidate for the development of biosensors and affinity chromatography media, and in this context detailed structural information is needed. The structural properties of AGP at different p2Hs and under reducing conditions were analysed by FT-IR spectroscopy. The obtained data indicate that AGP, when denatured, does not aggregate at neutral or basic p2Hs whilst it does at acidic p2Hs. Under reducing conditions the protein is remarkably less thermostable than its oxidized counterpart and presents an enhanced tendency to aggregate, even at neutral p2H. A heat-induced molten globule-like state (MG) was detected at 55 °C at p2H 7.4 and 5.5. At p2H 4.5 the MG occurred at 45 °C with an onset of formation at 40 °C. The MG was not observed under reducing conditions. A lower affinity of chlorpromazine and progesterone for the MG formed at p2H 4.5 and 40 °C was observed, suggesting that ligand(s) may be released near the negative surfaces of biological membranes. Furthermore, the reduced AGP displays an enhanced affinity for progesterone, indicating the importance of disulfide bonds for the binding capacity of AGP.  相似文献   

3.
Tumor necrosis factor (TNF)-related apoptosis inducing ligand (TRAIL) has been known to induce tumor-specific apoptosis and to share the structural and functional characteristics with the proteins of TNF family. Recently, the crystal structure of human TRAIL showed that TRAIL is a homotrimeric protein whose subunits contain mainly beta-sheets. We characterized the structural changes of recombinant human TRAIL induced by acidification and the biological implication of the structural characteristics at acidic pH in the interaction with the lipid bilayer. At acidic pH below pH 4.5, TRAIL resulted in substantial structural changes to a molten globule (MG)-like state. Far-UV CD spectrum of TRAIL indicated that the acidification induced alpha-helices that are absent in the native state. TRAIL at acidic pH exhibited significant change of tertiary structures as reflected in the near-UV CD spectrum. Thermal transition curve indicated that there was less cooperation at acidic pH than at neutral pH in the thermal denaturation of TRAIL. Moreover, TRAIL at the MG-like state not only enhanced the binding ability to liposomes, but also increased the release rate of a fluorescent dye, calcein, encapsulated in liposomes. The binding assay with anilinonaphthalene-8-sulfonic acid revealed that the surface hydrophobicity of TRAIL was increased while tryptophan residues became more exposed to solvent as judged by blue shift of the maximum fluorescence wavelength. Taken together, our results demonstrate that the acidification of human TRAIL induces the MG-like state in vitro and makes the membrane permeable through the favorable interaction of TRAIL with the membrane, implicating that general intrinsic properties such as TRAIL, TNF-alpha and lymphotoxin are shared by TNF family members.  相似文献   

4.
Amyloid β-protein (Aβ) has been reported to interact with a variety of lipid species, although the thermodynamic driving force remains unclear. We investigated the binding of Aβs labeled with the dye diethylaminocoumarin (DAC-Aβs) to lipid bilayers under various conditions. DAC-Aβ-(1-40) electrostatically bound to anionic and cationic lipids at acidic and alkaline interfacial pH, respectively. However, at neutral pH, electroneutral Aβ did not bind to these lipids, indicating little hydrophobic interaction between Aβ-(1-40) and the acyl chains of lipids. In contrast, DAC-Aβ associated with glycolipids even under electroneutral conditions. These results suggested that hydrogen-bonding as well as hydrophobic interactions with sugar groups of glycolipids drive the membrane binding of Aβ-(1-40).  相似文献   

5.
Lactoperoxidase (LPO), a mammalian secretory heme peroxidase, catalyzes the oxidation of thiocyanate by hydrogen peroxide to produce hypothiocyanate, an antibacterial agent. Although LPO is known to be activated at acidic pH and in the presence of iodide, the structural basis of the activation is not well understood. We have examined the effects of pH and iodide concentration on the catalytic activity and the structure of LPO. Electrochemical and colorimetric assays have shown that the catalytic activity is maximized at pH 4.5. The heme Soret absorption band exhibits a small red‐shift at pH 5.0 upon acidification, which is ascribable to a structural transition from a neutral to an acidic form. Resonance Raman spectra suggest that the heme porphyrin core is slightly contracted and the Fe‐His bond is strengthened in the acidic form compared to the neutral form. The structural change of LPO upon activation at acidic pH is similar to that observed for myeloperoxidase, another mammalian heme peroxidase, upon activation at neutral pH. Binding of iodide enhances the catalytic activity of LPO without affecting either the optimum pH of activity or the heme structure, implying that the iodide binding occurs at a protein site away from the heme‐linked protonation site. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 113–120, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

6.
Binding of oligonucleotides to cell membranes at acidic pH.   总被引:1,自引:0,他引:1  
Antisense oligodeoxynucleotides [oligo(dN)] have the ability to enter living cells and block the expression of specific genes. However, little is known about the mechanism of cellular uptake of oligo(dN). We have found that oligo(dN) can bind to the cell membranes of eukaryotic cells with much greater efficiency under acidic conditions (pH 4.0-4.5) than at neutral pH. The binding appears to be specific to poly nucleic acids since various sizes of oligo(dN), DNA and RNA, but not mononucleotides, compete for the binding. We have identified a 34 kDa membrane protein from T-cells, which binds to oligo(dT) cellulose at pH 4.5 and can be eluted at pH 7.5. This protein fraction blocked the binding of oligo(dN) to living T-cells in a competitive fashion. Our results suggest that eukaryotic cells have a receptor for oligo(dN) at acidic pH and that the 34 kDa dalton protein on the cell membrane may mediate such binding.  相似文献   

7.
Annexin 2 belongs to the annexin family of proteins that bind to phospholipid membranes in a Ca(2+)-dependent manner. Here we show that, under mild acidic conditions, annexin 2 binds to and aggregates membranes containing anionic phospholipids, a fact that questions the mechanism of its interaction with membranes via Ca(2+) bridges only. The H(+) sensitivity of annexin 2-mediated aggregation is modulated by lipid composition (i.e. cholesterol content). Cryo-electron microscopy of aggregated liposomes revealed that both the monomeric and the tetrameric forms of the protein form bridges between the liposomes at acidic pH. Monomeric annexin 2 induced two different organizations of the membrane junctions. The first resembled that obtained at pH 7 in the presence of Ca(2+). For the tetramer, the arrangement was different. These bridges seemed more flexible than the Ca(2+)-mediated junctions allowing the invagination of membranes. Time-resolved fluorescence analysis at mild acidic pH and the measurement of Stokes radius revealed that the protein undergoes conformational changes similar to those induced by Ca(2+). Labeling with the lipophilic probe 3-(trifluoromethyl)-3-(m-[(125)I]iodophenyl)diazirine indicated that the protein has access to the hydrophobic part of the membrane at both acidic pH in the absence of Ca(2+) and at neutral pH in the presence of Ca(2+). Models for the membrane interactions of annexin 2 at neutral pH in the presence of Ca(2+) and at acidic pH are discussed.  相似文献   

8.
The effect of electrostatic interactions on the conformation and thermal stability of plastocyanin (Pc) was studied by infrared spectroscopy. Association of any of the two redox states of the protein with positively charged membranes at neutral pH does not significantly change the secondary structure of Pc. However, upon membrane binding, the denaturation temperature decreases, regardless of the protein redox state. The extent of destabilization depends on the proportion of positively charged lipid headgroups in the membrane, becoming greater as the surface density of basic phospholipids increases. In contrast, at pH 4.8 the membrane binding-dependent conformational change becomes redox-sensitive. While the secondary structures and thermal stabilities of free and membrane-bound oxidized Pc are similar under acidic conditions, the conformation of the reduced form of the protein drastically rearranges upon membrane association. This rearrangement does not depend on electrostatic interactions to occur, since it is also observed in the presence of uncharged lipid bilayers. The conformational transition, only observed for reduced Pc, involves the exposure of hydrophobic regions that leads to intermolecular interactions at the membrane surface. Membrane-mediated partial unfolding of reduced Pc can be reversed by readjusting the pH to neutrality, in the absence of electrostatic interactions. This redox-dependent behavior might reflect specific structural requirements for the interaction of Pc with its redox partners.  相似文献   

9.
Using far- and near-UV circular dichroism, viscosity, tryptophan fluorescence, NMR spectra, binding of a hydrophobic probe, and microcalorimetry, we have shown that the apo form of human retinol-binding protein (RBP) at neutral pH is in a rigid state with properties similar to those of holo-RBP. On the contrary, at acidic pH apo-RBP is in the molten globule state which has been earlier revealed for a number of proteins under mild denaturing conditions. We have also shown that, at equilibrium, the pH-induced retinol release from holo-RBP parallels denaturation of the apoprotein. These findings are consistent with our hypothesis that the transformation of RBP into the molten globule state is involved in the mechanism whereby retinol is delivered to target cells. In particular, a local acidic pH near the membrane surface of target cells might cause the transition of RBP to the molten globule state as well as the release of retinol.  相似文献   

10.
The pH low insertion peptide (pHLIP) is an important tool for drug delivery and visualization of acidic tissues produced by various maladies, including cancer, inflammation, and ischemia. Numerous studies indicate that pHLIP exists in three states: unfolded and soluble in water at neutral pH (State I), unfolded and bound to the surface of a phosphatidylcholine membrane at neutral pH (State II), and inserted across the membrane as an α-helix at low pH (State III). Here we report how changes in lipid composition modulate this insertion scheme. First, the presence of either anionic lipids, cholesterol, or phosphoethanolamine eliminates membrane binding at neutral pH (State II). Second, the apparent pKa for the insertion transition (State I → State III) is increased with increasing content of anionic lipids, suggesting that electrostatic interactions in the interfacial region modulate protonation of acidic residues of pHLIP responsible for transbilayer insertion. These findings indicate a possibility for triggering protonation-coupled conformational switching in proteins at membrane interfaces through changes in lipid composition.  相似文献   

11.
Glutamate decarboxylase is a vitamin B6-dependent enzyme, which catalyses the decarboxylation of glutamate to gamma-aminobutyrate. In Escherichia coli, expression of glutamate decarboxylase (GadB), a 330 kDa hexamer, is induced to maintain the physiological pH under acidic conditions, like those of the passage through the stomach en route to the intestine. GadB, together with the antiporter GadC, constitutes the gad acid resistance system, which confers the ability for bacterial survival for at least 2 h in a strongly acidic environment. GadB undergoes a pH-dependent conformational change and exhibits an activity optimum at low pH. We determined the crystal structures of GadB at acidic and neutral pH. They reveal the molecular details of the conformational change and the structural basis for the acidic pH optimum. We demonstrate that the enzyme is localized exclusively in the cytoplasm at neutral pH, but is recruited to the membrane when the pH falls. We show by structure-based site-directed mutagenesis that the triple helix bundle formed by the N-termini of the protein at acidic pH is the major determinant for this behaviour.  相似文献   

12.
The serum amyloid P component (SAP) has been found to associate in vitro with a variety of polysaccharide and proteinaceous ligands including the yeast cell wall polysaccharide preparation, zymosan, in the presence of calcium at neutral pH. In the present study, we have investigated the role of copper and zinc and other divalent cations and acidic pH on the binding of SAP to zymosan. We report that binding occurs not only in the presence of calcium, but in the presence of copper, zinc, and cadmium as well. No binding occurs in the absence of added metal, or in the presence of barium, cobalt, magnesium, manganese, or nickel. 125I-SAP binding in the presence of metals is inhibited by presaturating the zymosan surface with unlabeled SAP. Whereas calcium-mediated binding decreases by more than 50% as the pH is lowered to 5, copper-mediated binding increases substantially at the more acidic pH values while zinc-mediated binding is essentially unchanged. These data indicate that, in addition to calcium at neutral pH, copper (and zinc) at neutral and particularly acidic pH values mediates SAP binding to polysaccharide ligands. This suggests that SAP may well be considered a copper- as well as a calcium-dependent protein under certain conditions and that this reactivity is favored under those conditions of lowered pH which may result from metabolic processes occurring at local sites of inflammation.  相似文献   

13.
Vanadium-binding proteins, or Vanabins, have recently been isolated from the vanadium-rich ascidian, Ascidia sydneiensis samea. Recent reports indicate that Vanabin2 binds twenty V(IV) ions at pH 7.5, and that it has a novel bow-shaped conformation. However, the role of Vanabin2 in vanadium accumulation by the ascidian has not yet been determined. In the present study, the effects of acidic pH on selective metal binding to Vanabin2 and on the secondary structure of Vanabin2 were examined. Vanabin2 selectively bound to V(IV), Fe(III), and Cu(II) ions under acidic conditions. In contrast, Co(II), Ni(II), and Zn(II) ions were bound at pH 6.5 but not at pH 4.5. Changes in pH had no detectable effect on the secondary structure of Vanabin2 under acidic conditions, as determined by circular dichroism spectroscopy, and little variation in the dissociation constant for V(IV) ions was observed in the pH range 4.5-7.5, suggesting that the binding state of the ligands is not affected by acidification. Taken together, these results suggest that the reason for metal ion dissociation upon acidification is attributable not to a change in secondary structure but, rather, that it is caused by protonation of the amino acid ligands that complex with V(IV) ions.  相似文献   

14.
During the course of infection, Salmonella enterica serovar Typhimurium must successively survive the harsh acid stress of the stomach and multiply into a mild acidic compartment within macrophages. Inducible amino acid decarboxylases are known to promote adaptation to acidic environments. Three low pH inducible amino acid decarboxylases were annotated in the genome of S. Typhimurium, AdiA, CadA and SpeF, which are specific for arginine, lysine and ornithine, respectively. In this study, we characterized and compared the contributions of those enzymes in response to acidic challenges. Individual mutants as well as a strain deleted for the three genes were tested for their ability (i) to survive an extreme acid shock, (ii) to grow at mild acidic pH and (iii) to infect the mouse animal model. We showed that the lysine decarboxylase CadA had the broadest range of activity since it both had the capacity to promote survival at pH 2.3 and growth at pH 4.5. The arginine decarboxylase AdiA was the most performant in protecting S. Typhimurium from a shock at pH 2.3 and the ornithine decarboxylase SpeF conferred the best growth advantage under anaerobiosis conditions at pH 4.5. We developed a GFP-based gene reporter to monitor the pH of the environment as perceived by S. Typhimurium. Results showed that activities of the lysine and ornithine decarboxylases at mild acidic pH did modify the local surrounding of S. Typhimurium both in culture medium and in macrophages. Finally, we tested the contribution of decarboxylases to virulence and found that these enzymes were dispensable for S. Typhimurium virulence during systemic infection. In the light of this result, we examined the genomes of Salmonella spp. normally responsible of systemic infection and observed that the genes encoding these enzymes were not well conserved, supporting the idea that these enzymes may be not required during systemic infection.  相似文献   

15.
To gain insight into the conformational conversion of ovine prion protein (OvPrP(C)) at different pH values and/or in the presence of CuCl(2), the secondary structure of OvPrP(C) was analysed by circular dichroism (CD) spectroscopy. Copper treatment of OvPrP(C) under moderately acidic conditions (pH approximately 5.0-6.0) as well as physiological conditions (pH 7.4) also makes OvPrP(C) adopt protease-resistant and beta-sheet-rich conformation. However, under lower pH conditions (2.0-4.5) with copper treatment, OvPrP(C) gained higher alpha-helix structure. This study demonstrated that Cu(2+) can significantly modulate conformational conversion triggered by acidic pH, and this will provide therapeutic intervention approaches for prion diseases.  相似文献   

16.
17.
Vanadium-binding proteins, or Vanabins, have recently been isolated from the vanadium-rich ascidian, Ascidia sydneiensis samea. Recent reports indicate that Vanabin2 binds twenty V(IV) ions at pH 7.5, and that it has a novel bow-shaped conformation. However, the role of Vanabin2 in vanadium accumulation by the ascidian has not yet been determined. In the present study, the effects of acidic pH on selective metal binding to Vanabin2 and on the secondary structure of Vanabin2 were examined. Vanabin2 selectively bound to V(IV), Fe(III), and Cu(II) ions under acidic conditions. In contrast, Co(II), Ni(II), and Zn(II) ions were bound at pH 6.5 but not at pH 4.5. Changes in pH had no detectable effect on the secondary structure of Vanabin2 under acidic conditions, as determined by circular dichroism spectroscopy, and little variation in the dissociation constant for V(IV) ions was observed in the pH range 4.5–7.5, suggesting that the binding state of the ligands is not affected by acidification. Taken together, these results suggest that the reason for metal ion dissociation upon acidification is attributable not to a change in secondary structure but, rather, that it is caused by protonation of the amino acid ligands that complex with V(IV) ions.  相似文献   

18.
Dissociation of bovine odorant binding protein (bOBP) dimers to monomers at pH 2.5 has been confirmed through size exclusion chromatography experiments. Moreover, structural and binding properties of the acidic monomer and neutral dimer have been compared using a combination of experimental (circular dichroism and fluorescence) and computational (molecular dynamics) techniques. The secondary and tertiary structures of bOBP are largely maintained at acidic pH, but molecular dynamics simulations suggest the loop regions (N-terminal residues, Omega-loop and C-terminal segments) are more relaxed and Phe36 and Tyr83 residues are involved in the regulation of the binding cavity entrance. The formation of a molten globule state at acidic pH, suggested by the strong enhancement of fluorescence of 8-anilino-1-naphtalenesulphonic acid (ANS), is not confirmed by any significant change in the near UV circular dichroism spectrum. Functionality measurements, deduced from the interaction of bOBP with 1-amino-anthracene (AMA), show that the binding capacity of the protein at acidic pH is preserved, though slightly looser than at neutral pH. Unfolding of acidic bOBP, induced by guanidinium chloride (GdnHCl), was investigated by means of CD spectroscopy, steady state fluorescence, fluorescence anisotropy and light scattering. The stability of the acidic monomer is lower than that of the neutral dimer, owing to the loss of the swapping interactions, but renaturation is completely reversible. Finally, in contrast with the neutral dimer, at low denaturant concentration some aggregation of the acidic monomer, which vanishes before the unfolding transition, has been observed.  相似文献   

19.
Since neural epidermal growth factor-like-like (NELL) 2 was identified as a novel ligand for the roundabout (Robo) 3 receptor, research on NELL–Robo signaling has become increasingly important. We have previously reported that Robo2 can bind to NELL1/2 in acidic conditions but not at neutral pH. The NELL1/2-binding site that is occluded in neutral conditions is thought to be exposed by a conformational change of the Robo2 ectodomain upon exposure to acidic pH; however, the underlying structural mechanisms are not well understood. Here, we investigated the interaction between the immunoglobulin-like domains and fibronectin type III domains that form hairpin-like structure of the Robo2 ectodomain, and demonstrated that acidic pH attenuates the interaction between them. Alternative splicing isoforms of Robo2, which affect the conformation of the hairpin-like structure, were found to have distinct NELL1/2-binding affinities. We developed Förster resonance energy transfer-based indicators for monitoring conformational change of the Robo2 ectodomain by individually inserting donor and acceptor fluorescent proteins at its ends. These experiments revealed that the ends of the Robo2 ectodomain are close to each other in acidic conditions. By combining these findings with the results of size exclusion chromatography analysis, we suggest that, in acidic conditions, the Robo2 ectodomain has a compact conformation with a loose hairpin-like structure. These results may help elucidate the signaling mechanisms resulting from the interaction between Robo2 and NELL1/2 in acidic conditions.  相似文献   

20.
The Solanum tuberosum plant-specific insert (StPSI) has been shown to possess potent antimicrobial activity against both human and plant pathogens. Furthermore, in vitro, the StPSI is capable of fusing phospholipid vesicles, provided the conditions of net anionic vesicle charge and acidic pH are met. Constant pH replica-exchange simulations indicate several acidic residues on the dimer have highly perturbed pKas (<3.0; E15, D28, E85 & E100) due to involvement in salt bridges. After setting the pH of the system to either 3.0 or 7.4, all-atom simulations provided details of the effect of pH on secondary structural elements, particularly in the previously unresolved crystallographic structure of the loop section. Coarse-grained dimer-bilayer simulations demonstrated that at pH 7.4, the dimer had no affinity for neutral or anionic membranes over the course of 1 μs simulations. Conversely, at pH 3.0 two binding modes were observed. Mode 1 is mediated primarily via strong N-terminal interactions on one monomer only, whereas in mode 2, N- and C-terminal residues of one monomer and numerous polar and basic residues on the second monomer, particularly in the third helix, participate in membrane interactions. Mode 2 was accompanied by re-orientation of the dimer to a more vertical position with respect to helices 1 and 4, positioning the dimer for membrane interactions. These results offer the first examination at near-atomic resolution of residues mediating the StPSI-membrane interactions, and allow for the postulation of a possible fusion mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号