共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A membrane protein that is immunochemically similar to the red cell anion exchange protein, band 3, has been identified on the basolateral face of the outer medullary collecting duct (MCD) cells in rabbit kidney. In freshly prepared separated rabbit MCD cells, M.L. Zeidel, P. Silva and J.L. Seifter ( J. Clin. Invest.
77:1682–1688, 1986) found that Cl –/HCO
3
-
exchange was inhibited by the stilbene anion exchange inhibitor, DIDS (4,4-diisothiocyano-2,2-disulfonic stilbene), with a K
1 similar to that for the red cell. We have measured the binding affinities of a fluorescent stilbene inhibitor, DBDS (4,4-dibenzamido-2,2-disulfonic stilbene), to MCD cells in 28.5 mM citrate and have characterized both a high-affinity site ( K
1
s
=93±24 mM) and a lower affinity site ( K
2
s
=430±260 nM), which are closely similar to values for the red cell of 110±51 nM for the high-affinity site and 980±200 nM for the lower affinity site (A.S. Verkman, J.A. Dix & A.K. Solomon, J. Gen. Physiol.
81:421–449, 1983). When Cl – replaces citrate in the buffer, the two sites collapse into a single one with K
1
s
=1500±400 nM, similar to the single K
1
s
=1200±200 nM in the red cell (J.A. Dix, A.S. Verkman & A.K. Solomon, J. Membrane Biol.
89:211–223, 1986). The kinetics of DBDS binding to MCD cells at 0.25 M –1 are characterized by a fast process, =0.14±0.03 sec, similar to =0.12±0.03 sec in the red cell. These similarities show that the physical chemical characteristics of stilbene inhibitor binding to MCD cell band 3 closely resemble those for red cell band 3, which suggests that the molecular structure is highly conserved. 相似文献
2.
A full-length clone encoding the mouse erythrocyte anion exchange protein, band 3, has been isolated from a cDNA library using an antibody against the mature erythrocyte protein. The complete nucleotide sequence has been determined. Substantial homology is evident between the deduced murine amino acid sequence and published sequences of fragments of human band 3 protein. The amino-terminal 420 and the carboxy-terminal 32 residues constitute polar, soluble domains, while the intervening 475 amino acids are likely to be intimately associated with the lipid bilayer. Hydrophobic analysis of this sequence, together with structural studies on the human protein, suggests the possibility of at least 12 membrane spans, predicting that both the amino- and carboxy-termini are intracellular. 相似文献
3.
Band 3 is the predominant polypetide and the purported mediator of anion transport in the human erythrocyte membrane. Against a background of minor and apparently unrelated polypeptides of similar electrophoretic mobility, and despite apparent heterogeneity in its glycosylation, the bulk of band 3 exhibits uniform and characteristic behavior. This integral glycoprotein appears to exist as a noncovalent dimer of two ~ 93,000-dalton chains which span the membrane asymmetrically. The protein is hydrophobic in its composition and in its behaviour in aqueous solution and is best solubilized and purified in detergent. It can be cleaved while membrane-bound into large, topographically defined segments. An integral, outer-surface, 38,000-dalton fragment bears most of the band 3 carbohydrate. A 17,000-dalton, hydrophobic glycopeptide fragment spans the membrane. A ~ 40,000-dalton hydrophilic segment represents the cytoplasmic domain. In vitro, glyceraldehyde 3-P dehydrogenase and aldolase bind reversibly, in a metabolite-sensitive fashion, to this cytoplasmic segment. The cytoplasmic domain also bears the amino terminus of this polypetide, in contrast to other integral membrane proteins. Recent electron microscopic analysis suggests that the poles of the band 3 molecule can be seen by freezeetching at the two original membrane surfaces, while freeze-fracture reveals the transmembrane disposition of band 3 dimer particles. There is strong evidence that band 3 mediates 1:1 anion exchange across the membrane through a conformational cycle while remaining fixed and asymmetrical. Its cytoplasmic pole can be variously perturbed and even excised without a significant alteration of transport function. However, digestion of the outer-surface region leads to inhibition of transport, so that both this segment and the membrane-spanning piece (which is slectively labeled by covalent inhibitors of transport) may be presumed to be involved in transport. Genetic polymorphism has been observed in the structure and immunogenicity of the band 3 polypeptide but this feature has not been related to variation in anion transport or other band 3 activities. 相似文献
4.
Summary The effect of chloride on 4,4-dibenzamido-2,2-disulfonic stilbene (DBDS) binding to band 3 in unsealed red cell ghost membranes was studied in buffer [NaCl (0 to 500 mm) + Na citrate] at constant ionic strength (160 or 600 mm). pH 7.4, 25°C. In the presence of chloride, DBDS binds to a single class of sites on band 3. At 160 mm ionic strength, the dissociation constant of DBDS increases linearly with chloride concentration in the range [Cl]=450 mm. The observed rate of DBDS binding to ghost membranes, as measured by fluorescence stopped-flow kinetic experiments, increases with chloride concentration at both 160 and 600 mm ionic strength. The equilibrium and kinetic results have been incorporated into the following model of the DBDS-band 3 interaction: The equilibrium and rate constants of the model at 600 mm ionic strength are K
1=0.67±0.16 m, k
2=1.6±0.7 sec –1, k
–2=0.17±0.09 sec –1, K
1=6.3±1.7 m, k
2=9±4 sec –1 and k
–2=7±3 sec –1. The apparent dissociation constants of chloride from band 3, K
Cl, are 40±4 mm (160 mm ionic strength) and 11±3 mm (600 mm ionic strength). Our results indicate that chloride and DBDS have distinct, interacting binding sites on band 3. 相似文献
5.
We describe an altered membrane band 3 protein-mediated anion transport in erythrocytes exposed to peroxynitrite, and relate the loss of anion transport to cell damage and to band 3 oxidative modifications. We found that peroxynitrite down-regulate anion transport in a dose dependent relation (100–300 μmoles/l). Hemoglobin oxidation was found at all peroxynitrite concentrations studied. A dose-dependent band 3 protein crosslinking and tyrosine nitration were also observed. Band 3 protein modifications were concomitant with a decrease in transport activity. ( ? )-Epicatechin avoids band 3 protein nitration but barely affects its transport capacity, suggesting that both processes are unrelated. N-acetyl cysteine partially reverted the loss of band 3 transport capacity. It is concluded that peroxynitrite promotes a decrease in anion transport that is partially due to the reversible oxidation of band 3 cysteine residues. Additionally, band 3 tyrosine nitration seems not to be relevant for the loss of its anion transport capacity. 相似文献
6.
We describe an altered membrane band 3 protein-mediated anion transport in erythrocytes exposed to peroxynitrite, and relate the loss of anion transport to cell damage and to band 3 oxidative modifications. We found that peroxynitrite down-regulate anion transport in a dose dependent relation (100-300 μmoles/l). Hemoglobin oxidation was found at all peroxynitrite concentrations studied. A dose-dependent band 3 protein crosslinking and tyrosine nitration were also observed. Band 3 protein modifications were concomitant with a decrease in transport activity. ( - )-Epicatechin avoids band 3 protein nitration but barely affects its transport capacity, suggesting that both processes are unrelated. N-acetyl cysteine partially reverted the loss of band 3 transport capacity. It is concluded that peroxynitrite promotes a decrease in anion transport that is partially due to the reversible oxidation of band 3 cysteine residues. Additionally, band 3 tyrosine nitration seems not to be relevant for the loss of its anion transport capacity. 相似文献
7.
Conclusions Evidence from many laboratories using several different techniques strongly suggests that, in the intact red cell, band 3 exists as dimers which can associate with other dimers to form tetramers. The kinetics of anion transport inhibition by stilbenedisulfonates indicate that irreversible inhibition of one subunit does not detectably affect anion transport by the other subunit. This does not imply that monomeric band 3 could necessarily transport anions; the native conformation of each subunit may require stabilizing interactions with another subunit, as indicated by the recent work of Boodhoo and Reithmeier [10]. A more detailed understanding of the structure of the band 3 dimer/tetramer will require information on which specific segments of the primary structure are involved in subunit-subunit contact. The combination of chemical cross-linking with proteolysis [136] is a promising approach to this problem. 相似文献
8.
Right-side-out vesicles derived from red blood cells treated with chymotrypsin retain specific anion transport function (defined as transport sensitive to the specific inhibitor, 4,4′-diisothiocyano-2,2′-stilbenedisulfonic acid (DIDS)), even though the transport protein, band 3, is cleaved into two segments of 60 and 35 kdaltons. In contrast, vesicles derived from alkali-stripped ghosts treated with relatively high concentrations of chymotrypsin retain almost no specific anion function. The loss of function appears to be related to additional cleavages of band 3 protein that occur in treated ghosts, the 60-kdalton segment being reduced first to a 17- and then to a 15-kdalton segment and the 35-kdalton segment being reduced to a 9-kdalton segment plus a carbohydrate containing fragment. The chymotryptic cleavages of band 3 protein of ghosts are preferentially inhibited by high ionic strength, the production of the 9-kdalton segment being somewhat slower than that of the 15-kdalton segment. Vesicles derived from ghosts treated with chymotrypsin at different ionic strengths show a graded reduction in specific anion transport activity, but it was not possible to determine, definitively, which of the additional cleavages was inhibitory. In the light of these data and other information, the functional role of the segments of band 3 is discussed. 相似文献
9.
Summary The transition-state theory of exchange-only membrane transport is applied to experimental results in the literature on the anion exchanger of red cells. Two central features of the system are in accord with the theory: ( i) forming the transition state in translocation involves a carrier conformational change; ( ii) substrate specificity is expressed in transport rates rather than affinities. The expression of specificity is consistent with other evidence for a conformational intermediate (not the transition state) formed in the translocation of all substrates. The theory, in conjunction with concepts derived from the chemistry of macrocyclic ion inclusion complexes, prescribes certain essential properties in the transport site. Separate substites are required for the preferred substrates. Cl – and HCO
3
–
, to account for tight binding in the transition state ( K
diss1 m). Further, the following mechanism is suggested. A substrate anion initially forms a loose surface complex at one subsite, but in the transition state the subsites converge to form an inclusion complex in which the binding forces are greatly increased through a chelation effect. The conformational change at the substrate site, which is driven by the mounting forces of binding, sets in train a wider conformational change that converts the carrier from an immobile to a mobile form. Though simple, this composite-site mechanism explains many unsual features of the system. It accounts for substrate inhibition, partially noncompetitive inhibition of one substrate by another, and tunneling, which is net transport under conditions where exchange should prevail, according to other models. All three types of behavior result from the formation of a ternary complex in which substrate anions are bound at both subsites. The mechanism also accounts for the enormous range of substrate structures accepted by the system, for the complex inhibition by the organic sulfate NAP-taurine, and for the involvement of several cationic side chains and two different protein domains in the transport site. 相似文献
10.
Summary Human erythrocytes were treated with various hydrophobic arylisothiocyanates under conditions which favor modification of distinct proteinaceous nucleophiles. The morphological appearance of phenylisothiocyanate-treated cells was discoid and membrane-bound hydrolases (human acetylcholinesterase, sheep phospholipase A 2) were fully active following membrane modification. Noncharged hydrophobic arylisothiocyanates, including phenylisothiocyanate, -naphthylisothiocyanate and heterobifunctional azidoarylisothiocyanates inhibited [ 35S]-sulfate efflux irreversibly. Protection against modification-induced inhibition of sulfate transport was attained by the simultaneous presence of the specific reversible anion transport inhibitor 4,4-dinitrostilbene-2,2-disulfonate. Selective protection of a functionally relevant domain of band 3 is concluded to occur based on the above-derived information. 相似文献
11.
Summary The time course of binding of the fluorescent stilbene anion exchange inhibitor, DBDS (4,4-dibenzamido-2,2-stilbene disulfonate), to band 3 can be measured by the stopped-flow method. We have previously used the reaction time constant, DBDS, to obtain the kinetic constants for binding and, thus, to report on the conformational state of the band 3 binding site. To validate the method, we have now shown that the ID 50 (0.3±0.1 m) for H 2-DIDS (4,4-diisothiocyano-2,2-dihydrostilbene disulfonate) inhibition of DBDS is virtually the same as the ID 50 (0.47±0.04 m) for H 2-DIDS inhibition of red cell Cl – flux, thus relating DBDS directly to band 3 anion exchange. The specific glucose transport inhibitor, cytochalasin B, causes significant changes in DBDS, which can be reversed with intracellular, but not extracellular, d-glucose. ID 50 for cytochalasin B modulation of DBDS is 0.1±0.2 m in good agreement with K
D
=0.06±0.005 m for cytochalasin B binding to the glucose transport protein. These experiments suggest that the glucose transport protein is either adjacent to band 3, or linked to it through a mechanism, which can transmit conformational information. Ouabain (0.1 m), the specific inhibitor of red cell Na +,K +-ATPase, increases red cell Cl – exchange flux in red cells by a factor of about two. This interaction indicates that the Na +,K +-ATPase, like the glucose transport protein, is either in contact with, or closely linked to, band 3. These results would be consistent with a transport protein complex, centered on band 3, and responsible for the entire transport process, not only the provision of metabolic energy, but also the actual carriage of the cations and anions themselves. 相似文献
12.
Morphologic and methabolic erythrocyte modifications are thought to be the basis of cell removal from circulating blood. A significant role has been ascribed to the immunological network which may remove aged or misshapen erythrocytes through the binding of specific autoantibodies. Along this line recent observations indicate that a senescence antigen appears in consequence of postsynthetic modifications of band 3, one of the most important erythrocyte membrane proteins, which accounts for many functional activities of the red cells. On this basis, we raised a mouse hybridoma anti-band 3 monoclonal antibody (B6 MoAb) of the IgG2a class which monitors band 3 differences among normal red blood cells separated by Percoll density gradient. These differences are outlined by the decrease of B6 MoAb binding to band 3 monomer, the appearance of an 80–90 kDa new band, lighter than band 3, and the increase of low molecular weight fragments in the 4.5 region. The B6 MoAb appears to be very useful in detecting modifications of band 3 since it bind to a 19 kDa Chy-Try fragment estimated to be sensitive to aging.Abbreviations PBS
Phosphate Buffer Saline
- MoAb
Monoclonal Antibody
- RBCs
Red Blood Cells
- PMSF
Phenylmethylsulphonyl Fluoride
- PVC
Polyvinyl Chloride
- ACD
Acid Citrate Dextrose
- HMWP
High Molecular Weight Polymers
- Chy-Try
Chymotrypsin-Trypsin Digested
- i.p.
intraperitoneum
- ELISA
Enzyme Linked Immuno Sorbent Assay
- Hepes
4-(2-Hydroxyethyl)-piperazine-1-ethane-sulfonic acid. Enzymes: trypsin (EC 3.4.21.4), chymotrypsin (EC 3.4.21.1), neuraminidase (EC 3.2.1.18) 相似文献
13.
Summary We have previously shown that the human red cell glucose transport protein and the anion exchange protein, band 3, are in close enough contact that information can be transmitted from the glucose transport protein to band 3. The present experiments were designed to show whether information could be transferred in the reverse direction, using changes in tryptophan fluorescence to report on the conformation of the glucose transport protein. To see whether tryptophan fluorescence changes could be attributed to the glucose transport protein, we based our experiments on procedures used by Helgerson and Carruthers [Helgerson, A.L., Carruthers, A., (1987) J. Biol. Chem.
262:5464–5475] to displace cytochalasin B (CB), the specific d-glucose transport inhibitor, from its binding site on the inside face of the glucose transport protein, and we showed that these procedures modified tryptophan fluorescence. Addition of 75 mm maltose, a nontransportable disaccharide which also displaces CB, caused a timedependent biphasic enhancement of tryptophan fluorescence in fresh red cells, which was modulated by the specific anion exchange inhibitor, DBDS (4,4-dibenzamido-2,2-stilbene disulfonate). In a study of nine additional disaccharides, we found that both biphasic kinetics and DBDS effects depended upon specific disaccharide conformation, indicating that these two effects could be attributed to a site sensitive to sugar conformation. Long term (800 sec) experiments revealed that maltose binding (±DBDS) caused a sustained damped anharmonic oscillation extending over the entire 800 sec observation period. Mathematical analysis of the temperature dependence of these oscillations showed that 2 m DBDS increased the damping term activation energy, 9.5±2.8 kcal mol –1 deg –1, by a factor of four to 39.7±5.1 kcal mol –1 deg –1, providing strong support for the view that signalling between the glucose transport protein and band 3 goes in both directions. 相似文献
14.
Summary Red cell volume regulation is important in sickle cell anemia because the rate and extent of HbS polymerization are strongly dependent on initial hemoglobin concentration. We have demonstrated that volume-sensitive K:Cl cotransport is highly active in SS whole blood and is capable of increasing MCHC. We now report that Na +/H + exchange (Na/H EXC), which is capable of decreasing the MCHC of erythrocytes with pH i<7.2, is also very active in the blood of patients homozygous for HbS. The activity of Na/H EXC (maximum rate) was determined by measuring net Na + influx (mmol/liter cell·hr=FU) driven by an outward H + gradient in oxygenated, acidloaded (pH i 6.0), DIDS-treated SS cells. The Na/H EXC activity was 33±3 FU (mean± se) ( n=19) in AA whites, 37±8 FU ( n=8) in AA blacks, and 85±15 FU ( n=14) in SS patients ( P<0.005). Separation of SS cells into four density-defined fractions by density gradient revealed mean values of Na/H EXC four to five times higher in reticulocytes (SS1), discocytes (SS2) and dense discocytes (SS3), than in the fraction containing irreversibly sickled cells and dense discocytes (SS4). In contrast to K:Cl cotransport, which dramatically decreases after reticulocyte maturation, Na/H EXC persists well after reticulocyte maturation. In density-defined, normal AA red cells, Na/H EXC decreased monotonically as cell density increased. In SS and AA red cells, the magnitude of stimulation of Na/H EXC by cell shrinkage varied from individual to individual. We conclude that Na/H EXC is highly expressed in SS and AA young red cells and decays slowly after reticulocyte maturation. 相似文献
15.
Amino acid analyses of the band 3 protein purified from erythrocyte membranes of control and epileptic children showed that no major structural abnormalities of this protein could be linked with the red blood cell membrane alterations previously described in child epilepsy and, consequently, the molecular basis of these alterations should be looked for elsewhere. 相似文献
16.
Summary Although urea transport across the human red cell membrane has been studied extensively, there is disagreement as to whether urea and water permeate the red cell by the same channel. We have suggested that the red cell anion transport protein, band 3, is responsible for both water and urea transport. Thiourea inhibits urea transport and also modulates the normal inhibition of water transport produced by the sulfhydryl reagent, pCMBS. In view of these interactions, we have looked for independent evidence of interaction between thiourea and band 3. Since the fluorescent stilbene anion transport inhibitor, DBDS, increases its fluorescence by two orders of magnitude when bound to band 3 we have used this fluorescence enhancement to study thiourea/band 3 interactions. Our experiments have shown that there is a thiourea binding site on band 3 and we have determined the kinetic and equilibrium constants describing this interaction. Furthermore, pCMBS has been found to modulate the thiourea/band 3 interaction and we have determined the kinetic and equilibrium constants of the interaction in the presence of pCMBS. These experiments indicate that there is an operational complex which transmits conformational signals among the thiourea, pCMBS and DBDS sites. This finding is consistent with the view that a single protein or protein complex is responsible for all the red cell transport functions in which urea is involved. 相似文献
17.
In patients with chronic renal failure (CRF) Se concentration in blood components is usually lower as compared with healthy controls. One of the five known forms of Se-dependent glutathione peroxidases (GSH-Px), the plasma GSH-Px, is synthesized primarily in the kidney. In CRF patients, plasma GSH-Px activity is reduced and the reduction increases with the progress of the disease. The Se concentration in blood components was measured spectrofluorometrically with 2,3-diaminonaphthalene as complexing reagent. Activities of GSH-Px in red cells and in plasma were assayed by the coupled method with t-butyl hydroperoxide as substrate. The study group consisted of 150 patients in different stages of CRF. The results were compared with the values for 30 healthy subjects. Se concentrations in whole blood and plasma of the entire group of patients were significantly lower (p < 0.01) as compared with the healthy subjects. In the incipient stage, however, the Se levels in all blood components were non-significantly lower. In whole blood and plasma the Se levels gradually decreased, reaching in the end stage values that were lower by 29 to 32% (p < 0.0001) as compared with the control group. Total protein and albumin levels in plasma of patients were significantly lower (p < 0.0001) as compared with healthy subjects and they decreased linearly with the progress of the disease. Positive and highly significant correlations were noted between total plasma protein and plasma Se concentrations (p < 0.0001) as well as between plasma albumin and plasma Se concentrations (p < 0.0001). Red cell GSH-Px activity in the entire group of patients was lower (p < 0.05) than in the control group and did not change significantly with the progress of the disease. In plasma, however, GSH-Px activity of the entire group was lower by 33% (p < 0.0001) as compared with healthy subjects and decreased gradually with increasing renal failure. Highly significant, inverse correlations were seen between creatinine levels and plasma GSH-Px activities (p < 0.0001) as well as between urea nitrogen levels and plasma GSH-Px activities (p < 0.0001) when all stages of the disease were included. In conclusion, patients with CRF exhibit lower Se levels in blood components as compared with healthy subjects. In whole blood and plasma these levels decrease with the progress of the disease. Plasma GSH-Px activity in patients was extremely reduced and it dramatically decreased with the progress of the illness. 相似文献
18.
Five sulfhydryl groups of band 3, the anion-transport protein of the red blood cell membrane, can be labeled by N-ethylmaleimide (NEM). Two of these are located in a 35,000-dalton, C-terminal segment produced by chymotrypsin treatment of cells. Extensive treatment of unsealed ghosts with chymotrypsin results in the disappearance of the 35,000-dalton segment, but its two NEM-binding sites are preserved in a 9000-dalton peptide. The latter must therefore be a proteolytic product of the larger segment. Labeling of sulfhydryl groups of band 3 by an impermeant analog of NEM occurs in inside-out, but not in right-side-out vesicles derived from red cell ghosts, supporting the conclusion that NEM-reactive sulfhydryl groups, including those in the 35,000- and 9000-dalton segments, are exposed at the cytoplasmic face of the membrane. These findings support the conclusion that the 35,000-dalton segment crosses the bilayer, and suggest that the 9000-dalton segment may be a membrane-crossing portion of the 35,000-dalton segment. 相似文献
19.
Human and murine blood cells treated with ZnCl 2 and bis(sulfosuccinimidyl)suberate (BS 3) (a cross linking agent) undergo band 3 clustering and binding of hemoglobin to red blood cell membrane proteins. These clusters induce autologous IgG binding and complement fixation, thus favouring the phagocytosis of ZnCl 2/BS 3 treated cells by macrophages. The extension of red blood cell opsonization can be easily modulated by changing the ZnCl 2 concentration in the 0.1–1.0 mM range thus providing an effective way to affect blood cell recognition by macrophages. In fact, murine erythrocytes treated with increasing ZnCl 2 concentrations have proportionally reduced survivals when reinjected into the animal. Furthermore, the organ sequestration of ZnCl 2/BS 3 treated cells strongly resembles the typical distribution of the senescent cells. Since the ZnCl 2/BS 3 treatment can also be performed on red blood cells loaded with drugs or other substances, this procedure is an effective drug-targeting system to be used for the delivery of molecules to peritoneal, liver and spleen macrophages. 相似文献
20.
利用4,4′二硫氰2,2′二磺基芪(DIDS)对带3(band3)蛋白阴离子转运功能的专一抑制作用,研究了超氧阴离子(O-2·)进入红细胞对带3蛋白的依赖关系;同时根据红细胞在等渗氯化铵溶液中溶血的t1/2,探讨了细胞外大量产生O-2·对带3蛋白转运阴离子功能的影响。结果表明:40μmol/LDIDS完全抑制带3蛋白的阴离子转运功能,但并不影响O-2·进入细胞,证明O-2·进入细胞对band3蛋白无依赖关系;O-2·通过氧化修饰红细胞膜蛋白的-SH,使带3蛋白的阴离子转运能力下降,并可用-SH还原剂DTT与巯基乙醇修复。 相似文献
|