首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Diurnal patterns of gas exchange and chlorophyll (Chl) fluorescence parameters of photosystem 2 (PS2) as well as H2O2 content were analyzed in Reaumuria soongorica (Pall.) Maxim., a perennial semi-shrub. The rate of photorespiration was estimated by combined measurement of gas exchange and Chl fluorescence. The rate of photorespiration increased with the increasing drought stress (DS). The ratio of carboxylation electron flow to oxygenation electron flow (Jc/Jo) and the maximal photochemical efficiency of PS2 (variable to maximum fluorescence ratio, Fv/Fm) decreased with the increasing DS. Fv/Fm in isonicotinic acid hydrazide (INH)-sprayed plants was lower than that in normal plants under moderate DS, but no significant difference was observed under severe DS. H2O2 content in INH-sprayed plants was significantly lower than that in normal plants under severe DS. Taken together, photorespiration in R. soongorica consumed excess electrons and protected photosynthetic apparatus under moderate DS, whereas it accelerated H2O2 accumulation markedly and induced the leaf abscission under severe DS.  相似文献   

2.
Brassinosteroids (BRs) have been proposed to increase the resistance of plants to drought stress. The effect of foliar application of 0.1 μM 24-epibrassinolide (EBR) on chlorophyll (Chl) content, photosystem 2 (PS 2) photochemistry, membrane permeability, lipid peroxidation, relative water content (RWC), proline content, and the antioxidant system in drought-stressed Chorispora bungeana plants was investigated. The results showed that polyethylene glycol (PEG) induced water stress decreased RWC, Chl content and variable to maximum Chl fluorescence ratio (Fv/Fm) less in plants pretreated with EBR than in non-pretreated plants. In addition, lipid peroxidation, measured in terms of malondialdehyde content, membrane permeability and proline content in drought-stressed plants were less increased in EBR pretreated plants, while antioxidative enzyme activities and reduced ascorbate and glutathione contents were more increased in EBR pretreated than in non-pretreated plants. These results suggested that EBR could improve plant growth under drought stress  相似文献   

3.
Photosynthetic parameters were measured in two invasive weeds, Mikania micrantha and Chromolaena odorata, grown in soil under full, medium, and low irradiance and full, medium, and low water supply. Both species showed significantly higher net photosynthetic rate, quantum yield of PS 2 photochemistry and photochemical quenching coefficient under high than low irradiance. For M. micrantha, low irradiance caused decreased chlorophyll content (Chl), Chl a/b ratio and maximum photochemical efficiency of PS 2 (Fv/Fm), while drought decreased Chl content and Fv/Fm and increased nonphotochemical quenching (NPQ). However, these parameters were much less affected in C. odorata except that Chl content and NPQ slightly increased under drought and high irradiance. High irradiance increased xanthophyll pools in both species, especially M. micrantha under combination with drought.  相似文献   

4.
Reaumuria soongorica (Pall.) Maxim., a perennial semi-shrub, is widely found in semi-arid areas in northwestern China and can survive severe desiccation of its vegetative organs. In order to study the protective mechanism of desiccation tolerance in R. soongorica, diurnal patterns of net photosynthetic rate (Pn), water use efficiency (WUE) and chlorophyll fluorescence parameters of Photosystem II (PSII), and sugar content in the source leaf and stem were investigated in 6-year-old plants during progressive soil drought imposed by the cessation of watering. The results showed that R. soongorica was characterized by very low leaf water potential, high WUE, photosynthesis and high accumulation of sucrose in the stem and leaf abscission under desiccation. The maximum Pn increased at first and then declined during drought, but intrinsic WUE increased remarkably in the morning with increasing drought stress. The maximal photochemical efficiency of PSII (Fv/Fm) and the quantum efficiency of noncyclic electric transport of PSII(ΦPSII) decreased significantly under water stress and exhibited an obvious phenomenon of photoinhibition at noon. Drought stressed plants maintained a higher capacity of dissipation of the excitation energy (measured as NPQ) with the increasing intensity of stress. Conditions of progressive drought promoted sucrose and starch accumulation in the stems but not in the leaves. However, when leaf water potential was less than −21.3 MPa, the plant leaves died and then abscised. But the stem photosynthesis remained and, afterward the plants entered the dormant state. Upon rewatering, the shoots reactivated and the plants developed new leaves. Therefore, R. soongorica has the ability to reduce water loss through leaf abscission and maintain the vigor of the stem cells to survive desiccation.  相似文献   

5.
Caragana korshinskii Kom. is a perennial xerophytic shrub, well known for its ability to resist drought. In order to study ecophysiological responses of C. korshinskii under extreme drought stress and subsequent rehydration, diurnal patterns of gas exchange and chlorophyll (Chl) fluorescence parameters of photosystem II as well as Chl content were analyzed. Plant responses to extreme drought included (1) leaf abscission and using stem for photosynthesis, (2) improved instantaneous water-use efficiency, (3) decreased photosynthetic rate and partly closed stomata owing to leaf abscission and low water status, (4) decreased maximum photochemical efficiency of photosystem II (PSII) (variable to maximum fluorescence ratio, Fv/Fm), quantum efficiency of noncyclic electron transport of PSII, and Chl a and Chl b. Four days after rehydration, new leaves budded from stems. In the rewatered plants, the chloroplast function was restored, the gas exchange and Chl fluorescence returned to a similar level as control plant. The above result indicated that maintaining an active stem system after leaf abscission during extreme drought stress may be the foundation which engenders these mechanisms rapid regrowth for C. korshinskii in arid environment.  相似文献   

6.
Wheat plants grown in controlled growth chambers were exposed to drought stress (DS) and high temperature (HT) singly and in combination (DS+HT). The effects of these two stresses on net photosynthetic rate (P N), stomatal conductance (g s), intercellular CO2 concentration (C i), quantum efficiency of photosystem 2 (ΦPS2), variable to maximum chlorophyll (Chl) fluorescence (Fv/Fm), photochemical (qp) and non-photochemical (NPQ) Chl fluorescence, and yield were investigated. Grain yield was decreased by 21 % due to DS, while it was increased by 26 % due to HT. P N, g s, C i, and Chl fluorescence were dramatically reduced to DS, HT, and their interaction, except NPQ which showed an increase due to HT.  相似文献   

7.
Plant growth, chlorophyll (Chl) content, photosynthetic gas exchange, ribulose-1,5-bisphosphate carboxylase (RuBPCO) enzyme activity, and Chl fluorescence in radish (Raphanus sativus var. longipinnatus) plants were examined after turnip mosaic virus (TuMV) infection. Plant fresh mass, dry mass, Chl content, net photosynthetic rate (P N), transpiration rate (E), stomatal conductance (g s), and RuBPCO activity were significantly lower in infected plants after 5 weeks of virus infection as compared to healthy plants. The 5-week virus infection did not induce significant differences in intercellular CO2 concentration (C i, photochemical efficiency of photosystem 2, PS2 (Fv/Fm), excitation capture efficiency of open PS2 reaction centres (Fv'/Fm'), effective quantum efficiency of photosystem 2 (ΔF/Fm'), and photochemical quenching (qP), but non-photochemical quenching (qN) and alternative electron sink (AES) were significantly enhanced. Thus the decreased plant biomass of TuMV-infected plants might be associated with the decreased photosynthetic activity mainly due to reduced RuBPCO activity.  相似文献   

8.
We studied changes in the chlorophyll (Chl) fluorescence components in chilling-stressed sweet potato (Ipomoea batatas L. Lam) cv. Tainung 57 (TN57, chilling-tolerant) and cv. Tainung 66 (TN66, chilling-susceptible). Plants under 12-h photoperiod and 400 μmol m−2 s−1 irradiance at 24/20 °C (day/night) were treated by a 5-d chilling period at 7/7 °C. Compared to TN66, TN57 exhibited a significantly greater basic Chl fluorescence (F0), maximum fluorescence (Fm), maximum fluorescence yield during actinic irradiation (Fm′ ), and the quantum efficiency of electron transport through photosystem 2, PS2 (ΦPS2). Chilling stress resulted in decrease in the potential efficiency of PS2 (Fv/Fm), ΦPS2, non-photochemical fluorescence quenching (NPQ), non-photochemical quenching (qN), and the occurrence of chilling injury in TN66. Chilling increased the likelihood of photoinhibition, characterized by a decline in the Chl fluorescence of both cultivars, and photoinhibition during low temperature stress generally occurred more rapidly in TN66.  相似文献   

9.
Gas exchange, chlorophyll (Chl) fluorescence, and contents of some metabolites in two genotypes of jasmine (Jasminum sambac), single petal (SP) and double petal (DP) one, were analyzed during dehydration and re-hydration. Water stress significantly decreased net photosynthetic rate, stomatal conductance, and maximum photochemical efficiency (Fv/Fm) in both jasmine genotypes, but increased minimum fluorescence (F0) only in DP-jasmine. Water stress also decreased starch content, while increased contents of total soluble sugars and proline in leaves of both genotypes. SP-jasmine demonstrated higher drought tolerance as evidenced by maintaining higher gas exchange and photochemical efficiency and lower alteration of metabolites than DP-jasmine. Recovery analysis revealed that drought-induced injury in photosynthetic machinery in jasmine plants was reversible. DP-jasmine exhibited a slow recovery of drought-induced impairment in photosynthetic activity and associated metabolites, suggesting that this genotype had lower capacity to adapt to water limited condition. Higher yield stability of SP-than that of DP-jasmine under rain-fed condition finally confirmed higher drought tolerance of SP-jasmine.  相似文献   

10.
Reaumuria soongorica (Pall.) Maxim., a perennial semi-shrub, is widely found in semi-arid areas in northwestern China and can survive severe desiccation of its vegetative organs. In order to study the protective mechanism of desiccation tolerance in R. soongorica, diurnal patterns of net photosynthetic rate (Pn), water use efficiency (WUE) and chlorophyll fluorescence parameters of Photosystem II (PSII), and sugar content in the source leaf and stem were investigated in 6-year-old plants during progressive soil drought imposed by the cessation of watering. The results showed that R. soongorica was characterized by very low leaf water potential, high WUE, photosynthesis and high accumulation of sucrose in the stem and leaf abscission under desiccation. The maximum Pn increased at first and then declined during drought, but intrinsic WUE increased remarkably in the morning with increasing drought stress. The maximal photochemical efficiency of PSII (Fv/Fm) and the quantum efficiency of noncyclic electric transport of PSII(ΦPSII) decreased significantly under water stress and exhibited an obvious phenomenon of photoinhibition at noon. Drought stressed plants maintained a higher capacity of dissipation of the excitation energy (measured as NPQ) with the increasing intensity of stress. Conditions of progressive drought promoted sucrose and starch accumulation in the stems but not in the leaves. However, when leaf water potential was less than −21.3 MPa, the plant leaves died and then abscised. But the stem photosynthesis remained and, afterward the plants entered the dormant state. Upon rewatering, the shoots reactivated and the plants developed new leaves. Therefore, R. soongorica has the ability to reduce water loss through leaf abscission and maintain the vigor of the stem cells to survive desiccation. Supported by the Program of the Research of Vegetation Restoration in Arid Areas of Lanzhou (Grant No. 03-2-27) and the National Natural Science Foundation of China (Grant No. 30270243)  相似文献   

11.
Karavatas  S.  Manetas  Y. 《Photosynthetica》1999,36(1-2):41-49
Photochemical efficiency of photosystem 2 (PS2), assessed from in situ chlorophyll (Chl) fluorescence measurements, was seasonally monitored in five evergreen sclerophyll and five malacophyllous drought semi-deciduous species, co-occurring in the same Mediterranean field site. In evergreen sclerophylls, a considerable drop in the variable (Fv) to maximum (Fm) Chl fluorescence ratio coincided with the lowest winter temperatures, indicating low PS2 efficiency during this period. Summer drought caused a comparatively slight decrease in Fv/Fm and only in three of the five evergreen sclerophyll species tested. In drought semi-deciduous shrubs, the winter drop in Fv/Fm was much less conspicuous. During the summer, and in spite of the severe and prolonged desiccation of their malacophyllous leaves, Fv/Fm was maintained high and only in one species the PS2 efficiency was transiently suppressed, when the leaf relative water content became lower than 30 %. Thus evergreen sclerophylls are more prone to photoinhibition by low winter temperatures, while the sensitivity of drought semi-deciduals depends on the extent and duration of summer drought. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

12.
该试验以荒漠区主要建群种红砂幼苗为研究对象,设置适宜水分(CK)、轻度干旱(MD)、中度干旱(SD)和重度干旱(VSD)4个胁迫处理(即田间持水量的80%、60%、40%和20%),采用盆栽控水试验,分别测定干旱胁迫15、30、45和60 d时红砂幼苗的叶、茎、粗根和细根中非结构碳水化合物(NSC)及其组分的含量,分析不同胁迫强度下不同干旱持续时间红砂幼苗NSC的动态变化及各组分差异,以揭示红砂NSC对干旱胁迫的响应机制。结果表明:(1)干旱胁迫强度和胁迫持续时间对红砂幼苗不同器官NSC及其组分均有显著影响,其中胁迫持续时间对NSC动态变化的影响尤为显著。(2)干旱胁迫初期,红砂叶中的NSC含量呈下降趋势,而茎中的NSC含量呈上升趋势,粗根和细根中NSC含量在各胁迫处理下基本保持稳定。(3)干旱胁迫后期,红砂叶和茎中的可溶性糖、淀粉和NSC含量逐渐增加,而粗根和细根中的淀粉和NSC含量呈下降趋势(中度干旱除外),且这一时期重度干旱处理下各器官可溶性糖和NSC的含量明显高于CK。研究发现,重度干旱胁迫能显著诱导提高红砂幼苗不同器官中的NSC含量,并通过分解根中淀粉和增加叶片中可溶性糖含量的方式来调节细胞渗透势平衡,以维持细胞活力,进而保持红砂在干旱胁迫后期的存活。  相似文献   

13.
The effects of different spectral region of excitation and detection of chlorophyll (Chl) a fluorescence at room temperature on the estimation of excitation energy utilization within photosystem (PS) 2 were studied in wild-type barley (Hordeum vulgare L. cv. Bonus) and its Chl b-less mutant chlorina f2 grown under low and high irradiances [100 and 1 000 μmol(photon) m−2 s−1]. Three measuring spectral regimes were applied using a PAM 101 fluorometer: (1) excitation in the red region (maximum at the wavelength of 649 nm) and detection in the far-red region beyond 710 nm, (2) excitation in the blue region (maximum at the wavelength of 461 nm) and detection beyond 710 nm, and (3) excitation in the blue region and detection in the red region (660– 710 nm). Non-photochemical quenching of maximal (NPQ) and minimal fluorescence (SV0), determined by detecting Chl a fluorescence beyond 710 nm, were significantly higher for blue excitation as compared to red excitation. We suggest that this results from higher non-radiative dissipation of absorbed excitation energy within light-harvesting complexes of PS2 (LHC2) due to preferential excitation of LHC2 by blue radiation and from the lower contribution of PS1 emission to the detected fluorescence in the case of blue excitation. Detection of Chl a fluorescence originating preferentially from PS2 (i.e. in the range of 660–710 nm) led to pronounced increase of NPQ, SV0, and the PS2 photochemical efficiencies (FV/FM and FV′/FM′), indicating considerable underestimation of these parameters using the standard set-up of PAM 101. Hence PS1 contribution to the minimal fluorescence level in the irradiance-adapted state may reach up to about 80 %.  相似文献   

14.
In grapevine (Vitis vinifera L.) leaf chlorophyll (Chl) a and Chl b and carotenoid contents were higher in plants grown at low photon flux densities (PFD) than in those grown at medium and high PFD. The highest Chl a variable to maximum fluorescence ratio Fv/Fm was observed in plants grown at medium PFD while the minimum fluorescence F0 was highest in those at high PFD. In isolated thylakoids, both high and low PFD caused marked inhibition of whole chain and photosystem 2 (PS2) activities. The artificial exogenous electron donor diphenyl carbazide significantly restored the loss of PS2 activity in low PFD leaves.  相似文献   

15.
Photosystem II (PS II) chlorophyll (Chl) a fluorescence lifetimes were measured in thylakoids and leaves of barley wild-type and chlorina f104 and f2 mutants to determine the effects of the PS II Chl a+b antenna size on the deexcitation of absorbed light energy. These barley chlorina mutants have drastically reduced levels of PS II light-harvesting Chls and pigment-proteins when compared to wild-type plants. However, the mutant and wild-type PS II Chl a fluorescence lifetimes and intensity parameters were remarkably similar and thus independent of the PS II light-harvesting antenna size for both maximal (at minimum Chl fluorescence level, Fo) and minimal rates of PS II photochemistry (at maximum Chl fluorescence level, Fm). Further, the fluorescence lifetimes and intensity parameters, as affected by the trans-thylakoid membrane pH gradient (pH) and the carotenoid pigments of the xanthophyll cycle, were also similar and independent of the antenna size differences. In the presence of a pH, the xanthophyll cycle-dependent processes increased the fractional intensity of a Chl a fluorescence lifetime distribution centered around 0.4–0.5 ns, at the expense of a 1.6 ns lifetime distribution (see Gilmore et al. (1995) Proc Natl Acad Sci USA 92: 2273–2277). When the zeaxanthin and antheraxanthin concentrations were measured relative to the number of PS II reaction center units, the ratios of fluorescence quenching to [xanthophyll] were similar between the wild-type and chlorina f104. However, the chlorina f104, compared to the wild-type, required around 2.5 times higher concentrations of these xanthophylls relative to Chl a+b to obtain the same levels of xanthophyll cycle-dependent fluorescence quenching. We thus suggest that, at a constant pH, the fraction of the short lifetime distribution is determined by the concentration and thus binding frequency of the xanthophylls in the PS II inner antenna. The pH also affected both the widths and centers of the lifetime distributions independent of the xanthophyll cycle. We suggest that the combined effects of the xanthophyll cycle and pH cause major conformational changes in the pigment-protein complexes of the PS II inner or core antennae that switch a normal PS II unit to an increased rate constant of heat dissipation. We discuss a model of the PS II photochemical apparatus where PS II photochemistry and xanthophyll cycle-dependent energy dissipation are independent of the Peripheral antenna size.Abbreviations Ax antheraxanthin - BSA bovine serum albumin - cx lifetime center of fluorescence decay component x - CP chlorophyll binding protein of PS II inner antenna - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DTT dithiothreitol - fx fractional intensity of fluorescence lifetime component x - Fm, Fm maximal PS II Chl a fluorescence intensity with all QA reduced in the absence, presence of thylakoid membrane energization - Fo minimal PS II Chl a fluorescence intensity with all QA oxidized - Fv=Fm–Fo variable level of PS II Chl a fluorescence - HPLC high performance liquid chromatography - kA rate constant of all combined energy dissipation pathways in PS II except photochemistry and fluorescence - kF rate constant of PS II Chl a fluorescence - LHCIIb main light harvesting pigment-protein complex (of PS II) - Npig mols Chl a+b per PS II - NPQ=(Fm/Fm–1) nonphotochemical quenching of PS II Chl a fluorescence - PAM pulse-amplitude modulation fluorometer - PFD photon-flux density, mols photons m–2 s–1 - PS II Photosystem II - P680 special-pair Chls of PS II reaction center - QA primary quinone electron acceptor of PS II - Vx violaxanthin - wx width at half maximum of Lorentzian fluorescence lifetime distribution x - Zx zeaxanthin - pH trans-thylakoid proton gradient - % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqef0uAJj3BZ9Mz0bYu% H52CGmvzYLMzaerbd9wDYLwzYbItLDharqqr1ngBPrgifHhDYfgasa% acOqpw0xe9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8Wq% Ffea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dme% GabaqaaiGacaGaamqadaabaeaafiaakeaacqGH8aapcqaHepaDcqGH% +aGpdaWgaaWcbaGaamOraiaad2gaaeqaaaaa!4989!\[< \tau > _{Fm}\],% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqef0uAJj3BZ9Mz0bYu% H52CGmvzYLMzaerbd9wDYLwzYbItLDharqqr1ngBPrgifHhDYfgasa% acOqpw0xe9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8Wq% Ffea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dme% GabaqaaiGacaGaamqadaabaeaafiaakeaacqGH8aapcqaHepaDcqGH% +aGpdaWgaaWcbaGaamOraiaad+gaaeqaaOGaeyypa0Zaaabqaeaaca% WGMbWaaSbaaSqaaiaadIhaaeqaaOGaam4yamaaBaaaleaacaWG4baa% beaaaeqabeqdcqGHris5aaaa!50D3!\[< \tau > _{Fo} = \sum {f_x c_x }\] average lifetime of Chl a fluorescence calculated from a multi-exponential model under Fm, Fo conditions  相似文献   

16.
To understand the origins of the different lifetime components of photosystem 2 (PS2) chlorophyll (Chl) fluorescence we have studied their susceptibility to potassium iridic chloride (K2IrCl6) which has been shown to bleach antenna pigments of photosynthetic bacteria (Loach et al. 1963). The addition of K2IrCl6 to PS2 particles gives rise to a preferential quenching of the variable Chl fluorescence (Fv). At concentrations lower than 20 M, this is brought about mainly by a decrease in the yield, but not in the lifetime, of the slowest component when all the PS2 reaction centres are closed (FM). The yield of the middle and fast decays are not significantly altered. This type of quenching is not seen with DNB. The iridate-induced quenching of the initial fluorescence level (F0) is due to a proportional decrease in the yield and lifetime of the three components and correlates with the observed modification in the relative quantum yield of oxygen evolution. In this concentration range a bleaching of Chl a is seen. At higher iridate levels, greater than 20 M, a proportional decrease in the lifetimes and yields of the three kinetic components is seen at FM. These changes are associated with a carotenoid bleaching. In isolated light harvesting Chl a/b complexes of PS2 (LHC2), iridate addition converts a 4 ns decay into a 200 ps emission and both types of bleaching are observed. By also measuring the rate of PS2 trap closure versus iridate concentration, we have discussed the results in terms of excitation energy transfer.Abbreviations DNB m-dinitrobenzene - FM maximum Chl fluorescence - F0 initial fluorescence - Fv variable fluorescence - I pheophytin a primary electron acceptor of PS2 - P680 chlorophyll a of photochemical centre - PS2 photosystem 2 - QA primary stable electron acceptor of PS2 - Chl chlorophyll - LHC2 light harvesting Chl a/b complex of PS2 - MES 2(N-morpholino) ethanesulfonic acid - DCMU 3-(3-4-dichlorophenyl) 1-1 dimethylurea - PPBQ phenyl-p-benzo-quinone - BBY PS2-enriched membranes prepared as in Berthold et al. (1981) - Q400 PS2 electron acceptor with a midpoint potential of 400 mV  相似文献   

17.
Photosynthetic rate (PN) and chlorophyll (Chl) fluorescence induction of source leaves in response to a low sink demand created by girdling the branch (GB) between the root-tuber-system and the leaves were studied in Dahlia pinnata L. cv. Rigolet during the stage of rapid tuber growth in the greenhouse. GB resulted in significantly lower values of PN, stomatal conductance (gs), and transpiration rate (E), but in higher leaf temperature (Tl) compared with those of controls. With exception of maximum quantum yield of photosystem 2 (PS 2) photochemistry (Fv/Fm) and maximum ratio of quantum yields of photochemical and concurrent non-photochemical processes in PS 2 (Fv/F0), no significant differences were observed in Chl fluorescence parameters between girdled and control leaves on days 1 and 2 after GB, indicating no apparent damage in the photosynthetic apparatus. However, longer girdling duration resulted in higher non-photochemical Chl fluorescence quenching (NPQ), but lower Fv/F0, actual efficiency of energy conversion in PS 2 under steady-state conditions (ΦPS2), and photochemical quenching coefficient (qP) in comparison with controls from 10:00 to 16:00 or 15:00 on days 4 and 5, respectively, indicating reversible injury in the photosynthetic apparatus.  相似文献   

18.
The effect of water deficit on chlorophyll fluorescence, sugar content, and growth parameters of strawberry (Fragaria×ananassa Duch. cv. Elsanta) was studied. Drought stress caused significant reductions in leaf water potential, fresh and dry masses, leaf area, and leaf number. A gradual reduction of photochemical quenching (qP) and quantum efficiency (ΦPS2) was observed under drought stress while non-photochemical quenching (qN) increased. Maximum efficiency of photosystem 2 (Fv/Fm) was not affected by drought stress.  相似文献   

19.
The content of cytokinins (CKs), the plant inhibitors of the final phase of plant development, senescence, is effectively controlled by irreversible degradation catalysed by cytokinin oxidase/dehydrogenase (CKX). In transgenic tobacco, denoted as AtCKX, with over-expressed CKX causing lowered CK content, we investigated changes in the time courses of chlorophyll (Chl) and xanthophyll (violaxanthin, antheraxanthin, zeaxanthin, neoxanthin, and lutein) contents. We also determined parameters of slow Chl fluorescence kinetics such as minimum Chl fluorescence yield in the darkadapted state F0, maximum quantum yield of PS2 photochemistry (Fv/Fm), maximum ratio of quantum yields of photochemical and concurrent non-photochemical processes in photosystem 2 (PS2), Fv/F0, non-photochemical quenching (NPQ), and effective quantum yield of photochemical energy conversion in PS2 (Φ2). We used three different developmental leaf stages, old, mature, and young, and compared this with time courses of these characteristics in leaves with natural CK levels. The parameters Fv/Fm, Fv/F0, and Φ2 were unchanged during ageing in AtCKX plants in contrast to control ones where a significant decrease in old leaves was found. In control plants F0 increased during ageing, but in the oldest leaf a considerable decrease was observed. This could indicate progressive damage to PS2 reaction centres and then detachment and rapid degradation of Chl. This is in agreement with time course of Chl content. NPQ decreased with age and was similar in both plant types. We observed a decline of xanthophyll contents in the oldest leaves in both plant types, but the contents were enhanced in AtCKX compared to control plants, especially of neoxanthin. The higher xanthophyll contents in the transgenic plants contribute to a better photoprotection and the fluorescence parameters indicated that photosynthetic apparatus was in better condition compared to control and it consequently postponed the onset of leaf senescence.  相似文献   

20.
The possibility to improve the recovery of sugar beet plants after water stress by application of synthetic cytokinins N6-benzyladenine (BA) or N6-(m-hydroxybenzyl)adenosine (HBA) was tested. Relative water content (RWC), net photosynthetic rate (PN), transpiration rate (E), stomatal conductance (gs), chlorophyll (Chl) a and Chl b contents, and photosystem 2 efficiency characterized by variable to maximal fluorescence ratio (Fv/Fm) were measured in control plants, in water-stressed plants, and after rehydration (4, 8, 24, and 48 h). Water stress markedly decreased parameters of gas exchange, but they started to recover soon after irrigation. Application of BA or HBA to the substrate or sprayed on leaves only slightly stimulated recovery of PN, E, and gs in rehydrated plants, especially during the first phases of recovery. Chl contents decreased only under severe water stress and Fv/Fm ratio was not significantly affected by water stress applied. Positive effects of BA or HBA application on Chl content and Fv/Fm ratio were mostly not observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号