共查询到20条相似文献,搜索用时 15 毫秒
1.
A protein-bound label, N-(1-anilinonaphthyl-4)-maleimide (ANM), was used to investigate conformational changes in bovine heart cytochrome oxidase. The fluidity of cytochrome oxidase vesicles was monitored by a lipophilic probe, 1,6-diphenyl-1,3,5-hexatriene. The fluroescence intensity and emission anisotropy of these probes were examined between 4 and 60 degrees C in enzyme--dipalmitoyllecithin vesicles, in enzyme--dimyristoyllecithin vesicles, in enzyme--dioleoyllecithin vesicles, and in the soluble enzyme. The temperature-dependent changes in these quantities indicated that there were two types of conformational changes in oxidized cytochrome oxidase: one was attributed to an intrinsic enzyme conformation change which occurred around 20 degrees C, and the other was attributed to a conformational change induced by the lipid phase transition. Although ANM-reactive subunits of cytochrome oxidase in these four lecithin vesicle and solubilized systems were different from each other, subunit I always reacted with ANM in preference to other subunits. 相似文献
2.
3.
Intrinsic and lipid phase transition-induced conformational changes in cytochrome oxidase in phosphatidylcholine vesicle and solubilized systems were examined by the fluorescence lifetime of N-(1-anilinonaphthyl-4)-maleimide conjugated with the enzyme. The time-dependent fluorescence intensity of N-(1-anilinonaphthyl-4)-maleimide attached to cytochrome oxidase was described as a triple exponential decay. Both the intrinsic and lipid phase transition-induced conformational changes were detectable in plots of the average lifetime against temperature. In most cases a peak occurred at the temperature of the conformational change. The time-dependent emission anisotropy showed that N-(1-anilinonaphthyl-4)-maleimide embedded in cytochrome oxidase in phosphatidylcholine vesicles underwent a rapid restricted wobbling within a cone. The half-angle of the cone was around 30 degrees for cytochrome oxidase in dimyristoyl phosphatidylcholine vesicles. 相似文献
4.
A modified multiple binding equilibria treatment is presented that allows determination of thermodynamic parameters of the interaction of phospholipids with integral membrane proteins solubilized in excess detergent. Lipid binding is modeled as a series of exchange reactions between lipid molecules and detergent molecules at the hydrophobic protein surface. A general equation is derived which expresses a relative association constant (K) and the total number of contact sites at the lipid-protein interface (N) in terms of experimentally measurable variables. A useful simplification of the general equation occurs when the amount of detergent is high relative to the total number of lipid binding sites in the sample. Computer simulations show that in cases we have examined there appears to be an experimentally accessible range of detergent to protein molar ratios where the approximation at high detergent is useful for analyzing experimental data. This model is used to examine the competition between cholate and spin-labeled phospholipids for the hydrophobic surfaces of bovine heart cytochrome c oxidase. We find, for example, that K = 12 +/- 2 for phosphatidylcholine relative to cholate (i.e., the cholate molecules are relatively easily displaced by membrane lipids). This helps to explain the experimental observation that cholate is an effective detergent both for solubilizing cytochrome c oxidase and for reconstituting this protein into a defined lipid bilayer environment. An excess of cholate readily displaces almost all of the native phospholipids, and the protein is dispersed in cholate micelles. However, when phospholipids are added back, the cholate molecules at the protein surface are replaced because of the higher relative binding of the phospholipids. Observed differences between the behavior of phosphatidylcholine and phosphatidylglycerol suggest that reconstitution in cholate is a selective process in which detergent molecules in localized areas on the protein surface are more readily displaced by certain phospholipids. 相似文献
5.
Effects of temperature on oxidative stress defense systems, lipid peroxidation and lipoxygenase activity in Phalaenopsis. 总被引:15,自引:0,他引:15
Mohammad Babar Ali Eun-Joo Hahn Kee-Yoeup Paek 《Plant Physiology and Biochemistry》2005,43(3):213-223
Higher plants growing in natural environments experience various abiotic stresses. The aim of this study was to determine whether exposure to temperature-stress would lead to oxidative stress and whether this effect varied with different exposure periods. The thermal dependencies of the activities of protective enzymes, photosynthetic efficiency (Fv/Fm), protein, non-protein thiol (NP-SH), cysteine content, lipoxygenase (LOX) activity (EC 1.13.11.12) and malondialdehyde (MDA) content at 25-40 degrees C were determined for 4, 24 and 48 h in leaf and root segments of Phalaenopsis. The increase in MDA level and LOX activity may be due to temperature-associated oxidative damage to leaf and root segments. Temperature-stress induced not only activities of active oxygen species (AOS) scavenging enzymes but also protein, NP-SH and cysteine content in both leaf and root segments at 30 degrees C for 4 and 24 h (except for 48 h in some cases) compared to 25 degrees C-and greenhouse-grown leaf and root segments indicating that antioxidants enzymes played an important role in protecting plant from temperature-stress. However, activities of dehydroascorbate reductase (DHAR, EC 1.8.5.1), glutathione peroxidase (GPX, EC 1.11.1.9) and glutathione-S-transferase (GST, EC 2.5.1.18) in leaf and root, glutathione reductase (GR, EC 1.6.4.2) in leaf and guaiacol peroxidase (G-POD, 1.11.1.7) in root segments were induced significantly at 40 degrees C compared to 25 degrees C and greenhouse-grown plants suggesting that these enzymes play protective roles at high temperature. In contrast, activities of superoxide dismutase (SOD, EC 1.15.1.1) and monodehydroascorbate reductase (MDHAR, EC 1.6.5.4) in leaf and root, catalase (CAT, EC 1.11.1.6) in root, GR in root, and protein, cysteine, NP-SH content in both root and leaf and Fv/Fm ratio were diminished significantly at 40 degrees C compared to 25 degrees C-and greenhouse-grown plants. These indicate that these enzymes were apparently not involved in detoxification process and sensitive at higher temperature. Also, the close relation between activities of enzymes with their metabolites at 30 degrees C than 40 degrees C indicated that the antioxidants enzymes and metabolites both may play an important role in protecting cells against the temperature-stress. 相似文献
6.
The arrangement of the six cytochrome c oxidase subunits in the inner membrane of bovine heart mitochondria was investigated. The experiments were carried out in three steps. In the first step, exposed subunits were coupled to the membrane-impermeant reagent p-diazonium benzene [32S]sulfonate. In the second step, the membranes were lysed with cholate anc cytochrome c oxidase was isolated by immunoprecipitation. In the third step, the six cytochrome c oxidase subunits were separated from each other by dodecyl sulfate-acrylamide gel electrophoresis and scanned for radioactivity. Exposed subunits on the outer side of the mitochondrial inner membrane were identified by labeling intact mitochondria. Exposed subunits on the matrix side of the inner membrane were identified by labeling sonically prepared submitochondrial particles in which the matrix side of the inner membrane is exposed to the suspending medium. Since sonic irradiation leads to a rearrangement of cytochrome c oxidase in a large fraction of the resulting submitochondrial particles, an immunochemical procedure was developed for isolating particles with a low content of displaced cytochrome c oxidase. With mitochondria, subunits II, V, and VI were labeled, whereas in purified submitochondrial particles most of the label was in subunit III. The arrangement of cytochrome c oxidase in the mitochondrial inner membrane is thus transmembraneous and asymmetric; subunits II, V, and VI are situated on the outer side, subunit III is situated on the matrix side, and subunits I and IV are buried in the interior of the membrane. In a study of purified cytochrome c oxidase labeled with p-diazonium benzene [32S]sulfonate, the results were similar to those obtained with the membrane-bound enzyme. Subunits I and IV were inaccessible to the reagent, whereas the other four subunits were accessible. In contrast, all six subunits became labeled if the enzyme was dissociated with dodecyl sulfate before being exposed to the labeling reagent. 相似文献
7.
The effect of pH on the near-UV absorption spectrum of cytochrome oxidase has been examined. Several lines of evidence implicate a proton binding site that can modulate the optical properties of cytochrome alpha 3 in the resting enzyme. Changing the pH within the range 6.5-10.5 was found to reversibly shift the position of the Soret band over an 11-nm range. The lower pH values caused a progressive blue shift in the Soret band, whereas the high-pH range promoted a gradual red shift. Limiting band positions were approximately 416 and 427 nm. The incubation time required to reach a stable band position varied somewhat as did the actual extent of the shift. In most cases, the shift was associated with an isosbestic point. A pH titration profile for the apparent equilibrium position of the Soret band was obtained. Nonlinear least-squares fitting to a scatter plot, assuming a single acid/base group, showed an apparent pKa of 7.8. Magnetic circular dichroism (MCD) spectra of the low-pH form at 416 nm, the high-pH form at 427 nm, and the cyanide derivative at 428 nm were compared. No evidence of a high-pH-dependent low-spin transition or a change in the redox state of cytochrome a3 was found, confirming earlier work [Baker, G. M., Noguchi, M., & Palmer, G. (1987) J. Biol. Chem. 262, 595-604]. Subtraction of ferricytochrome a [spectrum taken from Vanneste, W. H. (1966) Biochemistry 5, 838-848] from a series of blue-shifting spectra showed a band at 414 nm that progressively gained amplitude and a band at 430 nm that correspondingly lost amplitude. A series of red-shifting spectra showed the opposite behavior with a clear isosbestic point being evident in both cases. The difference extinction change at 414 and 430 nm depended linearly on the position of the Soret band, both showing a reversible dependence on pH. The 430-nm band is noted to be unusually red-shifted for high-spin ferric heme a. An additional, pH-insensitive band was observed at 408-410 nm which was eliminated by treatment with cyanide. The kinetics of the pH-induced blue shift and red shift were obtained at 416 nm by using dual-wavelength method and found to be biphasic, despite the occurrence of an isosbestic point.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
8.
The superoxide-generating oxidase of leucocytes. NADPH-dependent reduction of flavin and cytochrome b in solubilized preparations. 总被引:2,自引:4,他引:2 下载免费PDF全文
An NADPH-dependent O2.- -generating oxidase was solubilized from phorbol 12-myristate 13-acetate-activated pig neutrophils by using a mixture of detergents. Recovery of oxidase was approx. 40%. The extract contained cytochrome b-245 (331 pmol/mg of protein) and FAD (421 pmol/mg of protein); approx. 30% of each was reduced within 60s when NADPH was added to anaerobic incubations. Three different additives, quinacrine, p-chloromercuribenzoate and cetyltrimethylammonium bromide, strongly inhibited O2.- generation; they also inhibited the reduction by NADPH of cytochrome b at the same low concentrations. In the presence of p-chloromercuribenzoate cytochrome b reduction was strongly inhibited and flavin reduction was less inhibited. A detergent extract prepared from non-stimulated neutrophils also contained flavin and cytochrome b, but its rate of O2.- production was less than 1% of that from activated cells; its initial rate of cytochrome b and flavin reduction was low, although the state of reduction at equilibrium was similar to that of extracts of activated cells. Even in the non-activated cell extract the reduction of flavin and cytochrome was made fast and complete when Methyl Viologen was added to the anaerobic incubations. The oxidase was temperature-sensitive, with a sharp maximum at 25 degrees C; temperatures above this caused loss of O2.- generation, and this coincided with loss of the characteristic cytochrome b spectrum, indicate of denaturation of the cytochrome. The cytochrome b formed a complex with butyl isocyanide (close to 100% binding at 10mM); butyl isocyanide also inhibited the oxidase activity of stimulated whole neutrophils (22.5% inhibition at 10mM). Photoreduced FMN stimulated O2 uptake by the oxidase. The results support a scheme of electron transport within the oxidase complex involving NADPH, FAD, cytochrome b-245 and O2 in that sequence. 相似文献
9.
10.
K A Markossian A A Poghossian N A Paitian R M Nalbandyan 《Biochemical and biophysical research communications》1978,81(4):1336-1343
Cytochrome oxidase preparations have weak but not negligible superoxide dismutase activity which is inhibited by cyanide and azide as well as alkaline and thermal treatments. The activity does not depend on lipid content of cytochrome oxidase preparations. The activity, probably, cannot be explained by extraneous copper. 相似文献
11.
12.
1. The steady-state kinetics of ascorbate oxidation as a function of oxygen concentration was measured with a solubilized cytochrome c oxidase (ferrocytochrome c:oxygen oxidoreductase, EC 1.9.3.1) preparation. 2. Linear double reciprocal plots were obtained at various fixed concentrations of ascrobate, cytochrome c and cytochrome aa3. 3. The results are interpreted in terms of an oxidase model similar to that put forward by Minnaert in 1961 (Minnaert, K. (1961) Biochim. Biophys. Acta 50, 23-34). 4. The Km for oxygen at infinite cytochrome c concentration is 0.95 muM and the intramolecular rate constant for the transfer of electrons from cytochrome c to cytochome aa3 is 400 s(-1). According to the model, this implies that the second order rate constant for the reaction between oxygen and the oxidase is 9.5 X 10(7)M(-1)-s(-1). 相似文献
13.
Seven protein subunits of cytochrome c oxidase from bovine heart were isolated by gel filtration in the presence of sodium dodecyl sulphate (subunits I, II and III) and guanidine hydrochloride (subunits V, VI and VII), and ion-exchange chromatography in 6 M urea (subunit IV) after the enzyme had been dissociated in 6 M guanidine hydrochloride. When analysed by highly cross-linked sodium dodecyl sulphate/polyacrylamide gel electrophoresis in the presence of urea, the apparent molecular weights were = I, 36700; II, 24300; III, 20400; IV, 17300; V, 12300; VI, 8700: and VII, 5100. Monospecific rabbit antisera were obtained against subunits I, IV, V, VI and VII and a mixture of subunits II and III. These subunit-specific antisera with the exception of anti-I serum all cross-reacted with the detergent-solubilized native oxidase. Enzymatic studies on purified oxidase indicated that immunoglobulins against subunits II + III, IV, V, VI and VII respectively caused 25, 65, 20, 30 and 25% inhibition while anti-I immunoglobulin did not inhibit the activity. The subunit-specific antisera were used to examine the arrangements of the subunits in the membrane. Enzymatic studies using bovine heart mitochondria and rat liver mitochondrial digitonin particles showed that anti-(II + III) serum, anti-V serum and anti-VII serum all inhibited the oxidase activity while the other antisera did not. On the other hand, results of using 125I-labelled immunoglobulins showed that anti-IV, anti-V and anti-VII sera were bound to the surface of inverted vesicles (matrix side) while all other antisera were not. These results indicate that cytochrome oxidase subunits II and III are situated on the outer surface, and subunit IV is exclusively on the matrix surface while subunits V and VII are exposed on both surfaces of the mitochondrial membrane. Subunits I and VI are buried within the membrane, not exposed on either side. 相似文献
14.
15.
R Misselwitz G R J?nig H Rein E Buder D Zirwer K Ruckpaul 《Acta biologica et medica Germanica》1975,34(11-12):1755-1766
In order to characterize the substrate binding sites, difference spectroscopic titrations in microsomal and solubilized cytochrome P-450 from induced and non-induced rat liver microsomes were performed. The binding constants determined show differences depending on the physicochemical nature of the substrate and the degree of integration of the enzyme system. In hydrophilic substrates the differences of the binding to the microsomal or solubilized form are less pronounced than in lipophilic ones. From the comparison of the parameters obtained at various levels of integration it is concluded that the micromilieu of the binding site is of great importance for the binding of the substrate of cytochrome P-450. 相似文献
16.
Y Fujihira T Kuwana C R Hartzell 《Biochemical and biophysical research communications》1974,61(2):538-543
The repetitive, equilibrium redox cycling of cytochrome , cytochrome oxidase, or mixtures thereof has been made possible by the use of the oxidant, ferricinium ion. This ion is electrochemically generated by the use of non-ionic detergent solubilized ferrocene which is apparently incorporated as micelles and readily electron transfers with an electrode. The couple equilibrates rapidly with these heme proteins. Electrochemically generated benzylviologen radical cations are used as the reductant. The EO′ values for cytochrome oxidase at pH 7.0 are 209 ± 15 mv (2e?) and 340 ± 15 mv (2e?). 相似文献
17.
Three-dimensional structures of cytochrome c oxidase vesicle crystals in negative stain 总被引:2,自引:0,他引:2
We have investigated the structure of cytochrome c oxidase vesicle crystals by analysis at 20 Å resolution of electron micrographs of negatively stained specimens. The map clearly shows the shape of the part of the cytochrome c oxidase molecule which protrudes from the lipid bilayer. On the side of the membrane corresponding to the cytoplasmic face of the mitochondrial inner membrane, the molecule projects over 50 Å into solution. About half of the mass of the protein is in this domain, which contains the cytochrome c binding site. On the side of the membrane corresponding to the matrix face, no features are observed, which at this resolution means the protein protrudes less than 20 Å. In vesicle crystals, and probably in the mitochondrion, cytochrome c oxidase monomers are closely paired as dimers, with a clear cleft showing the boundary between monomers. 相似文献
18.
D Marsh A Watts W Maschke P F Knowles 《Biochemical and biophysical research communications》1978,81(2):397-402
Cytochrome oxidase-dimyristoyl phosphatidylcholine complexes have been prepared at defined lipid:protein ratios to study the effects of protein packing density on the lipid fluidity. All the complexes reveal a two-component ESR spectrum from an incorporated phosphatidylcholine spin label, corresponding to both an immobilized lipid boundary layer and fluid bilayer regions. Difference spectra, obtained by subtracting the same immobilized spectrum from the spectra of the various complexes, demonstrate a strong perturbation of the lipid bilayer fluidity which is quite distinct from the immobilized boundary layer formation. 相似文献
19.