首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Integrin-linked focal adhesion complexes provide the main sites of cell adhesion to extracellular matrix and associate with the actin cytoskeleton to control cell movement. Dynamic regulation of focal adhesions and reorganization of the associated actin cytoskeleton are crucial determinants of cell migration. There are important roles for tyrosine kinases, extracellular signal-regulated protein kinase/mitogen-activated protein kinase signalling, and intracellular and extracellular proteases during actin and adhesion modulation. Dysregulation of these is associated with tumour cell invasion. In this article, we discuss established roles for these signalling pathways, as well as the functional interplay between them in controlling the migratory phenotype.  相似文献   

2.
Vascular endothelial growth factor (VEGF) plays a significant role in blood-brain barrier breakdown and angiogenesis after brain injury. VEGF-induced endothelial cell migration is a key step in the angiogenic response and is mediated by an accelerated rate of focal adhesion complex assembly and disassembly. In this study, we identified the signaling mechanisms by which VEGF regulates human brain microvascular endothelial cell (HBMEC) integrity and assembly of focal adhesions, complexes comprised of scaffolding and signaling proteins organized by adhesion to the extracellular matrix. We found that VEGF treatment of HBMECs plated on laminin or fibronectin stimulated cytoskeletal organization and increased focal adhesion sites. Pretreating cells with VEGF antibodies or with the specific inhibitor SU-1498, which inhibits Flk-1/KDR receptor phosphorylation, blocked the ability of VEGF to stimulate focal adhesion assembly. VEGF induced the coupling of focal adhesion kinase (FAK) to integrin alphavbeta5 and tyrosine phosphorylation of the cytoskeletal components paxillin and p130cas. Additionally, FAK and related adhesion focal tyrosine kinase (RAFTK)/Pyk2 kinases were tyrosine-phosphorylated by VEGF and found to be important for focal adhesion sites. Overexpression of wild type RAFTK/Pyk2 increased cell spreading and the migration of HBMECs, whereas overexpression of catalytically inactive mutant RAFTK/Pyk2 markedly suppressed HBMEC spreading ( approximately 70%), adhesion ( approximately 82%), and migration ( approximately 65%). Furthermore, blocking of FAK by the dominant-interfering mutant FRNK (FAK-related non-kinase) significantly inhibited HBMEC spreading and migration and also disrupted focal adhesions. Thus, these studies define a mechanism for the regulatory role of VEGF in focal adhesion complex assembly in HBMECs via activation of FAK and RAFTK/Pyk2.  相似文献   

3.
Integrin-associated focal adhesions not only provide adhesive links between cellular actin and extracellular matrix but also are sites of signal transmission into the cell interior. Many cell responses signal through focal adhesion kinase (FAK), often by integrin-induced autophosphorylation of FAK or phosphorylation by Src family kinases. Here, we used an interfering FAK mutant (4-9F-FAK) to show that Src-dependent FAK phosphorylation is required for focal adhesion turnover and cell migration, by controlling assembly of a calpain 2/FAK/Src/p42ERK complex, calpain activation, and proteolysis of FAK. Expression of 4-9F-FAK in FAK-deficient fibroblasts also disrupts F-actin assembly associated with normal adhesion and spreading. In addition, we found that FAK's ability to regulate both assembly and disassembly of the actin and adhesion networks may be linked to regulation of the protease calpain. Surprisingly, we also found that the same interfering 4-9F-FAK mutant protein causes apoptosis of serum-deprived, transformed cells and suppresses anchorage-independent growth. These data show that Src-mediated phosphorylation of FAK acts as a pivotal regulator of both actin and adhesion dynamics and survival signaling, which, in turn, control apparently distinct processes such as cell migration and anchorage-independent growth. This also highlights that dynamic regulation of actin and adhesions (which include the integrin matrix receptors) is critical to signaling output and biological responses.  相似文献   

4.
Control of motile and invasive cell phenotypes by focal adhesion kinase   总被引:34,自引:0,他引:34  
Cell motility is stimulated by extracellular stimuli and initiated by intracellular signaling proteins that localize to sites of cell contact with the extracellular matrix termed focal contacts. Focal adhesion kinase (FAK) is an intracellular protein-tyrosine kinase (PTK) that acts to regulate the cycle of focal contact formation and disassembly required for efficient cell movement. FAK is activated by a variety of cell surface receptors and transmits signals to a range of targets. Thus, FAK acts as an integrator of cell motility-associated signaling events. We will review the stimulatory and regulatory mechanisms of FAK activation, the different signaling connections of FAK that are mediated by a growing number of FAK-interacting proteins, and the modulation of FAK function by tyrosine and serine phosphorylation. We will also summarize findings with regard to FAK function in vertebrate and invertebrate development as well as recent insights into the mechanistic role(s) of FAK in promoting cell migration. As increased FAK expression and tyrosine phosphorylation have been correlated with the progression to an invasive cell phenotype, there is growing interest in elucidating the important FAK-related signaling connections promoting invasive tumor cell movement. To this end, we will discuss the effects of FAK inhibition via the dominant-negative expression of the FAK C-terminal domain termed FAK-related non-kinase (FRNK) and how these studies have uncovered a distinct role for FAK in promoting cell invasion that may differ from its role in promoting cell motility.  相似文献   

5.
We examined the consequences of v-Crk expression in mouse embryo fibroblasts deficient Src family kinases or p130CAS. We found that Src kinases are essential for p130CAS/v-Crk signaling leading to FAK phosphorylation and cell migration in which Src is likely to mediate the focal adhesion targeting of v-Crk. SYF cells showed only low levels of FAK phosphorylation and cell migration, even in the presence of v-Crk. Expression of v-Crk restored migration of p130CAS-deficient cells to the level of wild-type cells, most likely through the targeting of v-Crk to focal adhesions by cSrc. In addition, we identified a new v-Crk-interacting protein that mediates v-Crk signaling in p130CAS-deficient cells. Using RT-PCR and caspase cleavage assays, we confirmed that this protein is not p130CAS and is responsible for maintaining v-Crk/Src signaling and migration in these. These findings suggest that focal adhesion targeting of v-Crk is essential in v-Crk-mediated cellular signaling and that v-Crk must form a complex with p130CAS or a p130CAS substitute to transduce signaling from the extracellular matrix.  相似文献   

6.
Src family kinases (SFKs) have been implicated as important regulators of ligand-induced cellular responses including proliferation, survival, adhesion and migration. Analysis of SFK function has been impeded by extensive redundancy between family members. We have generated mouse embryos harboring functional null mutations of the ubiquitously expressed SFKs Src, Yes and Fyn. This triple mutation leads to severe developmental defects and lethality by E9.5. To elucidate the molecular mechanisms underlying this phenotype, SYF cells (deficient for Src, Yes and Fyn) were derived and tested for their ability to respond to growth factors or plating on extracellular matrix. Our studies reveal that while Src, Yes and Fyn are largely dispensable for platelet-derived growth factor (PDGF)-induced signaling, they are absolutely required to mediate specific functions regulated by extracellular matrix proteins. Fibronectin-induced tyrosine phosphorylation of focal adhesion proteins, including the focal adhesion kinase FAK, was nearly eliminated in the absence of Src, Yes and Fyn. Furthermore, consistent with previous reports demonstrating the importance of FAK for cell migration, SYF cells displayed reduced motility in vitro. These results demonstrate that SFK activity is essential during embryogenesis and suggest that defects observed in SYF triple mutant embryos may be linked to deficiencies in signaling by extracellular matrix-coupled receptors.  相似文献   

7.
Macrophage stimulating protein (MSP) is a growth and motility factor that mediates its activity via the RON/STK receptor tyrosine kinase. MSP promotes integrin-dependent epithelial cell migration, which suggests that MSP may regulate integrin receptor functions. Integrins are cell surface receptors for extracellular matrix. Epithelial cell adhesion and motility are mediated by integrins. We studied the enhancement by MSP of cell adhesion and the molecular mechanisms mediating this effect. MSP decreased the time required for adhesion of 293 and RE7 epithelial cells to substrates coated with collagen or fibronectin. Prevention of adhesion by an RGD-containing peptide showed that the cell-substrate interaction was mediated by integrins. Wortmannin, an inhibitor of phosphatidylinositol 3-kinase (PI3-K), blocked MSP-dependent adhesion, which shows that PI3-K is in the MSP-induced adhesion pathway. MSP also affected focal adhesion kinase (FAK) which is important for some types of cell adhesion and motility. Although MSP caused PI3-K-independent tyrosine phosphorylation and activation of FAK, experiments with dominant-negative FAK constructs showed that FAK does not mediate the effects of MSP on cell adhesion or motility. Thus PI3-K, but not FAK, mediates MSP-induced integrin-dependent adhesion of epithelial cells. Also, we found ligand-independent association between RON and beta1 integrin, which is additional evidence for a relationship between these two receptor systems.  相似文献   

8.
Cell migration requires the coordination of adhesion site assembly and turnover. Canonical models for nascent adhesion formation postulate that integrin binding to extracellular matrix (ECM) proteins results in the rapid recruitment of cytoskeletal proteins such as talin and paxillin to integrin cytoplasmic domains. It is thought that integrin-talin clusters recruit and activate tyrosine kinases such as focal adhesion kinase (FAK). However, the molecular connections of this linkage remain unresolved. Our recent findings support an alternative model whereby FAK recruits talin to new sites of β1 integrin-mediated adhesion in mouse embryonic fibroblasts and human ovarian carcinoma cells. This is dependent on a direct binding interaction between FAK and talin and occurs independently of direct talin binding to β1 integrin. Herein, we discuss differences between nascent and mature adhesions, interactions between FAK, talin and paxillin, possible mechanisms of FAK activation and how this FAK-talin complex may function to promote cell motility through increased adhesion turnover.  相似文献   

9.
Cell migration requires the coordination of adhesion site assembly and turnover. Canonical models for nascent adhesion formation postulate that integrin binding to extracellular matrix (ECM) proteins results in the rapid recruitment of cytoskeletal proteins such as talin and paxillin to integrin cytoplasmic domains. It is thought that integrin-talin clusters recruit and activate tyrosine kinases such as focal adhesion kinase (FAK). However, the molecular connections of this linkage remain unresolved. Our recent findings support an alternative model whereby FAK recruits talin to new sites of β1 integrin-mediated adhesion in mouse embryonic fibroblasts and human ovarian carcinoma cells. This is dependent on a direct binding interaction between FAK and talin and occurs independently of direct talin binding to β1 integrin. Herein, we discuss differences between nascent and mature adhesions, interactions between FAK, talin and paxillin, possible mechanisms of FAK activation and how this FAK-talin complex may function to promote cell motility through increased adhesion turnover.  相似文献   

10.
The focal adhesion kinase (FAK) protein-tyrosine kinase plays important roles in cell adhesion in vertebrates. Using polymerase chain reaction-based cloning strategy, we cloned a Drosophila gene that is homologous to the vertebrate FAK family of protein-tyrosine kinases. We designated this gene Dfak56 and characterized its gene product. The overall protein structure and deduced amino acid sequence of Dfak56 show significant similarity to those of FAK and PYK2. Dfak56 has in vitro autophosphorylation activity at tyrosine residues. Expression of the Dfak56 mRNA and the protein was observed in the central nervous system and the muscle-epidermis attachment site in the embryo, where Drosophila position-specific integrins are localized. The results suggest that like FAK in vertebrates, Dfak56 functions downstream of integrins. Dfak56 was tyrosine-phosphorylated upon integrin-dependent attachment of the cell to the extracellular matrix. We conclude that the Dfak56 tyrosine kinase is involved in integrin-mediated cell adhesion signaling and thus is a functional homolog of vertebrate FAK.  相似文献   

11.
Migration is a complex process that, besides its various physiological functions in embryogenesis and adult tissues, plays a crucial role in cancer cell invasion and metastasis. The focus of this study is the involvement and collaboration of Akt, focal adhesion kinase (FAK), and Src kinases in migration and invasiveness of colorectal cancer cells. We show that all three kinases can be found in one protein complex; nevertheless, the interaction between Akt and Src is indirect and mediated by FAK. Interestingly, induced Akt signaling causes an increase in tyrosine phosphorylation of FAK, but this increase is attenuated by the Src inhibitor SU6656. We also show that active Akt strongly stimulates cell migration, but this phenomenon is fully blocked by FAK knockdown or partly by inhibition of Src kinase. In addition, we found that all three kinases were indispensable for the successful invasion of colorectal cancer cells. Altogether, the presented data bring new insights into the mechanism how the phosphatidylinositol-3-kinase (PI3-K)/Akt pathway can influence migration of colorectal adenocarcinoma cells. Because FAK is indispensable for cell movements and functions downstream of Akt, our results imply FAK kinase as a potential key molecule during progression of tumors with active PI3-K/Akt signaling.  相似文献   

12.
黏着斑激酶(focal adhesion kinase, FAK)是一种胞质非受体酪氨酸激酶。FAK和肿瘤密切相关,在多种癌细胞中高表达,促进癌细胞的发生、生长、存活、增殖、粘附、转移和侵袭以及血管生成等过程。肿瘤微环境包括肿瘤细胞、周围血管、免疫细胞、纤维母细胞、内皮细胞、信号分子和细胞外基质,它对癌症的发展和恶化具有重要作用。肿瘤细胞可以通过分泌细胞外信号影响微环境,使其有利于肿瘤生存和发展|肿瘤微环境中的基质细胞能通过产生趋化因子、基质降解酶和生长因子促进肿瘤侵袭和转移。本文综述肿瘤微环境在癌症发生发展过程中的作用及FAK在肿瘤微环境中的调控作用,为肿瘤疾病的治疗提供新思路。  相似文献   

13.
The tyrosine kinase Fyn is a member of the Src family kinases which are important in many integrin‐mediated cellular processes including cell adhesion and migration. Fyn has multiple phosphorylation sites which can affect its kinase activity. Among these phosphorylation sites, the serine 21 (S21) residue of Fyn is a protein kinase A (PKA) recognition site within an RxxS motif of the amino terminal SH4 domain of Fyn. In addition, S21 is critical for Fyn kinase‐linked cellular signaling. Mutation of S21A blocks PKA phosphorylation of Fyn and alters its tyrosine kinase activity. Expression of Fyn S21A in cells lacking Src family kinases (SYF cell) led to decreased tyrosine phosphorylation of focal adhesion kinase resulting in reduced focal adhesion targeting, which slowed lamellipodia dynamics and thus cell migration. These changes in cell motility were reflected by the fact that cells expressing Fyn S21A were severely deficient in their ability to assemble and disassemble focal adhesions. Taken together, our findings indicate that phosphorylation of S21 within the pPKA recognition site (RxxS motif) of Fyn regulates its tyrosine kinase activity and controls focal adhesion targeting, and that this residue of Fyn is critical for transduction of signals arising from cell‐extracellular matrix interactions. J. Cell. Physiol. 226: 236–247, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
Focal adhesion kinase (pp125FAK or FAK) and paxillin colocalize with integrins in structures called focal adhesions. pp125FAK plays an important role in the transmission of integrin-induced cytoplasmic signals. Paxillin has also been implicated in cell signaling by virtue of its association with the protein tyrosine kinases pp60src and Csk (C-terminal Src kinase) as well as with the adapter/oncoprotein p47gag-crk. In this report we show that endogenous pp125FAK and paxillin form a stable complex both in vivo and in vitro and that this interaction is direct, requiring only pp125FAK and paxillin. The paxillin binding site on pp125FAK has been localized to the carboxy-terminal 148 residues of pp125FAK, but appears to be distinct from the previously identified focal adhesion-targeting sequence also present in the carboxy-terminal domain of pp125FAK. The interaction of paxillin and pp125FAK is independent of the adhesion of cells to the extracellular matrix, as the association can be detected in suspension cells as well as those attached to fibronectin.  相似文献   

15.
B-lymphocytes produce protective antibodies but also contribute to autoimmunity. In particular, marginal zone (MZ) B cells recognize both microbial components and self-antigens. B cell trafficking is critical for B cell activation and is controlled by chemoattactants such as CXCL13 and sphingosine 1-phosphate (S1P). The related tyrosine kinases focal adhesion kinase (FAK) and proline-rich tyrosine kinase (Pyk2) regulate cell migration and adhesion but their roles in B cells are not fully understood. Using a novel Pyk2-selective inhibitor described herein (PF-719), as well as a FAK-selective inhibitor, we show that both Pyk2 and FAK are important for CXCL13- and S1P-induced migration of B-2 cells and MZ B cells. In contrast, LFA-1-mediated adhesion required only Pyk2 whereas activation of the Akt pro-survival kinase required FAK but not Pyk2. Thus Pyk2 and FAK mediate critical processes in B cells and these inhibitors can be used to further elucidate their functions in B cells.  相似文献   

16.
Focal adhesion regulation of cell behavior   总被引:23,自引:0,他引:23  
Focal adhesions lie at the convergence of integrin adhesion, signaling and the actin cytoskeleton. Cells modify focal adhesions in response to changes in the molecular composition, two-dimensional (2D) vs. three-dimensional (3D) structure, and physical forces present in their extracellular matrix environment. We consider here how cells use focal adhesions to regulate signaling complexes and integrin function. Furthermore, we examine how this regulation controls complex cellular behaviors in response to matrices of diverse physical and biochemical properties. One event regulated by the physical structure of the ECM is phosphorylation of focal adhesion kinase (FAK) at Y397, which couples FAK to several signaling pathways that regulate cell proliferation, survival, migration, and invasion.  相似文献   

17.
Integrin signaling is a major pathway of cell adhesion to extracellular matrices that regulates many physiological cell behaviors such as cell proliferation, migration or differentiation and is implied in pathologies such as tumor invasion. In this paper, we focused on the molecular system formed by the two kinases FAK (focal adhesion kinase) and Src, which undergo auto- and co-activation during early steps of integrin signaling. The system is modelled using classical kinetic equations and yields a set of three nonlinear ordinary differential equations describing the dynamics of the different phosphorylation forms of FAK. Analytical and numerical analysis of these equations show that this system may in certain cases amplify incoming signals from the integrins. A quantitative condition is obtained, which indicates that the total FAK charge in the system acts as a critical mass that must be exceeded for amplification to be effective. Furthermore, we show that when FAK activity is lower than Src activity, spontaneous oscillations of FAK phosphorylation forms may appear. The oscillatory behavior is studied using bifurcation and stability diagrams. We finally discuss the significance of this behavior with respect to recent experimental results evidencing FAK dynamics.  相似文献   

18.
The integrin family of cell surface receptors mediates cell adhesion to components of the extracellular matrix (ECM). Integrin engagement with the ECM initiates signaling cascades that regulate the organization of the actin-cytoskeleton and changes in gene expression. The Rho subfamily of Ras-related low-molecular-weight GTP-binding proteins and several protein tyrosine kinases have been implicated in mediating various aspects of integrin-dependent alterations in cell homeostasis. Focal adhesion kinase (FAK or pp125FAK) is one of the tyrosine kinases predicted to be a critical component of integrin signaling. To elucidate the mechanisms by which FAK participates in integrin-mediated signaling, we have used expression cloning to identify cDNAs that encode potential FAK-binding proteins. We report here the identification of a cDNA that encodes a new member of the GTPase-activating protein (GAP) family of GTPase regulators. This GAP, termed Graf (for GTPase regulator associated with FAK), binds to the C-terminal domain of FAK in an SH3 domain-dependent manner and preferentially stimulates the GTPase activity of the GTP-binding proteins RhoA and Cdc42. Subcellular localization studies using Graf-transfected chicken embryo cells indicates that Graf colocalizes with actin stress fibers, cortical actin structures, and focal adhesions. Graf mRNA is expressed in a variety of avian tissues and is particularly abundant in embryonic brain and liver. Graf represents the first example of a regulator of the Rho family of small GTP-binding proteins that exhibits binding to a protein tyrosine kinase. We suggest that Graf may function to mediate cross talk between the tyrosine kinases such as FAK and the Rho family GTPase that control steps in integrin-initiated signaling events.  相似文献   

19.
Signaling through focal adhesion kinase   总被引:48,自引:0,他引:48  
Integrin receptor binding to extracellular matrix proteins generates intracellular signals via enhanced tyrosine phosphorylation events that are important for cell growth, survival, and migration. This review will focus on the functions of the focal adhesion kinase (FAK) protein-tyrosine kinase (PTK) and its role in linking integrin receptors to intracellular signaling pathways. FAK associates with several different signaling proteins such as Src-family PTKs, p130Cas, Shc, Grb2, PI 3-kinase, and paxillin. This enables FAK to function within a network of integrin-stimulated signaling pathways leading to the activation of targets such as the ERK and JNK/mitogen-activated protein kinase pathways. Focus will be placed on the structural domains and sites of FAK tyrosine phosphorylation important for FAK-mediated signaling events and how these sites are conserved in the FAK-related PTK, Pyk2. We will review what is known about FAK activation by integrin receptor-mediated events and also non-integrin stimuli. In addition, we discuss the emergence of a consensus FAK substrate phosphorylation sequence. Emphasis will also be placed on the role of FAK in generating cell survival signals and the cleavage of FAK during caspase-mediated apoptosis. An in-depth discussion will be presented of integrin-stimulated signaling events occurring in the FAK knockout fibroblasts (FAK) and how these cells exhibit deficits in cell migration. FAK re-expression in the FAK cells confirms the role of this PTK in the regulation of cell morphology and in promoting cell migration events. In addition, these results reinforce the potential role for FAK in promoting an invasive phenotype in human tumors.  相似文献   

20.
Tyrosine phosphorylation of cytoskeletal proteins occurs during integrin-mediated cell adhesion to extracellular matrix proteins. We have investigated the role of tyrosine phosphorylation in the migration and initial spreading of human umbilical vein endothelial cells (HUVEC). Elevated phosphotyrosine concentrations were noted in the focal adhesions of HUVEC migrating into wounds. Anti-phosphotyrosine Western blots of extracts of wounded HUVEC monolayers demonstrated increased phosphorylation at 120-130 kDa when compared with extracts of intact monolayers. The pp125FAK immunoprecipitated from wounded monolayers exhibited increased kinase activity as compared to pp125FAK from intact monolayers. The time to wound closure in HUVEC monolayers was doubled by tyrphostin AG 213 treatment. The same concentration of AG 213 interfered with HUVEC focal adhesion and stress fiber formation. AG 213 inhibited adhesion-associated tyrosine phosphorylation of pp125FAK in HUVEC. Tyrphostins AG 213 and AG 808 inhibited pp125FAK activity in in vitro kinase assays. pp125FAK immunoprecipitates from HUVEC treated with both of these inhibitors also had kinase activity in vitro that was below levels seen in untreated HUVEC. These findings suggest that tyrosine phosphorylation of cytoskeletal proteins may be important in HUVEC spreading and migration and that pp125FAK may mediate phosphotyrosine formation during these processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号