首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Although cytochrome-c oxidase (CCO) is a copper-dependent enzyme, the effect of maternal copper deficiency on the expression of CCO activity during postnatal development of the neonatal rat heart has not been investigated extensively. Here, we show that CCO activity in heart mitochondria isolated from neonates of copper-deficient dams did not exhibit significant reductions until postnatal days (PND) 15 and 21. In addition, immunoblot analysis indicated that the CCO subunit (Cox-1) was reduced on postnatal Days 10 and 21, and that Cox-4 was reduced on PND 21 in heart mitochondria of the neonates from copper-deficient dams. These findings indicate that the impairment of CCO activity in neonatal heart by maternal copper deficiency occurs late in the postnatal heart development. Furthermore, the concurrent reductions in Cox-1 and Cox-4 suggest that the impaired CCO activity reflects a CCO deficiency in heart mitochondria. CCO activity and Cox-1 in heart mitochondria were not fully restored by 6 weeks of postweaning copper repletion in the pups of copper-deficient dams. This indicates that prolonged maternal intake of moderately low dietary copper produces CCO deficiency in cardiac mitochondria of neonates during late postnatal heart development, after terminal differentiation of cardiomyocytes occurs. The resistance of CCO deficiency to repair by dietary copper supplementation may be related to the relatively slow turnover of the affected mitochondria in the terminally differentiated heart.  相似文献   

2.
The effects of dietary tin on copper status and on enzymes and metabolites involved in hepatocellular antioxidant protection were measured in rats fed copper-adequate or copper-deficient diets with glucose or fructose. Rats became copper-depleted after 4 weeks on diets containing less than 0.5 micrograms of copper/g as evidenced by significant decreases in liver copper and serum ceruloplasmin. Signs of copper deficiency occurred in copper-depleted rats fed diets containing 100 micrograms of tin/g. Significant effects of tin on liver glutathione peroxidase and superoxide dismutase activities and on liver iron and total glutathione concentrations were observed. Interactions between copper and tin on liver copper and iron and on liver superoxide dismutase and malondialdehyde production are reported. Adverse effects of feeding diets containing 100 micrograms of tin/g include (i) copper depletion in rats fed copper-adequate diets, (ii) accelerated development of copper deficiency in rats fed copper-deficient diets, and (iii) reduction in hepatocellular antioxidant protection.  相似文献   

3.
The temporal sequence of events leading to cardiac dysfunction during copper restriction in the Long-Evans rat was studied over a 6-week period. Weanling rats were fed either copper-adequate (6 mg Cu/kg diet, n = 25) or copper-restricted (less than 1 mg Cu/kg diet, n = 25) diets for varying periods of time for up to 6 weeks. Beginning at 2 weeks after weaning and weekly thereafter, five rats from each diet were evaluated for cardiac function, and sacrificed, and indicators of copper deficiency were determined on several tissues. Electrocardiograms began showing indications of cardiac disease at Week 3 in the copper-restricted rats, at which time cardiac hypertrophy and other signs of copper deficiency were apparent. Greater QT intervals and QRS amplitudes were observed in copper-restricted rats at various weeks. Peak + and - dP/dt maxs did not differ by diet copper treatment for any of the time intervals studied, nor was any notable difference in developed left ventricular pressure apparent. Hematocrit and liver copper levels were decreased in copper-restricted rat hearts at all weeks. These results suggest that the onset of cardiac dysfunction in copper deficiency is rapid, with both dysfunction and hypertrophy apparent within 3 weeks after copper restriction and when liver copper levels have declined.  相似文献   

4.
Recent immunohistochemical characterization of the copper transport protein, Ctr1, reported enriched levels in mouse choroid plexus, and enhancement by copper deficiency. To extend and confirm this, experiments were conducted with Holtzman rats. Following perinatal copper deficiency there was an 80% reduction in brain copper of 24-27 day old copper-deficient (Cu-) rat pups compared to copper-adequate (Cu+) controls. Choroid plexus immunoblot analysis with rabbit anti-hCtr1 demonstrated a 50% higher Ctr1 protein expression in Cu-samples. However, levels of copper chaperone for superoxide dismutase (CCS) were unchanged, suggesting that Ctr1 buffers the choroid plexus against copper deficiency, since CCS normally is much higher in Cu-tissues. There were 13% lower levels of cytochrome c oxidase subunit IV (COX IV) detected in Cuchoroid plexus. In contrast, in cerebellum of Cu-rats CCS was 2-fold higher and COXIV 1.7-fold lower than Cu+ rats consistent with severe copper deficiency. Brain mitochondria from Cu-rats had severe reductions in COXIV content and CCO activity and modest but significant elevations in CCS and reductions in Cu, Zn-superoxide dismutase. COXIV may be a more sensitive marker for copper deficiency than CCS and may prove useful to assess copper status.  相似文献   

5.
Ventricular myosin ATPase activity, V1 isomyosin content and serum T3 (tri-iodothyronine) values decrease with age in male Fischer 344 rats. To determine if the age decrement in ATPase activity and V1 isomyosin content are caused by decreased T3 levels or an age-related decrease in V1 isomyosin induction by T3, 3-, 12- and 24-month-old male Fischer 344 rats were given constant T3 infusions by osmotic minipump. Rats at all ages were given 0.75, 5 and 15 micrograms(/100 g per 24 h) doses of T3, whereas 12- and 24-month-old rats were given an additional 0.4 microgram dose. In control rats, T3 levels decreased from 97 +/- 2.7 at 3 months to 75 +/- 4.7 ng/100 ml at 24 months. Likewise, Ca2+-activated myosin ATPase activity decreased from 1.04 +/- 0.05 to 0.68 +/- 0.05 mumol of Pi/min per mg of protein, and the relative proportion of V1 of isomyosin decreased from 90 +/- 4.0 to 26 +/- 2.0%. The lowest (0.4 microgram) T3 dose, which was sufficient to restore T3 levels in 24-month-old animals to 3-month control values, abolished the age decrement in myosin ATPase activity and markedly increased the proportion of V1 isomyosin present in the ventricle. These findings indicate that the senescent ventricle responds readily to small doses of T3 and strongly suggest that the age decrement in serum T3 levels is sufficient to contribute to the age-related decrease in myosin ATPase activity and V1 isomyosin content. Since these parameters correlate with ventricular contractility, the age decrement in T3 levels may also contribute to the decreased ventricular contractility and cardiac output observed in senescent rats.  相似文献   

6.
Morphological observations in some tissues indicate that dietary copper deficiency results in structural damage to mitochondria. The purpose of this study was to determine whether mitochondrial function is impaired as well. Male, weanling Sprague-Dawley rats were fed diets deficient or sufficient in copper for 4 weeks. Mitochondria were isolated from heart, liver, kidney cortex, and kidney medulla. P/O ratio, state 3 and state 4 respiration rates (oxygen consumed in the presence and absence of ADP, respectively), and acceptor control index (ratio of state 3:state 4) were determined using succinate or pyruvate/malate as substrate. State 3 respiration rate in mitochondria from copper-deficient hearts and livers was lower than in mitochondria from copper-sufficient hearts. Copper deficiency reduced the state 4 respiration rate only in cardiac mitochondria. Neither respiration rate was affected by copper deficiency in mitochondria from kidney medulla or cortex. P/O ratio was not significantly affected by copper deficiency in any tissue examined. Acceptor control index was reduced only in liver mitochondria. The observed decreases in respiration rates are consistent with decreased cytochrome c oxidase activity, shown by others to occur in mitochondria isolated from hearts and livers of copper-deficient rats.  相似文献   

7.
8.
Copper deficiency has been reported to be associated withdecreased cytochrome c oxidase activity, whichin turn may be responsible for theobserved mitochondrial impairment and cardiac failure. We isolatedmito-chondriafrom hearts of copper-deficient rats: cytochrome c oxidase activity was found to be lowerthan incopper-adequate mitochondria. The residual activity paralleled coppercontent of mitochondria and also corresponded with the heme amount associated with cytochromeaa3. In fact, lower absorption in thea-band region of cytochrome aa3 was foundfor copper-deficient rat heart mitochondria. Gel electrophoresisof protein extractedfrom mitochondrial membranes allowed measurements of protein content of thecomplexes ofoxidative phosphorylation, revealing a lower content of complex IV protein incopper-deficientrat heart mitochondria. The alterations caused by copper deficiency appear to bespecific forcytochrome c oxidase. Changes were not observed for F 0 F 1 ATP synthase activity,for heme contents ofcytochrome c and b, and for protein contents of complexes I, III and V.The present study demonstrates that the alteration of cytochrome c oxidase activityobserved in copper deficiency is due to a diminishedcontent of assembled protein and that shortnessof copper impairs heme insertion into cytochrome c oxidase.  相似文献   

9.
Folate and homocysteine metabolism in copper-deficient rats.   总被引:2,自引:0,他引:2  
To investigate the effect of copper deficiency on folate and homocysteine metabolism, we measured plasma, red-cell and hepatic folate, plasma homocysteine and vitamin B-12 concentrations, and hepatic methionine synthase activities in rats. Two groups of male Sprague-Dawley rats were fed semi-purified diets containing either 0. 1 mg (copper-deficient group) or 9.2 mg (control group) of copper per kg. After 6 weeks of dietary treatment, copper deficiency was established as evidenced by markedly decreased plasma and hepatic copper concentrations in rats fed the low-copper diet. Plasma, red-cell, hepatic folate, and plasma vitamin B-12 concentrations were similar in both groups, whereas plasma homocysteine concentrations in the copper-deficient group were significantly higher than in the control group (P<0.05). Copper deficiency resulted in a 21% reduction in hepatic methionine synthase activity as compared to the control group (P<0.01). This change most likely caused the increased hepatic 5-methyltetrahydrofolate and plasma homocysteine concentrations in the copper-deficient group. Our results indicate that hepatic methionine synthase may be a cuproenzyme, and plasma homocysteine concentrations are influenced by copper nutriture in rats. These data support the concept that copper deficiency can be a risk factor for cardiovascular disease.  相似文献   

10.
11.
1. Copper deficiency decreased the concentration and content of norepinephrine in the hearts of pigs and rats. 2. Concentration, but not content, of norepinephrine was decreased in spleen of copper-deficient pigs, while splenic norepinephrine levels in rats were not altered by copper deficiency. 3. Cardiac and splenic concentrations and contents of dopamine were elevated in copper-deficient pigs and rats. 4. Tissue concentrations of catecholamines and the magnitude of change due to copper deficiency were greater in pigs than rats.  相似文献   

12.
The steady-state levels of mRNAs coding for two components of basement membranes, the alpha 1 chain of type IV collagen and the B1 chain of laminin, were measured in the kidneys of male CDF rats following the induction of diabetes with streptozotocin for periods of between 2 days and 28 weeks. The concentration of mRNA for the alpha 1 chain of type IV collagen/microgram of RNA decreased markedly with age in control and diabetic rats. The diabetic level was significantly lower than control after 2 and 11 weeks of diabetes. After 28 weeks, however, there was no significant difference from the levels in control animals. Treatment of control and diabetic rats with the aldose reductase inhibitor Statil (350 mg/kg diet) did not affect the levels of the mRNA for the alpha 1 chain of type IV collagen. In contrast to the continuous decline in the concentration of mRNA for the alpha 1 chain of type IV collagen, the level of mRNA for the B1 chain of laminin increased two-fold between 11 and 28 weeks after induction of diabetes. This increase occurred as aging of control rats reduced the level of laminin B1 mRNA by approximately 50%. Treatment with Statil had no effect on laminin B1 mRNA levels. In control rats there was no change in the ratio of the levels of mRNAs for laminin B1: alpha 1 (IV) collagen with age. The mean ratio was 0.97 +/- 0.10 at 19 weeks and 1.0 +/- 0.10 at 36 weeks of age. In diabetic rats there was a marked increase in the ratio from 0.85 +/- 0.11 at 19 weeks to 3.2 +/- 1.2 at 36 weeks of age. The increased abundance of mRNA for laminin B1 raises the possibility that increased synthesis of laminin contributes to the thickening and abnormal function of renal basement membranes in streptozotocin-diabetic rats.  相似文献   

13.
Although dietary copper deficiency causes physiological, morphological, and biochemical abnormalities in cardiac mitochondria, the relationship observed between abnormalities of mitochondrial structure and function have been inconsistent in previous studies. The purpose of the present study was to re-evaluate the respiration rates of cardiac mitochondria from copper-deficient rats and to use several drugs that uncouple and inhibit mitochondrial respiration in order to clarify the mechanisms of mitochondrial dysfunction found in several laboratories. Copper deficiency reduced state 4 and state 3 cardiac mitochondrial respiration rates with all substrates tested. However, neither the ratio of ADP/oxygen consumed nor the acceptor control index was affected by copper deficiency. Cardiac mitochondria of copper-deficient rats showed a resistance to respiratory blockade by oligomycin and an increased ability to hydrolyze ATP in the presence of oligomycin compared with mitochondria of copper-adequate rats. This suggests that copper deficiency affects the function of the cardiac mitochondrial ATP synthase.  相似文献   

14.
The influence of dietary copper, iron, and ascorbic acid on iron utilization was examined in a 2×2×2 factorial experiment. Male Sprague-Dawley weanling rats were fed copper-deficient (Cu-, 0.42 μg Cu/g) or copper-adequate (Cu+, 5.74 μg Cu/g) diets that contained one of two levels of iron (38 or 191μg Fe/g) and ascorbic acid (0 or 1% of the diet). These eight diets were fed for 20 d, and rats received an oral dose of 4 μCi iron-59 on d 15. Compared to Cu+ rats, the Cu− rats had 27% lower hemoglobin levels with 45, 59, and 65% lower cytochrome c oxidase (CCO) activities in the liver, heart, and bone marrow, respectively (p<0.0001). High dietary iron or ascorbic acid did not alter hemoglobin in Cu+ rats. However, hemoglobin was 23% lower in Cu− rats fed the highest, rather than the lowest levels of iron and ascorbic acid. Liver CCO was decreased (p<0.02) in Cu− rats fed high iron. Among Cu− rats, ascorbic acid did not influence CCO but decreased hemoglobin by 17% (p<0.001), reduced the percentage of absorbed iron-59 in the erythrocytes by 91% (p<0.05) and depressed the percentage apparent absorption of iron (p<0.05). These results suggest that the effects of elevated dietary iron and ascorbic acid on iron utilization are influenced by copper status.  相似文献   

15.
Dietary copper depletion results in cardiac hypertrophy and ultrastructural alterations. The objective of this study was to determine the components that contribute to cardiac enlargement. Two groups (n = 4) of male, weaning, Sprague-Dawley rats were fed ad libitum with copper-adequate or copper-deficient diets for five weeks. Cross sectional transmission electron micrographs from both groups were evaluated using image analysis to quantify absolute area occupied by myocyte, mitochondria, myofibril, and other intracellular material. Copper-deficient rats had larger myocytes, increased area of mitochondria, and increased ratio of mitochondria :myofibril as well as mitochondria:myocyte. Copper deficiency did not change the absolute area occupied by myofibrils. These data suggested that increase in the absolute mitochondria area is the major contributory factor to the cardiac hypertrophy in copper deficiency. Under the conditions used, myofibril has minimal role toward contributing to the hypertrophic state. The pathology reported resembles human forms of genetic mitochondrial cardiomyopathies. The copper-deficient rat may be a useful model to investigate the underlying biochemical or molecular responses when peptides of enzymes are deleted.  相似文献   

16.
Growing rats and adult weight-stable mice bearing a transplantable methylcholanthrene-induced sarcoma were compared with animals with various states of malnutrition. Heart protein synthesis was measured in vivo. Myocardial RNA, myofibrillar protein composition and the Ca2+-activated ATPase activity in heavy chains of native myosin were measured. 'Fingerprints' were made from myosin by trypsin treatment to evaluate possible structural changes in the protein. Cardiac protein-synthesis rate was decreased by 20% in growing tumour-bearing rats, by 35% in protein-malnourished (rats) and by 47% in starved rats, compared with freely fed controls (P less than 0.05). Adult tumour-bearing mice showed no significant decrease in myocardial protein synthesis. Pair-weighed control mice had significantly depressed heart protein synthesis. Protein translational efficiency was maintained in both tumour-bearing rats and mice, but was decreased in several groups of malnourished control animals. The Ca2+-activated myosin ATPase activity was decreased in all groups of malnourished animals, including tumour-bearing mice and rats, without any evidence of a change in cardiac isomyosin composition. We conclude that loss of cardiac muscle mass in tumour disease is communicated by both depressed synthesis and increased degradation largely owing to anorexia and host malnutrition. Increased adrenergic sensitivity in hearts from tumour-bearing and malnourished animals is not communicated by increased Ca2+-activated ATPase activity. This may be down-regulated in all groups with malnutrition, without any observable alterations in the isomyosin profile.  相似文献   

17.
Copper is ferried in a cell complexed to chaperone proteins, and in the heart much copper is required for cytochrome c oxidase (Cox). It is not completely understood how copper status affects the levels of these proteins. Here we determined if dietary copper deficiency could up- or down-regulate select copper chaperone proteins and Cox subunits 1 and 4 in cardiac tissue of rats. Sixteen weanling male Long–Evans rats were randomized into treatment groups, one group receiving a copper-deficient diet (<1 mg Cu/kg diet) and one group receiving a diet containing adequate copper (6 mg Cu/kg diet) for 5 weeks. Hearts were removed, weighed, and non-myofibrillar proteins separated to analyze for levels of CCS, Sco1, Ctr1, Cox17, Cox1, and Cox4 by SDS–PAGE and Western blotting. No changes were observed in the concentrations of CTR1 and Cox17 between copper-adequate and copper-deficient rats. CCS and Sco1 were up-regulated and Cox1 and Cox4 were both down-regulated as a result of copper deficiency. These data suggest that select chaperone proteins and may be up-regulated, and Cox1 and 4 down-regulated, by a dietary copper deficiency, whereas others appear not to be affected by copper status.  相似文献   

18.
The aim of this study was to investigate how dietary lactose, compared with sucrose, in association with copper deficiency influences the antioxidant and copper status in the diabetic rat. Two groups of male rats (n = 12) were fed copper-deficient diets containing either 300 g/kg of sucrose or 300 g/kg of lactose in a pair-feeding regime for 35 days. Six rats from each group were injected with streptozotocin to induce diabetes. After a further 16 days the animals were killed and the liver, heart, and kidney removed for the measurement of copper levels and the activities of antioxidant and related enzymes. Diabetes resulted in higher hepatic and renal copper levels compared with controls. The copper content of the heart and kidney in diabetic rats consuming sucrose was also significantly higher than in those consuming lactose. Catalase activity in the liver, heart, and kidney was significantly increased in diabetic rats compared with controls. Hepatic glutathione S-transferase and glucose-6-phosphate dehydrogenase and cardiac copper zinc superoxide dismutase activities were also higher in diabetes. Sucrose, compared with lactose feeding, resulted in higher cytochrome c oxidase and glutathione peroxidase activities in the kidney while glucose-6-phosphate dehydrogenase activity was lower. The combination of lactose feeding and diabetes resulted in significantly higher activities of cardiac managanese superoxide dismutase and catalase and renal manganese superoxide dismutase and glucose-6-phosphate dehydrogenase. These results suggest that sucrose consumption compared with lactose appears to be associated with increased organ copper content and in general decreased antioxidant enzyme activities in copper-deficient diabetic rats.  相似文献   

19.
We studied expression of laminin, fibronectin, and Type IV collagen in the testis by means of immunofluorescence and immunoblot analysis and also examined gene expression of fibronectin using the ribonuclease protection assay. By immunofluorescence on sections from 20-day-old rats, laminin, fibronectin, and Type IV collagen were found in the basement membrane of the seminiferous tubules and in the interstitial regions of the testis. No localization of any extracellular matrix components was found inside the sectioned cells. However, when Sertoli cells were cultured on glass coverslips, laminin and Type IV collagen were both found inside the cells, suggesting new synthesis. In cultured peritubular cells, Type IV collagen, laminin, and fibronectin were found within the cells. When examined by immunoblot analysis, freshly isolated Sertoli and peritubular cells from 20-day-old rats did not demonstrate production of laminin or fibronectin. After 5 days in culture, peritubular cells produced both laminin and fibronectin, whereas cultured Sertoli cells produced only laminin. In contrast, freshly isolated and cultured Sertoli and peritubular cells all produced Type IV collagen. Moreover, the ribonuclease protection assay indicated that the bulk of fibronectin gene expression occurs within the first 10 days of postnatal development, with lower maintenance levels occurring thereafter. These results indicate that in the testis the highest levels of expression of laminin and fibronectin occur during development and in primary cell culture, whereas expression of Type IV collagen is higher at later stages.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号