首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Stimuli for human neutrophils were divided into two classes on the basis of their ability to induce degranulation: complete secretagogues provoked release of both azurophil and specific granules, while incomplete secretagogues only induced release of specific granules. 2. Complete secretagogues, which possessed the ability to induce secretion of azurophil granules, also induced transient increments in total cellular cyclic AMP levels: incomplete secretagogues did not. 3. Complete secretagogues, unlike the incomplete variety, also induced further increments of cyclic AMP in prostaglandin E1-pretreated neutrophils. 4. Inhibition of lysosomal enzyme release by prostaglandin E1 was closely correlated with elevated levels of cyclic AMP induced by the prostaglandin alone, than with the much higher transient increment in cyclic AMP produced by stimulation of prostaglandin E1-treated cells. 5. Our results describe the first biochemical difference between neutrophil responses associated with secretion of azurophil granules, as opposed to specific granules: transient increments in cyclic AMP.  相似文献   

2.
Prostaglandin biosynthesis and prostaglandin-stimulated cyclic AMP accumulation were studied in 3T3-L1 fibroblasts as they differentiated into adipocytes. Incubation of 3T3-L1 membranes with [1-14C]prostaglandin H2, and subsequent radio-TLC analysis, showed that prostacyclin (prostaglandin I2) is the principal enzymatically synthesized prostaglandin in this cell line. Confirmation of the radiochemical data was obtained by demonstrating the presence of 6-keto-prostaglandin F1 alpha, the stable hydrolysis product of prostaglandin I2, by gas chromatography-mass spectrometry. In support of previous work, indomethacin, the prostaglandin endoperoxide synthetase (EC 1.14.99.1) inhibitor, accelerated 3T3-L1 differentiation. More importantly, the incubation of 3T3-L1 cells with insulin and the prostaglandin I2 synthetase inhibitor 9,11-azoprosta-5,13-dienoic acid (azo analog I) also enhanced the rate of cellular differentiation, even though this compound does not inhibit the synthesis of other prostaglandins. The repeated addition of exogenous prostaglandin I2 to 3T3-L1 cells inhibited insulin- and indomethacin-mediated differentiation. When 3T3-L1 cells were exposed to various prostaglandins and the cyclic AMP levels were measured, prostaglandin I2 proved to be the most potent stimulator of cyclic AMP accumulation, followed by prostaglandin E1 greater than prostaglandin H2 much greater than prostaglandin E2, while prostaglandin D2 was inactive. As 3T3-L1 cells differentiate, the ability of prostaglandin I2 or prostaglandin H2 to stimulate cyclic AMP accumulation progressively diminishes. It is suggested that 3T3-L1 differentiation may be controlled by the rate of prostaglandin I2 synthesis and/or sensitivity of the adenylate cyclase to prostaglandin I2.  相似文献   

3.
The effect of adenosine on the mouse thymocyte adenylate cyclase-adenosine 3':5'-monophosphate (cyclic AMP) system was examined. Adenosine, like prostaglandin E1, can cause 5-fold or greater increases in thymocyte cyclic AMP content in the presence but not in the absence of certain cyclic phosphodiesterase inhibitors. Two non-methylxanthine inhibitors potentiated the prostaglandin E1 and adenosine responses, while methylxanthines selectively inhibited the adenosine response. Adenosine increased cyclic AMP content significantly within 1 min and was maximal by 10 to 20 min with approx. 2 and 10 muM adenosine being minimal and half-maximal effective doses, respectively. Combinations of prostaglandin E1, isoproterenol and adenosine were near additive and not synergistic. Of the adenosine analogues tested, only 2-chloro- and 2-fluoroadenosine significantly increased cyclic AMP. Thymocytes prelabeled with [14C]adenine exhibited dramatic increases in cyclic [14C]AMP 10 min after addition of adenosine or prostaglandin E1 which corresponded to simultaneously determined increases in total cyclic AMP. Using [14C]adenosine, the percent of total cyclic AMP increase due to adenosine was only 16%. Adenosine was also shown to elicit a 40% increase in particulate thymocyte adenylate cyclase activity. Therefore, the increased content of cyclic AMP seen in mouse thymocytes after incubation with adenosine was due primarily to stimulation of adenylate cyclase and only partially to conversion of adenosine to cyclic AMP. The increased cellular content of cyclic AMP may be, in part, responsible for various immunosuppressive effects of adenosine.  相似文献   

4.
Arachidonic acid and prostaglandin H2 elevate the levels of adenosine 3':5'-monophosphate (cyclic AMP) in Balb/c 3T3 fibroblasts. This effect was inhibited by 15-hydroperoxy-5,8,11,13-eicosatetraenoic acid, an inhibitor of prostaglandin I2 synthase (Claesson, H.-E., Lindgren, J.A. and Hammarstr!om, S. (1977) FEBS Lett. 81, 415-418). After addition of arachidonic acid to 3T3 cultures, cellular cyclic AMP levels and growth medium concentrations of 6-ketoprostaglandin F1 alpha (degradation product of prostaglandin I2) were quantitatively determined. The stimulatory effect of exogenously-added prostaglandin I2 on cellular cyclic AMP levels was also determined. The results indicate that the endogenous production of prostaglandin I2 is sufficient to explain the stimulatory action of arachidonic acid on cyclic AMP formation in 3T3 fibroblasts.  相似文献   

5.
Cyclic AMP induces synthesis of prostaglandin E1 in platelets   总被引:1,自引:0,他引:1  
Although platelets are known to synthesize small amounts of prostaglandin E1 the control of the formation of this prostanoid has not been investigated. Incubation of human platelet-rich plasma with various compounds which are known to increase cyclic AMP concentration in platelets and inhibit platelet aggregation also increased intracellular prostaglandin E1 synthesis. The prostaglandin E1 was isolated by high pressure liquid chromatography and definitively identified by negative and positive ionization mass spectroscopy. The amounts of prostaglandin E1 formed were proportional to the concentration of cyclic AMP in platelets. Prostacyclin (10 nM) which is the most potent stimulator of cyclic AMP formation increased intracellular cyclic AMP by 4.6 fold and prostaglandin E1 level by 3 fold over the basal levels. Addition of theophylline, a cyclic AMP phosphodiesterase inhibitor, together with prostacyclin increased cyclic AMP concentration 8.7-fold and prostaglandin E1 level 12-fold compared to basal concentrations. Dibutyryl cyclic AMP (2 mM) and 8-bromo cyclic AMP (0.1 mM) increased prostaglandin E1 levels by 3 fold and 2 fold over the basal level, respectively. Prostaglandin D2 (3 microM) when added to platelet-rich plasma increased the cyclic nucleotide levels by 2 fold concomitant with 2 fold increase in prostaglandin E1 concentration. In contrast prostaglandin E2 or prostaglandin F2 alpha which had no effect on cyclic AMP level did not affect the prostaglandin E1 synthesis. Addition of 2',5'-dideoxyadenosine, an inhibitor of adenylate cyclase, to platelet-rich plasma inhibited both the increase of intracellular prostaglandin E1 and cyclic AMP levels induced by prostacyclin.  相似文献   

6.
In dispersed mucosal cells from guinea pig stomach cyclic AMP was increased 4-fold by theophylline, 5-fold by prostaglandin E2, and 10- to 15-fold by histamine. Theophylline augmented the increase in cellular cyclic AMP caused by histamine or prostaglandin E1 and the actions of histamine and prostaglandin E1 were additive. Cellular cyclic AMP was not altered by carbachol, gastrin, secretin, vasoactive intestinal peptide, glucagon, insulin or the octapeptide of cholecystokinin. Metiamide or diphenhydramine but not atropine inhibited the increase in cellular cyclic AMP caused by histamine, but did not alter the concentration of cyclic AMP in control cells or in cells incubated with theophylline or prostaglandin E1.  相似文献   

7.
The effect of prostaglandin analogues on the cyclic AMP level in cultured chondrocytes were examined. Prostaglandin E1 at 0.4 to 30 microM, increased the intracellular concentration of cyclic AMP in chondrocytes. Its effect was rapid, being evident within 1 min and reaching a maximum in 10 to 20 min. The maximum level was sustained until 30 min after its addition and then decreased gradually. Prostaglandin D2 and E2 also increased the cyclic AMP level in chondrocytes, but they had less effect than prostaglandin E1. Prostaglandin A1 had no effect on the nucleotide level in chondrocytes, although they markedly increased the level in fibroblasts. The time course of stimulation of cyclic AMP accumulation in chondrocytes by prostaglandin E1, D2 or E2 was quite different from that by parathyroid hormone (PTH): the effect of prostaglandin was slower and more sustained than that of PTH. PTH potentiated the effect of prostaglandin E1, E2, or D2 on the cyclic AMP level in chondrocytes and that the combined effects of prostaglandin and PTH were more than additive. Addition of an inhibitor of cyclic nucleotide phosphodiesterase with prostaglandin, PTH or both produced a synergistic effect on the accumulation of cyclic AMP in the chondrocytes. These findings suggest that prostaglandin E1, E2, and D2 increase the synthesis of cyclic AMP and that the combined effect of the prostaglandins and PTH on the cyclic AMP level in chondrocytes is partly attributed to the synergistic synthesis of cyclic AMP in the cells.  相似文献   

8.
1. The effects of prostaglandins E2 and F2alpha on prolactin synthesis were examined in a clonal strain of rat pituitary tumour cells, and compared with those of thyroliberin. 2. The prostaglandins and thyroliberin gave a dose-related and time-dependent stimulation of prolactin synthesis. The maximal effects (about twofold increases) were observed after 54h of treatment with 25nM-prostaglandin E2 and 2.5nM-prostaglandin F2alpha. A similar stimulation of prolactin synthesis was observed after 250nM-thyroliberin. The combined treatment with prostaglandins and thyroliberin did not increase prolactin synthesis over and above that obtained with each compound alone. 3. After removal of prostaglandins E2 and F2alpha there was a complete reversal of prolactin synthesis to pre-stimulation values 18h later (t1/2less than or equal to 9h). The rapid reversible effect of prostaglandins was in contrast with that of thyroliberin, where prolactin synthesis returned to control values with a t1/2 of about 42 h. 4. Prostaglandin E2 (5mum) and thyroliberin (5mum) increased cellular concentrations of cyclic AMP eight- and four-fold respectively. Maximal effects were observed after 2-5min of incubation. The increases in cyclic AMP were biphasic; normal values were obtained 60 min after the start of incubation with prostaglandin E2 or thyroliberin. 5. The dose/response curve showed that prostaglandin E2 caused maximal increase of cyclic AMP at 50nM. Concentrations of prostagland in E2 that caused half-maximal stimulation of cyclic AMP accumulation and of prolactin synthesis were 4 and 5nM respectively. 6. Combined treatment with prostaglandin E2 and thyroliberin in concentrations that separately caused maximal cyclic AMP increases did not result in a further increase in this cyclic nucleotide. 7. These results are consistent with a role of cyclic AMP in mediating the effects or prostaglandins and thyroliberin on prolactin synthesis. However, if cyclic AMP is involved as a common intracellular mediator of prolactin synthesis, it cannot alone explain all the effects of prostaglandins and thyroliberin in this cell system.  相似文献   

9.
The effect of prostaglandin E2 on accumulation in plasma of 1 alpha,25-dihydroxy[3H]vitamin D3 from 25-hydroxy[3H]vitamin D3 was studied in vivo using vitamin D-deficient thyroparathyroidectomized rats. Intra-arterial infusion of 10-50 micrograms of prostaglandin E2/h caused a significant stimulation of 1 alpha,25-dihydroxy[3H]vitamin D3 production. No significant changes in plasma Ca2+ and Pi concentrations or urinary cyclic AMP excretion were observed after prostaglandin E2 infusion. Theophylline did not enhance the effect of a submaximal dose of prostaglandin E2 on 1 alpha,25-dihydroxy[3H]vitamin D3 production. These data indicate that prostaglandin E2 stimulates plasma accumulation of 1 alpha,25-dihydroxy[3H]vitamin D3 independent of the adenylate cyclase/cyclic AMP system, and suggest that prostaglandin E2 has a modulatory role in the regulation of 25-hydroxyvitamin D3 1 alpha-hydroxylase in the kidney.  相似文献   

10.
We have investigated the sequence of events leading from the activation of adenylate cyclase and increases in intracellular cyclic AMP to the modulation of enzyme release and superoxide production in human neutrophils. In the isolated plasma membrane, adenylate cyclase is activated by both prostaglandin E1 and isoproterenol. In the whole cell only a small increase in cyclic AMP is observed, though in the presence of the phosphodiesterase inhibitor, methylisobutylxanthine a substantial amplification in intracellular cyclic AMP is observed with both isoproterenol and prostaglandin E1. These conditions are relevant to the regulation of cell function, since fMet-Leu-Phe-stimulated superoxide production is inhibited by either prostaglandin E1 or isoproterenol in the absence of methylisobutylxanthine, while enzyme release is inhibited only via the prostaglandin E1 receptor and then only in the presence of methylisobutylxanthine. For enzyme release and superoxide production, the order of potency for three prostaglandins tested was prostaglandin E1 greater than prostaglandin D2 much greater than prostaglandin F2 alpha. Our results suggest that (a) superoxide production is more sensitive to regulation by cyclic AMP than enzyme release, (b) the type of receptor occupied as well as the threshold level of cyclic AMP attained are important to the regulation of enzyme release, and (c) although elevation in cyclic AMP is inhibitory to neutrophil function, phosphodiesterase inhibition is required in addition to adenylate cyclase activation to effect maximal inhibition.  相似文献   

11.
Isolated porcine thyroid cells, cultured in the presence of thyrotropin (greater than or equal to 0.25 mU/ml) or prostaglandin E2 (greater than or equal to 0.1 micron), showed decreased adenosine 3':5'-monophosphate (cyclic AMP) response to further thyrotropin or prostaglandin E2 stimulation, respectively. Kinetics of the refractory process to thyrotropin and prostaglandin E2 are different: (a) maximal refractoriness to prostaglandin E2 was attained after 2--6 h exposure to prostaglandin E2 while refractoriness to thyrotropin was maximal only after 12--24 h; (b) the degree of refractoriness to prostaglandin E2 was much greater than that to thyrotropin. Refractoriness to thyrotropin or prostaglandin E2 is characterized: by specificity for each thyroid stimulator; by dependence upon the dose of thyrotropin or prostaglandin E2 in culture, e.g. induction of high degree of refractoriness with 0.5 mU/ml thyrotropin (or 1 micron prostaglandin E2), which elicits only a small cyclic AMP increase; by time requirement for induction; by partial effect; by changes of maximum activation of cyclic AMP response; by reversibility. This refractoriness of the cyclic AMP response was not induced by dibutyryl adenosine 3':5'-monophosphate. It was not attributed to increased cyclic AMP-phosphodiesterase activity, but to alterations in the receptor-adenylate cyclase system. Prevention of refractoriness to thyrotropin or prostaglandin E2 by incubation of cells in the presence of actinomycin D, puromycin and cycloheximide suggests that new RNA and protein syntheses are required for the development of the refractory state.  相似文献   

12.
Two different independent processes are operating in cultured thyroid cells to regulate adenylate cyclase/cyclic AMP responsiveness to thyroid stimulators (thyrotropin and prostaglandin E2): firstly, refractoriness or negative regulation [preceding paper], which is specific for each thyroid stimulator, is not mediated by cyclic AMP and is not accompanied by alteration of adenylate cyclase activity; secondly, positive regulation which is characterized by an augmentation of the cyclic AMP response stimulated by thyrotropin and prostaglandin E2. This process is not specific for each thyroid stimulator and is a state of increased susceptibility of cyclic AMP synthesis to stimulation, accompanied by increased activity of the catalytic subunit of adenylate cyclase. Positive regulation is apparently mediated by increased intracellular cyclic AMP levels. It is a time-dependent and dose-dependent process. Very low concentrations (5-50 micronU/ml) of thyrotropin augmented cyclic AMP synthesis stimulated by thyrotropin and prostaglandin E2 whereas higher concentrations (above 0.1 mU/ml) augmented prostaglandin E2 stimulation but induced refractoriness to thyrotropin. Prostaglandin E2 (0.1 to 10 micronM) augmented thyrotropin stimulation and dibutyryl adenosine 3':5'-monophosphate (0.3 to 2 mM) augmented thyrotropin and prostaglandin E2 stimulation. Positive regulation is a slow process which develops within days and increases up to day 5 in culture. Experiments using inhibitors suggested that protein synthesis is required for the full expression of the increase in adenylate cyclase activity induced by the studied thyroid stimulators.  相似文献   

13.
Arachidonic acid is released from specific glycerophospholipids in human amnion and is used to synthesize prostaglandins that are involved in parturition. In an investigation of the regulation of prostaglandin production in amnion, the effects of isoproterenol on discs of amnion tissue maintained in vitro were examined. Isoproterenol caused a large but transitory increase in the amount of cyclic AMP in amnion discs and this was accompanied by a sustained stimulation of the release of arachidonic acid (but not palmitic acid or stearic acid) and prostaglandin E2. The dependencies of cyclic AMP accumulation, arachidonic acid mobilization and prostaglandin E2 release on the concentration of isoproterenol were similar, each response was maximal at 10(-6) M isoproterenol and was inhibited by propranolol. Dibutyryl cyclic AMP stimulated the release of prostaglandin E2 from amnion discs. Although prostaglandin E2, when added to amnion discs caused an accumulation of cyclic AMP, it did not appear to mediate isoproterenol-induced accumulation of cyclic AMP since the latter effect was insensitive to indomethacin in concentrations at which prostaglandin production was inhibited greatly. These data support the proposition that catecholamines, found in increasing amounts in amniotic fluid during late gestation, may be regulators of prostaglandin production by the amnion.  相似文献   

14.
Thromboxane A2 plays an important role in arachidonic acid- and prostaglandin H2-induced platelet aggregation. Agents that stimulate platelet adenylate cyclase (prostaglandin I2, prostaglandin I1 and prostaglandin E1) and dibutyryl cyclic AMP inhibit both thromboxane A2 formation and arachidonate-induced aggregation in platelet-rich plasma. Despite complete suppression of aggregation with agents that elevate cyclic AMP, considerable thromboxane A2 is still formed. Prostaglandin H2-induced aggregations which bypass the cyclooxygenase regulatory step are also inhibited by agents that elevate cyclic AMP without any measurable effect on thromboxane A2 production. These data demonstrate that cyclic AMP can inhibit platelet aggregation by a mechanism independent of its ability to suppress the cyclooxygenase enzyme. Parallel experiments with washed platelet preparations suggest that they may be an inadequate model for studying the relationship between the platelet cyclooxygenase and platelet function.  相似文献   

15.
1. An assay, based on competition between adenosine 3':5'-cyclic monophosphate (cyclic AMP) and cyclic [(3)H]AMP for binding to a rabbit skeletal muscle protein, has been used to measure tissue contents of cyclic AMP. The assay has a sensitivity of 0.05pmol of cyclic AMP. Cyclic GMP and cyclic CMP have 0.5%, and cyclic IMP 6.5%, of the ability of cyclic AMP to displace cyclic [(3)H]AMP from binding protein; AMP, ADP and ATP have no effect. 2. By using this method, the cyclic AMP content of ox pituitary slices exposed to prostaglandin was determined; release of growth hormone was measured by radioimmunoassay. 3. Release of growth hormone was increased by 45min incubation in 1mum-prostaglandin E(2) in the absence of theophylline, or in 10nm-prostaglandin E(2), 0.1mum-prostaglandin A(1) or 1mum-prostaglandin B(1) in the presence of 0.5mm-theophylline. 4. Pituitary cyclic AMP content was increased by 10min incubation in 1mum-prostaglandin E(2) in the absence of theophylline, or in 0.1mum-prostaglandin E(2) in the presence of 0.5mm-theophylline. 5. The maximum increase in cyclic AMP content was observed 10min, and significant changes in growth hormone release 30min, after introduction of prostaglandin E(2). 6. The increase in pituitary cyclic AMP content, but not in the rate of release of growth hormone, was observed in the absence of external Ca(2+). 7. The stimulation of release of growth hormone by prostaglandin was decreased by preincubation of tissue for 2h in colchicine (100mum) or cytochalasin B (10mug/ml). 8. These results support the suggestion that increased release of growth hormone after treatment with prostaglandin is the result of increased tissue cyclic AMP content, and possibly involves a microfilamentous or microtubular protein.  相似文献   

16.
The effect of adenosine on the mouse thymocyte adenylate cyclase-adenosine 3′:5′-monophosphate (cyclic AMP) system was examined. Adenosine, like prostaglandin E1, can cause 5-fold or greater increases in thymocyte cyclic AMP content in the presence but not in the absence of certain cyclic phosphodiesterase inhibitors. Two non-methylxanthine inhibitors potentiated the prostaglandin E1 and adenosine responses, while methylxanthines selectively inhibited the adenosine response. Adenosine increased cyclic AMP content significantly wihtin 1 min and was maximal by 10 to 20 min with approx. 2 and 10 μM adenosine being minimal and half-maximal effective doses, respectively. Combinations of prostaglandin E1, isoproterenol and adenosine were near additive and not synergistic. Of the adenosine analogues tested, only 2-chloro- and 2-fluoroadenosine significantly increased cyclic AMP. Thymocytes prelabeled with [14C] adenine exhibited dramatic increases in cyclic [14C]AMP 10 min after addition of adenosine or prostaglandin E1 which corresponded to simultaneously determined increases in total cyclic AMP. Using [14C]adenosine, the percent of total cyclic AMP increase due to adenosine was only 16%. Adenosine was also shown to elicit a 40% increase in particulate thymocyte adenylate cyclase activity. Therefore, the increased content of cyclic AMP seen in mouse thymocytes after incubation with adenosine was due primarily to stimulation of adenylate cyclase and only partially to conversion of adenosine to cyclic AMP. The increased cellular content of cyclic AMP may be, in part, responsible for various immunosuppressive effects of adenosine.  相似文献   

17.
Previous studies have demonstrated that catecholamine responsiveness in a variety of cells can be altered by inhibitors of RNA and protein synthesis. The neuroblastoma-glioma hybrid, NG108-CC15, which lacks catecholamine-stimulated accumulation of cyclic AMP, was investigated to determine if the responsiveness to prostaglandin E1 (PGE1) could be modified by inhibitors of protein synthesis. Cycloheximide in a time-dependent manner potentiated the ability of prostaglandin E1 to stimulate accumulation of intracellular cyclic AMP. However, the alpha-adrenergic inhibition of the prostaglandin response was not affected by cycloheximide. Withdrawal of norepinephrine following a long-term incubation resulted in a potentiation of subsequent PGE1-stimulated cyclic AMP accumulation. Cycloheximide enhanced this norepinephrine withdrawal effect. Our previous studies have shown that cholera toxin induces refractoriness to beta-adrenergic agonists in C6-2B rat astrocytoma cells and that cycloheximide blocked this action of cholera toxin. In an analogous manner cholera toxin caused refractoriness to subsequent prostaglandin-stimulated cyclic AMP production in NG108-CC15 cells, and cycloheximide reduced cholera toxin-induced prostaglandin refractoriness. Thus cycloheximide potentiates the prostaglandin stimulatory effect, has no effect on the ability of alpha-agonists to inhibit the prostaglandin response, increases the stimulatory effect of PGE1 after norepinephrine withdrawal, and reduces cholera toxin-induced PGE1 refractoriness. these observations suggest that PGE1-stimulated cyclic AMP accumulation in NG108-CC15 cells contains components which are regulated by de novo protein synthesis.  相似文献   

18.
We have utilized ionophores to test whether stimulation of chondrocyte prostaglandin biosynthesis is accompanied by an increase in cyclic nucleotide levels in these cells. Radioimmunoassay of prostaglandin E2, 6-oxo-prostaglandin F1 alpha (the stable metabolite of prostaglandin I2) and prostaglandin F2 alpha showed that synthesis of each was stimulated by the divalent-cation ionophore, A23187 after short-term incubation (1-7 min) in serum-free medium. No stimulation of thromboxane B2 was detected. Two monovalent ionophores, lasalocid and monensin failed to stimulate prostaglandin biosynthesis after short-term incubation. Ionophore A23187-stimulated prostaglandin biosynthesis was variably and partially inhibited by sodium meclofenamate, indomethacin and aspirin, but not by sodium salicylate. Ionophore A23187-stimulated prostaglandin biosynthesis was accompanied by a 7.5-fold increase in cyclic AMP levels after 15 min. Sodium meclofenamate, indomethacin and aspirin which inhibited prostaglandin E2 biosynthesis also reduced cyclic AMP levels. Exogenous prostaglandin E2 (1 microgram/ml) stimulated cyclic AMP biosynthesis, which was not inhibited by aspirin. These results indicated that prostaglandins can be considered as one of the local effectors controlling cyclic AMP production in articular cartilage.  相似文献   

19.
Choleragen increases cyclic AMP content of confluent human fibroblasts. Maximally effective concentrations of isoproterenol and prostaglandin E1 also induce large increases in cyclic AMP content of human fibroblasts and in confluent cultures the effect of prostaglandin E1 is much greater than that of isoproterenol. After incubation with choleragen, the increment in cyclic AMP produced by 2 muM isoproterenol is increased and approaches that produced by5.6 muM prostaglandin E1. Although the concentration of isoproterenol which produces a maximal increase in cyclic AMP is similar in both control and choleragen-treated cells. In choleragen-treated cells, although the response to 5.6 muM prostaglandin E1 is reduced by as much as 50%, the concentration of prostaglandin E1 required to induce a maximal increase in cyclic AMP is 1/10 that required in control cells. Thus the capacities of intact human fibroblasts to respond to isoproterenol and prostaglandin E1 can be altered independently during incubation of intact cells with choleragen. Differences in responsiveness to the two agonists were not demonstrable in adenylate cyclase preparation from control or choleragen-treated cells. In rat fat cells, the effects of choleragen on cyclic AMP content were much smaller than those in fibroblasts. In contrast to its effect on intact fibroblast choleragen treatment of rat fat cells did not alter the accumulation of cyclic AMP in response to a maximally effective concentration of isoproterenol. The responsiveness of adenylate cyclase preparations to isoproterenol was also not altered by exposure of fat cells to choleragen.  相似文献   

20.
In dispersed mucosal cells from guinea-pig stomach, somatostatin inhibited in a noncompetitive fashion (Ki, 2 x 10(-8) M) the increase in cellular cyclic AMP caused by histamine but not by prostaglandin E1 or phosphodiesterase inhibitors. Somatostatin also inhibited the increase in [14C]aminopyrine uptake caused by low concentrations of histamine probably by interfering with the synthesis of cellular cyclic AMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号