首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The insecticidal Cry toxins produced by the bacterium Bacillus thuringiensis are comprised of three structural domains. Domain I, a seven-helix bundle, is thought to penetrate the insect epithelial cell plasma membrane through a hairpin composed of α-helices 4 and 5, followed by the oligomerization of four hairpin monomers. The α-helix 4 has been proposed to line the lumen of the pore, whereas some residues in α-helix 5 have been shown to be responsible for oligomerization. Mutation of the Cry1Ac1 α-helix 4 amino acid Asn135 to Gln resulted in the loss of toxicity to Manduca sexta, yet binding was still observed. In this study, the equivalent mutation was made in the Cry1Ab5 toxin, and the properties of both wild-type and mutant toxin counterparts were analyzed. Both mutants appeared to bind to M. sexta membrane vesicles, but they were not able to form pores. The ability of both N135Q mutants to oligomerize was also disrupted, providing the first evidence that a residue in α-helix 4 can contribute to toxin oligomerization.  相似文献   

2.
The effect of pH on the pore-forming ability of two Bacillus thuringiensis toxins, Cry1Ac and Cry1C, was examined with midgut brush border membrane vesicles isolated from the tobacco hornworm, Manduca sexta, and a light-scattering assay. In the presence of Cry1Ac, membrane permeability remained high over the entire pH range tested (6.5 to 10.5) for KCl and tetramethylammonium chloride, but was much lower at pH 6.5 than at higher pHs for potassium gluconate, sucrose, and raffinose. On the other hand, the Cry1C-induced permeability to all substrates tested was much higher at pH 6.5, 7.5, and 8.5 than at pH 9.5 and 10.5. These results indicate that the pores formed by Cry1Ac are significantly smaller at pH 6.5 than under alkaline conditions, whereas the pore-forming ability of Cry1C decreases sharply above pH 8.5. The reduced activity of Cry1C at high pH correlates well with the fact that its toxicity for M. sexta is considerably weaker than that of Cry1Aa, Cry1Ab, and Cry1Ac. However, Cry1E, despite having a toxicity comparable to that of Cry1C, formed channels as efficiently as the Cry1A toxins at pH 10.5. These results strongly suggest that although pH can influence toxin activity, additional factors also modulate toxin potency in the insect midgut.  相似文献   

3.
The identity of the physiologically important Cry1A receptor protein(s) in the lepidopteran Manduca sexta has been a matter of dispute due to the multiple proteins which bind the Cry1Ac toxin. Cry1Aa, Cry1Ab, and Cry1Ac exhibit essentially identical toxicities toward M. sexta larvae and show a high degree of sequence and presumed structural identities. These similarities make it likely that there is a common mechanism of toxicity in these lepidopteran-specific toxins in terms of both mode of action and the receptor proteins through which these toxins exert their lepidopteran-specific toxicity. Investigators in our laboratory previously demonstrated that the cloned 210-kDa glycoprotein BT-R1 binds all three Cry1A toxins (T. P. Keeton and L. A. Bulla, Jr., Appl. Environ. Microbiol. 63:3419–3425, 1997). This protein remains a common binding protein even after being subjected to various midgut membrane preparation and processing protocols. The method used to isolate proteins from the M. sexta larval midgut in no significant way affects the results of ligand binding and vacuum blotting experiments, and we have been unable to detect specific, high-affinity binding of any Cry1A toxin to Cry1Ac binding proteins other than BT-R1. Alterations in blot substrate and blocking, hybridization, and washing buffers support these conclusions. Collectively, these results indicate that in M. sexta the cadherin-like BT-R1 protein is a common high-affinity receptor protein for the Cry1A family of toxins.  相似文献   

4.

Background

Bacillus thuringiensis Cry toxins, that are used worldwide in insect control, kill insects by a mechanism that depends on their ability to form oligomeric pores that insert into the insect-midgut cells. These toxins are being used worldwide in transgenic plants or spray to control insect pests in agriculture. However, a major concern has been the possible effects of these insecticidal proteins on non-target organisms mainly in ecosystems adjacent to agricultural fields.

Methodology/Principal Findings

We isolated and characterized 11 non-toxic mutants of Cry1Ab toxin affected in different steps of the mechanism of action namely binding to receptors, oligomerization and pore-formation. These mutant toxins were analyzed for their capacity to block wild type toxin activity, presenting a dominant negative phenotype. The dominant negative phenotype was analyzed at two levels, in vivo by toxicity bioassays against susceptible Manduca sexta larvae and in vitro by pore formation activity in black lipid bilayers. We demonstrate that some mutations located in helix α-4 completely block the wild type toxin activity at sub-stoichiometric level confirming a dominant negative phenotype, thereby functioning as potent antitoxins.

Conclusions/Significance

This is the first reported case of a Cry toxin dominant inhibitor. These data demonstrate that oligomerization is a fundamental step in Cry toxin action and represent a potential mechanism to protect special ecosystems from the possible effect of Cry toxins on non-target organisms.  相似文献   

5.
We constructed a model for Bacillus thuringiensis Cry1 toxin binding to midgut membrane vesicles from Heliothis virescens. Brush border membrane vesicle binding assays were performed with five Cry1 toxins that share homologies in domain II loops. Cry1Ab, Cry1Ac, Cry1Ja, and Cry1Fa competed with 125I-Cry1Aa, evidence that each toxin binds to the Cry1Aa binding site in H. virescens. Cry1Ac competed with high affinity (competition constant [Kcom] = 1.1 nM) for 125I-Cry1Ab binding sites. Cry1Aa, Cry1Fa, and Cry1Ja also competed for 125I-Cry1Ab binding sites, though the Kcom values ranged from 179 to 304 nM. Cry1Ab competed for 125I-Cry1Ac binding sites (Kcom = 73.6 nM) with higher affinity than Cry1Aa, Cry1Fa, or Cry1Ja. Neither Cry1Ea nor Cry2Aa competed with any of the 125I-Cry1A toxins. Ligand blots prepared from membrane vesicles were probed with Cry1 toxins to expand the model of Cry1 receptors in H. virescens. Three Cry1A toxins, Cry1Fa, and Cry1Ja recognized 170- and 110-kDa proteins that are probably aminopeptidases. Cry1Ab and Cry1Ac, and to some extent Cry1Fa, also recognized a 130-kDa molecule. Our vesicle binding and ligand blotting results support a determinant role for domain II loops in Cry toxin specificity for H. virescens. The shared binding properties for these Cry1 toxins correlate with observed cross-resistance in H. virescens.  相似文献   

6.
It is generally accepted that Bacillus thuringiensis Cry toxins insert into the apical membrane of the larval midgut after binding to specific receptors, and there is evidence that the distribution of binding molecules along the midgut is not uniform. By use of the voltage-sensitive dye DiSC3(5) and 125I-labeled Cry1Ac, we have measured the effect of Cry1Ac in terms of permeabilization capacity and of binding parameters on brush border membrane vesicles (BBMV) prepared from the anterior and the posterior regions of the larval midgut from two insect species, Manduca sexta and Helicoverpa armigera. The permeabilizing activity was significantly higher with BBMV from the posterior region than with the one observed in the anterior region in both insect species. Instead, 125I-Cry1Ac bound specifically to BBMV from the two midgut regions, with no significant differences in the binding parameters between the anterior and posterior regions within an insect species. N-acetylgalactosamine inhibition patterns on pore formation and binding differed between anterior and posterior midgut regions and between species, providing evidence of a multifaceted involvement of the sugar in the Cry1Ac mode of action. The analysis of binding and pore formation in different midgut regions could be an effective method to study differences in the mode of action of Cry1Ac toxin in different species.  相似文献   

7.
The toxicity and pore-forming ability of the Bacillus thuringiensis Cry9Ca insecticidal toxin, its single-site mutants, R164A and R164K, and the 55-kDa fragment resulting from its proteolytic cleavage at residue 164 were investigated using Manduca sexta neonate larvae and fifth-instar larval midgut brush border membrane vesicles, respectively. Neither the mutations nor the proteolytic cleavage altered Cry9Ca toxicity. Compared with Cry1Ac, Cry9Ca and its mutants formed large poorly selective pores in the vesicles. Pore formation was highly dependent on pH, however, especially for wild-type Cry9Ca and both mutants. Increasing pH from 6.5 to 10.5 resulted in an irregular step-wise decrease in membrane permeabilization that was not related to a change in the ionic selectivity of the pores. Pore formation was much slower with Cry9Ca and its derivatives, including the 55-kDa fragment, than with Cry1Ac and its rate was not influenced by the presence of protease inhibitors or a reducing agent.  相似文献   

8.
9.
《Journal of Asia》1999,2(2):153-162
Pesticidal activity of different Bacillus thuringiensis (Bt) δ-endotoxins, Cry1Aa, Cry1Ab, Cry1Ac and Cry2A, were investigated against Helicoverpa armigera infesting cotton crop worldwide. Cry1Ac toxin was found to be the most potent toxin towards H. armigera. All selected Bt toxins were found stable in vitro processing by midgut juice of H. armigera. Saturation and competition binding experiments were performed with iodine-125 labeled proteins and brush border membrane vesicles prepared from the midgut of H. armigera. The results show saturable, specific and high affinity of all toxins except for Cry2A. Both the toxins were bound with low binding affinity but with high binding site concentration. Heterologous competition experiments showed that Cry1Aa, Cry1Ab and Cry1Ac recognized or share the same binding site which is different from that of Cry2A. The data suggest that development of multiple toxin system in transgenic plants with toxin pyramiding, which recognize different binding sites, may be useful in the deployment strategies to decrease the rate of pest adaptation to Bt toxins in transgenic plants.  相似文献   

10.
Resistance to Bacillus thuringiensis Cry1Ac toxin was characterized in a population of Helicoverpa zea larvae previously shown not to have an alteration in toxin binding as the primary resistance mechanism to this toxin. Cry1Ac-selected larvae (AR1) were resistant to protoxins and toxins of Cry1Ab, Cry1Ac, and the corresponding modified proteins lacking helix α-1 (Cry1AbMod and Cry1AcMod). When comparing brush border membrane vesicles (BBMVs) prepared from susceptible (LC) and AR1 larval midguts, there were only negligible differences in overall Cry1Ac toxin binding, though AR1 had 18% reversible binding, in contrast to LC, in which all binding was irreversible. However, no differences were detected in Cry1Ac-induced pore formation activity in BBMVs from both strains. Enzymatic activities of two putative Cry1Ac receptors (aminopeptidase N [APN] and alkaline phosphatase [ALP]) were significantly reduced (2-fold and 3-fold, respectively) in BBMVs from AR1 compared to LC larvae. These reductions corresponded to reduced protein levels in midgut luminal contents only in the case of ALP, with an almost 10-fold increase in specific ALP activity in midgut fluids from AR1 compared to LC larvae. Partially purified H. zea ALP bound Cry1Ac toxin in ligand blots and competed with Cry1Ac toxin for BBMV binding. Based on these results, we suggest the existence of at least one mechanism of resistance to Cry1A toxins in H. zea involving binding of Cry1Ac toxin to an ALP receptor in the larval midgut lumen of resistant larvae.  相似文献   

11.
Bt toxins ingested by insect pests can bind to midgut receptors and cause death, although several steps in this process remain unclear. Multiple Bt toxin receptors have been identified in Lepidoptera, including a cadherin-like protein (CaLP), which is central to several models explaining Bt toxins’ mode of action. Mutations in the Plutella xylostella ATP-dependent binding cassette transporter C2 (Px-abcc2), rather than CaLP, are genetically linked with Bt Cry1Ac resistance. Here we expressed Px-abcc2 in Drosophila and performed larval bioassays to determine whether this protein acts as an effective Bt receptor. Cry1Ac had no effect on larvae expressing Px-abcc2 in salivary glands, yet larvae expressing Px-abcc2 in the midgut were highly susceptible to both Cry1Ac protoxin and trypsin activated toxin. Furthermore, the CaLP orthologue has been lost from the Drosophila genome, making this a useful system for investigating the role of CaLP peptides from Manduca sexta (CR12-MPED), which are known to act as Bt synergists in larval feeding assays. Drosophila larvae expressing Px-ABCC2 in the midgut were fed LD50 concentrations of Cry1Ac toxin or protoxin, plus purified CR12-MPED cloned from M. sexta or P. xylostella. The M. sexta CR12-MPED protein acted synergistically with Cry1Ac protoxin and activated toxin significantly more effectively than the P. xylostella peptide. This work demonstrates ABCC2 is the major functional Cry1Ac receptor for P. xylostella and the importance of CaLP proteins in Bt mode of action may vary between different lepidopteran species.  相似文献   

12.
Cry toxins produced by Bacillus thuringiensis bacteria are insecticidal proteins used worldwide in the control of different insect pests. Alterations in toxin-receptor interaction represent the most common mechanism to induce resistance to Cry toxins in lepidopteran insects. Cry toxins bind with high affinity to the cadherin protein present in the midgut cells and this interaction facilitates the proteolytic removal of helix ??-1 and pre-pore oligomer formation. Resistance to Cry toxins has been linked with mutations in the cadherin gene. One strategy effective to overcome larval resistance to Cry1A toxins is the production of Cry1AMod toxins that lack helix ??-1. Cry1AMod are able to form oligomeric structures without binding to cadherin receptor and were shown to be toxic to cadherin-silenced Manduca sexta larvae and Pectinophora gossypiella strain with resistance linked to mutations in a cadherin gene.We developed Cry1AbMod tobacco transgenic plants to analyze if Cry1AMod toxins can be expressed in transgenic crops, do not affect plant development and are able to control insect pests. Our results show that production of the Cry1AbMod toxin in transgenic plants does not affect plant development, since these plants exhibited healthy growth, produced abundant seeds, and were virtually undistinguishable from control plants. Most importantly, Cry1AbMod protein produced in tobacco plants retains its functional toxic activity against susceptible and tolerant M. sexta larvae due to the silencing of cadherin receptor by RNAi. These results suggest that CryMod toxins could potentially be expressed in other transgenic crops to protect them against both toxin-susceptible and resistant lepidopteran larvae affected in cadherin gene.  相似文献   

13.
To test the possibility that proteolytic cleavage by midgut juice enzymes could enhance or inhibit the activity of Bacillus thuringiensis insecticidal toxins, once activated, the effects of different toxins on the membrane potential of the epithelial cells of isolated Manduca sexta midguts in the presence and absence of midgut juice were measured. While midgut juice had little effect on the activity of Cry1Aa, Cry1Ac, Cry1Ca, Cry1Ea, and R233A, a mutant of Cry1Aa from which one of the four salt bridges linking domains I and II of the toxin was eliminated, it greatly increased the activity of Cry1Ab. In addition, when tested in the presence of a cocktail of protease inhibitors or when boiled, midgut juice retained almost completely its capacity to enhance Cry1Ab activity, suggesting that proteases were not responsible for the stimulation. On the other hand, in the absence of midgut juice, the cocktail of protease inhibitors also enhanced the activity of Cry1Ab, suggesting that proteolytic cleavage by membrane proteases could render the toxin less effective. The lower toxicity of R233A, despite a similar in vitro pore-forming ability, compared with Cry1Aa, cannot be accounted for by an increased susceptibility to midgut proteases. Although these assays were performed under conditions approaching those found in the larval midgut, the depolarizing activities of the toxins correlated only partially with their toxicities.  相似文献   

14.
After binding to specific receptors, Cry toxins form pores in the midgut apical membrane of susceptible insects. The receptors could form part of the pore structure or simply catalyze pore formation and consequently be recycled. To discriminate between these possibilities, the kinetics of pore formation in brush border membrane vesicles isolated from Manduca sexta was studied with an osmotic swelling assay. Pore formation, as deduced from changes in membrane permeability induced by Cry1Ac during a 60-min incubation period, was strongly dose-dependent, but rapidly reached a maximum as toxin concentration was increased. Following exposure of the vesicles to the toxin, the osmotic swelling rate reached a maximum shortly after a delay period. Under these conditions, at relatively high toxin concentrations, the maximal osmotic swelling rate increased linearly with toxin concentration. When vesicles were incubated for a short time with the toxin and then rapidly cooled to prevent the formation of new pores before and during the osmotic swelling experiment, a plateau in the rate of pore formation was observed as toxin concentration was increased. Taken together, these results suggest that the receptors do not act as simple catalysts of pore formation, but remain associated with the pores once they are formed.  相似文献   

15.
Thirteen of the most common lepidopteran-specific Cry proteins of Bacillus thuringiensis have been tested for their efficacy against newly hatched larvae of two populations of the spiny bollworm, Earias insulana. At a concentration of 100 μg of toxin per milliliter of artificial diet, six Cry toxins (Cry1Ca, Cry1Ea, Cry1Fa, Cry1Ja, Cry2Aa, and Cry2Ab) were not toxic at all. Cry1Aa, Cry1Ja, and Cry2Aa did not cause mortality but caused significant inhibition of growth. The other Cry toxins (Cry1Ab, Cry1Ac, Cry1Ba, Cry1Da, Cry1Ia, and Cry9Ca) were toxic to E. insulana larvae. The 50% lethal concentration values of these toxins ranged from 0.39 to 21.13 μg/ml (for Cry9Ca and Cry1Ia, respectively) for an E. insulana laboratory colony originating from Egypt and from 0.20 to 4.25 μg/ml (for Cry9Ca and Cry1Da, respectively) for a laboratory colony originating from Spain. The relative potencies of the toxins in the population from Egypt were highest for Cry9Ca and Cry1Ab, and they were both significantly more toxic than Cry1Ac and Cry1Ba, followed by Cry1Da and finally Cry1Ia. In the population from Spain, Cry9Ca was the most toxic, followed in decreasing order by Cry1Ac and Cry1Ba, and the least toxic was Cry1Da. Binding experiments were performed to test whether the toxic Cry proteins shared binding sites in this insect. 125I-labeled Cry1Ac and Cry1Ab and biotinylated Cry1Ba, Cry1Ia, and Cry9Ca showed specific binding to the brush border membrane vesicles from E. insulana. Competition binding experiments among these toxins showed that only Cry1Ab and Cry1Ac competed for the same binding sites, indicating a high possibility that this insect may develop cross-resistance to Cry1Ab upon exposure to Cry1Ac transgenic cotton but not to the other toxins tested.  相似文献   

16.
Helix α4 of Bacillus thuringiensis Cry toxins is thought to play a critical role in the toxins' mode of action. Accordingly, single-site substitutions of many Cry1Aa helix α4 amino acid residues have previously been shown to cause substantial reductions in the protein's pore-forming activity. Changes in protein structure and formation of intermolecular disulfide bonds were investigated as possible factors responsible for the inactivity of these mutants. Incubation of each mutant with trypsin and chymotrypsin for 12 h did not reveal overt structural differences with Cry1Aa, although circular dichroism was slightly decreased in the 190- to 210-nm region for the I132C, S139C, and V150C mutants. The addition of dithiothreitol stimulated pore formation by the E128C, I132C, S139C, T142C, I145C, P146C, and V150C mutants. However, in the presence of these mutants, the membrane permeability never reached that measured for Cry1Aa, indicating that the formation of disulfide bridges could only partially explain their loss of activity. The ability of a number of inactive mutants to compete with wild-type Cry1Aa for pore formation in brush border membrane vesicles isolated from Manduca sexta was also investigated with an osmotic swelling assay. With the exception of the L147C mutant, all mutants tested could inhibit the formation of pores by Cry1Aa, indicating that they retained receptor binding ability. These results strongly suggest that helix α4 is involved mainly in the postbinding steps of pore formation.  相似文献   

17.
Bacillus thuringiensis Cry2Ab toxin has been used in combination with Cry1Ac for resistance management on the Bt-cotton that is widely planted worldwide. However, little is known regarding Cry2Ab mode of action. Particularly, there is a gap of knowledge on the identification of insect midgut proteins that bind Cry2Ab and mediate toxicity. In the case of Cry1Ab toxin, a transmembrane cadherin protein and glycosyl-phosphatidylinositol (GPI) anchored proteins like aminopeptidase-N1 (APN1) or alkaline-phosphatase (ALP) from Manduca sexta, have been shown to be important for oligomer formation and insertion into the membrane. Binding competition experiments showed that Cry2Ab toxin does not share binding sites with Cry1Ab toxin in M. sexta brush border membrane vesicles (BBMV). Also, that Cry2Ab shows reduced binding to the Cry1Ab binding molecules cadherin, APN1 or ALP. Finally, ligand blot experiments and protein sequence by LC–MS/MS identified APN2 isoform as a Cry2Ab binding protein. Cloning and expression of APN2 confirmed that APN2 is a Cry2Ab binding protein.  相似文献   

18.
Pore formation in the apical membrane of the midgut epithelial cells of susceptible insects constitutes a key step in the mode of action of Bacillus thuringiensis insecticidal toxins. In order to study the mechanism of toxin insertion into the membrane, at least one residue in each of the pore-forming-domain (domain I) interhelical loops of Cry1Aa was replaced individually by cysteine, an amino acid which is normally absent from the activated Cry1Aa toxin, using site-directed mutagenesis. The toxicity of most mutants to Manduca sexta neonate larvae was comparable to that of Cry1Aa. The ability of each of the activated mutant toxins to permeabilize M. sexta midgut brush border membrane vesicles was examined with an osmotic swelling assay. Following a 1-h preincubation, all mutants except the V150C mutant were able to form pores at pH 7.5, although the W182C mutant had a weaker activity than the other toxins. Increasing the pH to 10.5, a procedure which introduces a negative charge on the thiol group of the cysteine residues, caused a significant reduction in the pore-forming abilities of most mutants without affecting those of Cry1Aa or the I88C, T122C, Y153C, or S252C mutant. The rate of pore formation was significantly lower for the F50C, Q151C, Y153C, W182C, and S252C mutants than for Cry1Aa at pH 7.5. At the higher pH, all mutants formed pores significantly more slowly than Cry1Aa, except the I88C mutant, which formed pores significantly faster, and the T122C mutant. These results indicate that domain I interhelical loop residues play an important role in the conformational changes leading to toxin insertion and pore formation.Once ingested by susceptible insect larvae, the insecticidal crystal proteins of Bacillus thuringiensis are solubilized and converted to their toxic form by midgut proteases. The activated toxins bind to specific receptors on the surface of the luminal membrane of midgut columnar cells, insert into the membrane, and form pores that abolish transmembrane ionic gradients and osmotic balance, leading to the disruption of the epithelium and death of the insect (47, 51). Members of the B. thuringiensis Cry toxin family for which the atomic structure has been reported share a similar three-domain organization in which domain I is composed of a bundle of six amphipathic α-helices surrounding a hydrophobic helix (α5), and domains II and III are formed mostly of β-sheets (7, 8, 18, 26, 37, 38, 43). While domains II and III are thought to be involved in receptor binding and toxin specificity (47), domain I is believed to play a major role in membrane insertion and pore formation (51). Toxin fragments corresponding to domain I of Cry1Ac (62), Cry3Aa (53), and Cry3Ba (61) or to the first five α-helices of Cry4B (48) have been shown to form pores in model membranes. Pore formation in artificial membranes has also been demonstrated with synthetic peptides corresponding to α5 of Cry1Ac (13) and Cry3Aa (19, 21) and to the α4-loop-α5 segment of Cry3Aa (23). Spectroscopic studies have also revealed that while synthetic peptides corresponding to α4 and α5 can coassemble within a lipid bilayer, those corresponding to α2, α3, α6, and α7 adopt a membrane surface orientation (20, 22). In agreement with these findings, α4 was shown to line the lumen of the pores (42). On the other hand, convincing evidence supporting previous suggestions that most of the toxin molecule may become imbedded in the membrane (3, 39, 60) has recently been reported (44, 45).Thus, several models have been proposed for the mechanism of toxin insertion and pore formation (4, 9, 28, 32, 39, 44, 52, 56). Although these models differ in the identities of the toxin segments that are suggested to insert into the membrane, they all imply that the toxin undergoes conformational changes following binding to the membrane surface. Even though such changes imply rotations about the polypeptide backbone in domain I interhelical loops, little attention has been devoted so far to the role of domain I loop residues in pore formation.In the present study, amino acid residues strategically located within each of these loops in Cry1Aa were replaced by a cysteine using site-directed mutagenesis. The resulting mutant toxins were assayed with Manduca sexta midgut brush border membrane vesicles using a light-scattering technique. Mutations mapping within several of these loops altered the functional properties of Cry1Aa, suggesting the involvement of most domain I α-helices in the pore-forming process.  相似文献   

19.
Five economically important crop pests, Manduca sexta, Pieris brassicae, Mamestra brassicae, Spodoptera exigua, and Agrotis ipsilon, were tested at two stages of larval development for susceptibility to Bacillus thuringiensis toxins Cry1Ac, Cry1Ca, Cry1J, and Cry1Ba. Bioassay results for M. sexta showed that resistance to all four Cry toxins increased from the neonate stage to the third-instar stage; the increase in resistance was most dramatic for Cry1Ac, the potency of which decreased 37-fold. More subtle increases in resistance during larval development were seen in M. brassicae for Cry1Ca and in P. brassicae for Cry1Ac and Cry1J. By contrast, the sensitivity of S. exigua did not change during development. At both larval stages, A. ipsilon was resistant to all four toxins. Because aminopeptidase N (APN) is a putative Cry1 toxin binding protein, APN activity was measured in neonate and third-instar brush border membrane vesicles (BBMV). With the exception of S. exigua, APN activity was found to be significantly lower in neonates than in third-instar larvae and thus inversely correlated with increased resistance during larval development. The binding characteristics of iodinated Cry1 toxins were determined for neonate and third-instar BBMV. In M. sexta, the increased resistance to Cry1Ac and Cry1Ba during larval development was positively correlated with fewer binding sites in third-instar BBMV than in neonate BBMV. The other species-instar-toxin combinations did not reveal positive correlations between potency and binding characteristics. The correlation between binding and potency was inconsistent for the species-instar-toxin combinations used in this study, reaffirming the complex mode of action of Cry1 toxins.  相似文献   

20.
Binding of the insecticidal Bacillus thuringiensis Cry1Ac toxin to the putative receptor aminopeptidase N is specifically inhibited by N-acetylgalactosamine (GalNAc), suggesting that this toxin recognises GalNAc on the receptor. A possible structural basis for involvement of domain III of the toxin in carbohydrate-mediated receptor recognition was noted in the similarity between the domain III fold of the related toxin Cry3A and a carbohydrate-binding domain in the 1,4-beta-glucanase from Cellulomonas fimi. This possibility was investigated by making selected mutations in domain III of the Cry1Ac delta-endotoxin. Mutagenesis of residues Asn506, Gln509 or Tyr513 resulted in toxins with reduced binding and a slower rate of pore formation in Manduca sexta midgut membrane vesicles compared to the wild-type Cry1Ac. These mutants also showed reduced binding to the 120 kDa Cry1Ac putative receptor aminopeptidase N. Unlike the wild-type toxin, binding of the triple mutant N506D,Q509E,Y513A (Tmut) to M. sexta midgut membrane vesicles could not be inhibited by GalNAc. These data indicate that GalNAc binding is located on domain III of Cry1Ac and therefore support a lectin-like role for this domain. A preliminary analysis of the Cry1Ac crystal structure locates Asn506, Gln509 and Tyr513 in a region on and adjacent to beta-16 in domain III, which has a unique conformation compared to the other known Cry structures. These residues are in a favourable position to interact with either soluble or protein-bound carbohydrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号