首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ribosome is a complex macromolecular assembly capable of translating mRNA sequence into amino acid sequence. The adaptor molecule of translation is tRNA, but the delivery of aminoacyl-tRNAs--the primary substrate of the ribosome--relies on the formation of a ternary complex with elongation factor Tu (EF-Tu) and GTP. Likewise, elongation factor G (EF-G) is required to reset the elongation cycle through the translocation of tRNAs. Recent structures and biochemical data on ribosomes in complex with the ternary complex or EF-G have shed light on the mode of action of the elongation factors, and how this interplays with the state of tRNAs and the ribosome. A model emerges of the specific routes of conformational changes mediated by tRNA and the ribosome that trigger the GTPase activity of the elongation factors on the ribosome.  相似文献   

2.
By using single-molecule fluorescence resonance energy transfer (smFRET), we observe the real-time dynamic coupling between the ribosome, labeled at the L1 stalk, and transfer RNA (tRNA). We find that an interaction between the ribosomal L1 stalk and the newly deacylated tRNA is established spontaneously upon peptide bond formation; this event involves coupled movements of the L1 stalk and tRNAs as well as ratcheting of the ribosome. In the absence of elongation factor G, the entire pretranslocation ribosome fluctuates between just two states: a nonratcheted state, with tRNAs in their classical configuration and no L1 stalk-tRNA interaction, and a ratcheted state, with tRNAs in an intermediate hybrid configuration and a direct L1 stalk-tRNA interaction. We demonstrate that binding of EF-G shifts the equilibrium toward the ratcheted state. Real-time smFRET experiments reveal that the L1 stalk-tRNA interaction persists throughout the translocation reaction, suggesting that the L1 stalk acts to direct tRNA movements during translocation.  相似文献   

3.
Spirin AS 《FEBS letters》2002,514(1):2-10
General principles of structure and function of the ribosome are surveyed, and the translating ribosome is regarded as a molecular conveying machine. Two coupled conveying processes, the passing of compact tRNA globules and the drawing of linear mRNA chain through intraribosomal channel, are considered driven by discrete acts of translocation during translation. Instead of mechanical transmission mechanisms and power-stroke 'motors', thermal motion and chemically induced changes in affinities of ribosomal binding sites for their ligands (tRNAs, mRNA, elongation factors) are proposed to underlie all the directional movements within the ribosomal complex. The GTP-dependent catalysis of conformational transitions by elongation factors during translation is also discussed.  相似文献   

4.
A crucial step in translation is the translocation of tRNAs through the ribosome. In the transition from one canonical site to the other, the tRNAs acquire intermediate configurations, so-called hybrid states. At this stage, the small subunit is rotated with respect to the large subunit, and the anticodon stem loops reside in the A and P sites of the small subunit, while the acceptor ends interact with the P and E sites of the large subunit. In this work, by means of cryo-EM and particle classification procedures, we visualize the hybrid state of both A/P and P/E tRNAs in an authentic factor-free ribosome complex during translocation. In addition, we show how the repositioning of the tRNAs goes hand in hand with the change in the interplay between S13, L1 stalk, L5, H68, H69, and H38 that is caused by the ratcheting of the small subunit.  相似文献   

5.
During the translocation step of the elongation cycle, two tRNAs together with the mRNA move synchronously and rapidly on the ribosome. The movement is catalyzed by the binding of elongation factor G (EF-G) and driven by GTP hydrolysis. Here we study structural changes of the ribosome related to EF-G binding and translocation by monitoring the accessibility of ribosomal RNA (rRNA) for chemical modification by dimethyl sulfate or cleavage by hydroxyl radicals generated by Fe(II)-EDTA. In the state of the ribosome that is formed upon binding of EF-G but before the movement of the tRNAs takes place, residues 1054,1196, and 1201 in helix 34 in 16S rRNA are strongly protected. The protections depend on EF-G binding, but do not require GTP hydrolysis, and are lost upon translocation. Mutants of EF-G, which are active in ribosome binding and GTP hydrolysis but impaired in translocation, do not bring about the protections. According to cryo-electron microscopy (Stark et al., Cell, 2000, 100:301-309), there is no contact of EF-G with the protected residues of helix 34 in the pretranslocation state, suggesting that the observed protections are due to an induced conformational change. Thus, the present results indicate that EF-G binding to the pretranslocation ribosome induces a structural change of the head of the 30S subunit that is essential for subsequent tRNA-mRNA movement in translocation.  相似文献   

6.
In every round of translation elongation, EF-G catalyzes translocation, the movement of tRNAs (and paired codons) to their adjacent binding sites in the ribosome. Previous kinetic studies have shown that the rate of tRNA–mRNA movement is limited by a conformational change in the ribosome termed ‘unlocking’. Although structural studies offer some clues as to what unlocking might entail, the molecular basis of this conformational change remains an open question. In this study, the contribution of intersubunit bridges to the energy barrier of translocation was systematically investigated. Unlike those targeting B2a and B3, mutations that disrupt bridges B1a, B4, B7a and B8 increased the maximal rate of both forward (EF-G dependent) and reverse (spontaneous) translocation. As bridge B1a is predicted to constrain 30S head movement and B4, B7a and B8 are predicted to constrain intersubunit rotation, these data provide evidence that formation of the unlocked (transition) state involves both 30S head movement and intersubunit rotation.  相似文献   

7.
Stabilization of the ribosomal complexes plays an important role in translational control. Mechanisms of ribosome stabilization have been studied in detail for initiation and elongation of eukaryotic translation, but almost nothing is known about stabilization of eukaryotic termination ribosomal complexes. Here, we present one of the mechanisms of fine-tuning of the translation termination process in eukaryotes. We show that certain deacylated tRNAs, remaining in the E site of the ribosome at the end of the elongation cycle, increase the stability of the termination and posttermination complexes. Moreover, only the part of eRF1 recognizing the stop codon is stabilized in the A site of the ribosome, and the stabilization is not dependent on the hydrolysis of peptidyl-tRNA. The determinants, defining this property of the tRNA, reside in the acceptor stem. It was demonstrated by site-directed mutagenesis of tRNAVal and construction of a mini-helix structure identical to the acceptor stem of tRNA. The mechanism of this stabilization is different from the fixation of the unrotated state of the ribosome by CCA end of tRNA or by cycloheximide in the E site. Our data allow to reveal the possible functions of the isodecoder tRNAs in eukaryotes.  相似文献   

8.
Translation elongation factor G (EF‐G) in bacteria plays two distinct roles in different phases of the translation system. EF‐G catalyses the translocation of tRNAs on the ribosome in the elongation step, as well as the dissociation of the post‐termination state ribosome into two subunits in the recycling step. In contrast to this conventional view, it has very recently been demonstrated that the dual functions of bacterial EF‐G are distributed over two different EF‐G paralogues in human mitochondria. In the present study, we show that the same division of roles of EF‐G is also found in bacteria. Two EF‐G paralogues are found in the spirochaete Borrelia burgdorferi, EF‐G1 and EF‐G2. We demonstrate that EF‐G1 is a translocase, while EF‐G2 is an exclusive recycling factor. We further demonstrate that B. burgdorferi EF‐G2 does not require GTP hydrolysis for ribosome disassembly, provided that translation initiation factor 3 (IF‐3) is present in the reaction. These results indicate that two B. burgdorferi EF‐G paralogues are close relatives to mitochondrial EF‐G paralogues rather than the conventional bacterial EF‐G, in both their phylogenetic and biochemical features.  相似文献   

9.
During translation, the nucleic acid language employed by genes is translated into the amino acid language used by proteins. The translator is the ribosome, while the dictionary employed is known as the genetic code. The genetic information is presented to the ribosome in the form of a mRNA, and tRNAs connect the two languages. Translation takes place in three steps: initiation, elongation, and termination. After a protein has been synthesized, the components of the translation apparatus are recycled. During each phase of translation, the ribosome collaborates with specific translation factors, which secure a proper balance between speed and fidelity. Notably, initiation, termination, and ribosomal recycling occur only once per protein produced during normal translation, while the elongation step is repeated a large number of times, corresponding to the number of amino acids constituting the protein of interest. In bacteria, elongation factor Tu plays a central role during the selection of the correct amino acids throughout the elongation phase of translation. Elongation factor Tu is the main subject of this review.  相似文献   

10.
EF-G catalyzes translocation of mRNA and tRNAs within the ribosome during protein synthesis. Detection of structural states in the reaction sequence that are not highly populated can be facilitated by studying the process one molecule at a time. Here we present single-molecule studies of translocation showing that, for ribosomes engaged in poly(Phe) synthesis, fluorescence resonance energy transfer (FRET) between the G' domain of EF-G and the N-terminal domain of ribosomal protein L11 occurs within two rapidly interconverting states, having FRET efficiencies of 0.3 and 0.6. The antibiotic fusidic acid increases the population of the 0.6 state, indicating that it traps the ribosome.EF-G complex in a preexisting conformation formed during translation. Only the 0.3 state is observed when poly(Phe) synthesis is prevented by omission of EF-Tu, or in studies on vacant ribosomes. These results suggest that the 0.6 state results from the conformational lability of unlocked ribosomes formed during translocation. An idling state, possibly pertinent to regulation of protein synthesis, is detected in some ribosomes in the poly(Phe) system.  相似文献   

11.
The elongation cycle of protein synthesis is completed by translocation, a rearrangement during which two tRNAs bound to the mRNA move on the ribosome. The reaction is promoted by elongation factor G (EF-G) and accelerated by GTP hydrolysis. Here we report a pre-steady-state kinetic analysis of translocation. The kinetic model suggests that GTP hydrolysis drives a conformational rearrangement of the ribosome that precedes and limits the rates of tRNA-mRNA translocation and Pi release from EF-G.GDP.Pi. The latter two steps are intrinsically rapid and take place at random. These results indicate that the energy of GTP hydrolysis is utilized to promote the ribosome rearrangement and to bias spontaneous fluctuations within the ribosome-EF-G complex toward unidirectional movement of mRNA and tRNA.  相似文献   

12.
Precise and coordinated movement of the tRNA-mRNA complex within the ribosome is a fundamental step during protein biosynthesis. The molecular mechanism for this process is still poorly understood. Here we describe a new sensitive method for monitoring elongation factor G-dependent translocation of the mRNA in the ribosome. In this method, the fluorescent probe pyrene is covalently attached to the 3' end of a short mRNA sequence at position +9. Translocation of the mRNA by one codon results in a significant decrease in the fluorescence emission of pyrene and can be used to directly monitor mRNA movement using rapid kinetic methods. Importantly, this method offers the flexibility of using any tRNA or tRNA analog in order to elucidate the molecular mechanism of translocation. Our results show that the mRNA is translocated at the same rate as the tRNAs, which is consistent with the view that the movement of the tRNAs and the mRNA are coupled in the ribosome. Furthermore, an anticodon stem-loop analog of tRNA is translocated from the ribosomal A site at a rate constant that is 350-fold lower than peptidyl tRNA, indicating that the D stem, T stem and acceptor stem of A site tRNA contribute significantly to the rate of translocation.  相似文献   

13.
Translocation of tRNA and mRNA through the ribosome is one of the most dynamic events during protein synthesis. In the cell, translocation is catalysed by EF-G (elongation factor G) and driven by GTP hydrolysis. Major unresolved questions are: how the movement is induced and what the moving parts of the ribosome are. Recent progress in time-resolved cryoelectron microscopy revealed trajectories of tRNA movement through the ribosome. Driven by thermal fluctuations, the ribosome spontaneously samples a large number of conformational states. The spontaneous movement of tRNAs through the ribosome is loosely coupled to the motions within the ribosome. EF-G stabilizes conformational states prone to translocation and promotes a conformational rearrangement of the ribosome (unlocking) that accelerates the rate-limiting step of translocation: the movement of the tRNA anticodons on the small ribosomal subunit. EF-G acts as a Brownian ratchet providing directional bias for movement at the cost of GTP hydrolysis.  相似文献   

14.
Ribosomes are remarkable in their malleability to accept diverse aminoacyl-tRNA substrates from both the same organism and other organisms or domains of life. This is a critical feature of the ribosome that allows the use of orthogonal translation systems for genetic code expansion. Optimization of these orthogonal translation systems generally involves focusing on the compatibility of the tRNA, aminoacyl-tRNA synthetase, and a non-canonical amino acid with each other. As we expand the diversity of tRNAs used to include non-canonical structures, the question arises as to the tRNA suitability on the ribosome. Specifically, we investigated the ribosomal translation of allo-tRNAUTu1, a uniquely shaped (9/3) tRNA exploited for site-specific selenocysteine insertion, using single-molecule fluorescence. With this technique we identified ribosomal disassembly occurring from translocation of allo-tRNAUTu1 from the A to the P site. Using cryo-EM to capture the tRNA on the ribosome, we pinpointed a distinct tertiary interaction preventing fluid translocation. Through a single nucleotide mutation, we disrupted this tertiary interaction and relieved the translation roadblock. With the continued diversification of genetic code expansion, our work highlights a targeted approach to optimize translation by distinct tRNAs as they move through the ribosome.  相似文献   

15.
The translation of genetic information into proteins is a fundamental process of life. Stepwise addition of amino acids to the growing polypeptide chain requires the coordinated movement of mRNA and tRNAs through the ribosome, a process known as translocation. Here, we review current understanding of the kinetics and mechanics of translocation, with particular emphasis on the structure of a functional mammalian ribosome stalled during translocation by an mRNA pseudoknot. In the context of a pseudoknot-stalled complex, the translocase EF-2 is seen to compress a hybrid-state tRNA into a strained conformation. We propose that this strain energy helps overcome the kinetic barrier to translocation and drives tRNA into the P-site, with EF-2 biasing this relaxation in one direction. The tRNA can thus be considered a molecular spring and EF-2 a Brownian ratchet in a "spring-and-ratchet" system within the translocation process.  相似文献   

16.
Rodnina  M. V.  Semenkov  Yu. P.  Savelsbergh  A.  Katunin  V. I.  Peske  F.  Wilden  B.  Wintermeyer  W. 《Molecular Biology》2001,35(4):559-568
During the translocation step of the elongation cycle of peptide synthesis two tRNAs together with the mRNA move synchronously and rapidly on the ribosome. Translocation is catalyzed by the elongation factor G (EF-G) and requires GTP hydrolysis. The fundamental biochemical features of the process were worked out in the 1970–80s, to a large part by A.S. Spirin and his colleagues. Recent results from pre-steady-state kinetic analysis and cryoelectron microscopy suggest that translocation is a multistep dynamic process that entails large-scale structural rearrangements of both ribosome and EF-G. Kinetic and thermodynamic data, together with the structural information on the conformational changes in the ribosome and EF-G, provide a detailed mechanistic model of translocation and suggest a mechanism of translocation catalysis by EF-G.  相似文献   

17.
During the translocation step of the elongation cycle of peptide synthesis two tRNAs together with the mRNA move synchronously and rapidly on the ribosome. Translocation is catalyzed by the elongation factor G (EF-G) and requires GTP hydrolysis. The fundamental biochemical features of the process were worked out in the 1970-80s, to a large part by A.S. Spirin and his colleagues. Recent results from pre-steady-state kinetic analysis and cryoelectron microscopy suggest that translocation is a multistep dynamic process that entails large-scale structural rearrangements of both ribosome and EF-G. Kinetic and thermodynamic data, together with the structural information on the conformational changes of the ribosome and of EF-G, provide a detailed mechanistic model of translocation and suggest a mechanism of translocation catalysis by EF-G.  相似文献   

18.
The electrostatic properties of the 70S ribosome of Thermus thermophilus were studied qualitatively by solving the Poisson-Boltzmann (PB) equation in aqueous solution and with physiological ionic strength. The electrostatic potential was calculated for conformations of the ribosome derived by recent normal mode analysis (Tama, F., et al. Proc Natl Acad Sci USA 2003 100, 9319-9323) of the ratchet-like reorganization that occurs during translocation (Frank, J.; Agrawal, R. K. Nature 2000 406, 318-322). To solve the PB equation, effective parameters (charges and radii), applicable to a highly charged backbone model of the ribosome, were developed. Regions of positive potential were found at the binding site of the elongation factors G and Tu, as well as where the release factors bind. Large positive potential areas are especially pronounced around the L11 and L6 proteins. The region around the L1 protein is also positively charged, supporting the idea that L1 may interact with the E-site tRNA during its release from the ribosome after translocation. Functional rearrangement of the ribosome leads to electrostatic changes which may help the translocation of the tRNAs during the elongation stage.  相似文献   

19.
Elongation factor G (EF‐G) promotes the movement of two tRNAs and the mRNA through the ribosome in each cycle of peptide elongation. During translocation, the tRNAs transiently occupy intermediate positions on both small (30S) and large (50S) ribosomal subunits. How EF‐G and GTP hydrolysis control these movements is still unclear. We used fluorescence labels that specifically monitor movements on either 30S or 50S subunits in combination with EF‐G mutants and translocation‐specific antibiotics to investigate timing and energetics of translocation. We show that EF‐G–GTP facilitates synchronous movements of peptidyl‐tRNA on the two subunits into an early post‐translocation state, which resembles a chimeric state identified by structural studies. EF‐G binding without GTP hydrolysis promotes only partial tRNA movement on the 50S subunit. However, rapid 30S translocation and the concomitant completion of 50S translocation require GTP hydrolysis and a functional domain 4 of EF‐G. Our results reveal two distinct modes for utilizing the energy of EF‐G binding and GTP hydrolysis and suggest that coupling of GTP hydrolysis to translocation is mediated through rearrangements of the 30S subunit.  相似文献   

20.
A general method is presented that allows the separation of the rigid body motions from the nonrigid body motions of structural subunits when bound in a complex. The application presented considers the motions of the tRNAs: free, bound to the ribosome and to a synthase. We observe that both the rigid body and nonrigid body motions of the structural subunits are highly controlled by the large ribosomal assembly and are important for the functional motions of the assembly. For the intact ribosome, its major parts, the 30S and the 50S subunits, are found to have counterrotational motions in the first few slowest modes, which are consistent with the experimentally observed ratchet motion. The tRNAs are found to have on average approximately 72-75% rigid body motions and principally translational motions within the first 100 slow modes of the complex. Although the three tRNAs exhibit different apparent total motions, after the rigid body motions are removed, the remaining internal motions of all three tRNAs are essentially the same. The direction of the translational motions of the tRNAs are in the same direction as the requisite translocation step, especially in the first slowest mode. Surprisingly the small intrinsically flexible mRNA has all of its internal motions completely inhibited and shows mainly a rigid-body translation in the slow modes of the ribosome complex. On the other hand, the required nonrigid body motions of the tRNA during translocation reveal that the anticodon-stem-loop, as well as the acceptor arm, of the tRNA enjoy a large mobility but act as rigid structural units. In summary, the ribosome exerts its control by enforcing rigidity in the functional parts of the tRNAs as well as in the mRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号