首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A short-day duckweed, Lemna paucicostata 6746, was exposed tocontinuous darkness at 26?C, and the changes in the floral parameters(3) due to far-red and/or red light pulse given at various timesof the dark period were studied. Parameters a (vegetative growth rate) and (flowering ratio)were respectively decreased and increased with a far-red lightpulse given at the outset of the dark period. The decreaseda and the increased remained almost unchanged until the 7thhour, but returned to their initial levels thereafter. The far-redlight actions on a and were reversed by subsequent exposureto red light. Parameter P1 (pre-flower induction period) wasextended by 1 day when far-red and/or red pulse was given atabout the 7th hour of the dark period. A far-jed pulse givenat the outset of the dark period only affected parameter P2(flower induction period). Although the sensitivity of P2 tored light increased with time, its sensitivity to far-red lightremained constant and at about the 7th hour was equally sensitiveto far-red and red lights. Both red and far-red pulses givenlater than the 7th hour were increasingly ineffective on P2.The red/far-red reversibility occurred only for the action onP2 of the far-red pulse applied during the early dark period.Parameter P4 (flower production period) varied rhythmicallyin length with a far-red puke, the maximum shortening and extensionbeing induced by the pulse given at about the 7th and 19th hours,respectively. The sensitivity of P4 to red light also changedrhythmically with an inverse phase angle to the rhythmic responseto farred light, and the far-red and red light actions werereversed respectively by subsequent red and far-red lights. These findings suggested that multiple timing devices includingan hourglass-type clock and a circadian clock are involved induckweed flowering. (Received October 25, 1978; )  相似文献   

2.
Kato  Akira 《Plant & cell physiology》1979,20(7):1273-1283
A brief R pulse inserted in the 15-hr nyctoperiod of the 9L15D regime almost always promoted flower formation of a long-dayduckweed, Lemna gibba G3. This R effect was partially reversedby subsequent FR, which suggests that phytochrome is involvedin the floral processes occurring in the nyctoperiod. The null% R value (% of R in the R/FR-mixture that exerts no effecton flowering) was high during the initial 7.5 hr of the nyctoperiod,then rapidly decreased. The starting time of the rapid decreasein the null % R value was hardly affected by a change in temperaturein the nyctoperiod. A similarly high initial level of the null% R value followed by a rapid decrease was observed when thenyctoperiod was extended to 39 hr. At hour 15 of the 39-hr nyctoperiod,flower promotion by the R puke was not reversed by subsequentFR, although the spectral dependence of the light pulse effectdid not exclude the possible involvement of phytochrome. Atabout hour 21 of the 39-hr nyctoperiod, the null % R value beganto increase rapidly, and almost reached the initial high levelat hour 24 when R-FR reversibility was also restored. These results suggest that the Pfr-level remained high duringthe initial hours of the nyctoperiod, followed by a rapid decreaseirrespective of the temperature of the nyctoperiod. This rapiddecrease in the Pfr-level may play a role in the time measurementof the photoperiodic floral induction of L. gibba G3. (Received February 13, 1979; )  相似文献   

3.
ZIV  MEIRA 《Annals of botany》1981,48(3):353-359
Darkened excized gynophores ceased to elongate after 8–10days in vitro and started to form a pod. Gynophore elongationwas inhibited to a greater extent in total darkness than underlow irradiance, while pod and embryo growth was stimulated indarkness only. Intact gynophores, enclosed in transparent vials containingglass beads, continued to elongate in both light and darkness.In light the elongating gynophores thickened as they penetratedbetween the glass beads, forming a seedless pod at the bottomof the vials. In the dark the elongating gynophores producedsmall pods in which the seeds had started to grow. Excized gynophores elongated in vitro under continuous whitelight at a rate similar to that of intact exposed gynophores.The rate of elongation in vitro, was lower under continuousblue or red-enriched light, than under white light, and wasfurther reduced under continuous far-red irradiation. Pods didnot form during any of the continuous irradiation treatmentsbut only after transfer to darkness, the largest pods formingafter continuous far-red irradiation. As little as 10 min daily exposure to red or far-red irradiancehad the same effect on gynophore elongation as continuous irradiation.Pods formed only when the daily periods of far-red irradiationwere 30 min or less. Reducing the daily exposures to 2 min decreasedthe time to onset of pod formation from 30 to 16 days. Far-redfollowing red irradiation was effective in inhibiting gynophoreelongation stimulated by red irradiation. Pod formation in red/far-redirradiation was only 50 per cent of that observed in far-redirradiation. The involvement of light in continual gynophoreelongation and in the concomitant inhibition of proembryo growthis discussed. Arachis hypogaea L., peanut, gynophore, photomorphogenesis, embryo development, pod development, proembryo  相似文献   

4.
Lemna gibba, a long-day duckweed, can be induced to flower whenthe 10 hr white photoperiod is extended with red or far-redlight. The 10 hr red photoperiod is also effective in inducingflowering when followed by a far-red extension, but a red extensionis ineffective. When 2 hr of far-red light are given immediately after the 10hr red photoperiod, the following red as well as the far-redextension can induce flowering, indicating that the 2 hr far-redlight plays an important role as a starting factor for induction.This red or far-red extension is effectively replaced by a redbreak given at a proper time in the darkness which follows the2 hr far-red light as the starting factor. The effect of thered break in not cancelled by subsequent exposure to far-red,which synergistically promotes flowering. However, a red break given immediately after a proper periodof far-red extension further promotes flowering. The phase sensitiveto the red break coincides with that sensitive to the red breakgiven in darkness. The effect of the red break is reversed bysubsequent exposure to far-red, contrary to the effect of thered break in darkness. Using these results, relation between red and far-red lighton flowering in L. gibba is discussed. (Received July 17, 1971; )  相似文献   

5.
Turion yield in Spirodela polyrhiza, strain SJ, is increasedby increasing the daily light period. This effect is more pronouncedin autotrophic than in mixotrophic conditions. Night-break irradiation(15 mins) increased turion yield by 150 % under the conditionsof an 8-h daily light period. Besides the effect of night-breakirradiation, end-of-day far-red irradiation decreased turionyield with increasing photoperiod, whereas end-of-day red irradiationwas without any effect. This demonstrates the promoting effectof the Pfr form of phytochrome on formation of light-grown turions. Formation of dark-grown turions was increased by about 240%by a single red light pulse and was reversed by an immediatelyapplied far-red light pulse. Consequently, under heterotrophicconditions phytochrome modulates the turion formation process. Spirodela polyrhiza L. Schleiden, duckweed, Lemnaceae, photomorphogenesis, phytochrome, turion  相似文献   

6.
The effects of long-term seed storage on the physiological properties of phytochrome-mediated germination including water uptake, the temperature and light flunnce dependencies of germination and dark germination were studied. The fluenceresponse relationships of the brief irradiation with monochromatic red (660 nm, 7.5 W m−2) and far-red (750 nm, 6.6 W m−2) light at various times after sowing were also studied. The samples used consisted of three lots of seeds ofLactuca sativa L. cv. MSU-16, which had been harvested in 1976, 1979 and 1985 and stored dry for 9, 6 and 0 years, respectively, in darkness at 23±2 C until the experiments were carried out in July–August, 1985. Seeds with the longer storage periods showed the higher ability to germinate in both continuous darkness and continuous white fluorescent light at 20–30 C. In the seeds stored for 6 or 9 years, red light irradiation for 20 sec given at 15 min or more after sowing at 25 C induced as high a percent germination (85–95%) as those under continuous white fluorescent light. In the freshly harvested seeds, however, germination under continuous white fluorescent light (46%) was considerably lower than the germination induced by the red pulse (97%). Germination of the seeds decreased when the intervals between sowing and a far-red irradiation for 20 sec increased up to 100 min (or 30 min in the freshly harvested seeds). The far-red pulse given later than 100 min (or 6 hr in the freshly harvested seeds) after sowing resulted in an increased germination up to the dark-germination levels with increasing intervals between sowing and the pulse irradiation. Before or at 3 min after sowing, the seeds stored for 6 or 9 years were responsive to the far-red pulse although they were not or hardly responsive to the red pulse, while the freshly harvested seeds were responsive to both the far-red and the red pulses. These data indicate that normal functions of phytochrome completely survived in the dry seeds during storage at 25 C for as long as 6 or 9 years and that these functions are restored into full operation by means of imbibition. The differences in the dependence of germination on the time and fluence of a single pulse of red or far-red light seems to be related to the smaller water content throughout the imbibition in the seeds with the longer storage periods. The greater ability to germinate in the dark indicates the greater amounts of PFR or the greater responsivity to PFR, in the seeds with the longer storage periods.  相似文献   

7.
HARRIS  G. P. 《Annals of botany》1968,32(1):187-197
Carnations (Dianthus) cultivar White Sim, were grown under photoperiodiccycles comprising 8 h of natural daylight followed by 16-h ‘nights’during which different lighting treatments were given. Irradiationwith tungsten-filament lamps throughout the night was the mosteffective treatment for the promotion of flower initiation.Irrespective of the timing or duration of the lighting, tungstenfilamentlamps were more effective than ‘daylight’ fluorescentlamps. Promotion of flower initiation due to radiation from a far-redsource was greatest when irradiation followed immediately afterthe period of natural daylight and was least when it immediatelypreceded the period of daylight. Promotion of flowering dueto a red source was least when the effect of far-red was greatest.Red and far-red radiations were synergistic in their promotionof flower initiation when given simultaneously for a periodof 4 h in the middle of the night. It is suggested that in thepromotion of flower initiation in long-day plants, a requirementfor a relatively long duration of irradiation is related physiologicallyto a requirement for a relatively high proportion of far-redradiant energy.  相似文献   

8.
Flowering in Lemna gibba, a long-day duckweed, can be inducedunder a short-day condition when the photoperiodic regimes areR7FR3 (7 hr red followed by 3 hr far-red), R5FR5 and R3FR7.This indicates the necessity of a proper balance between redand far-red effects for flowering. The flowering induced bythese regimes is inhibited by a brief exposure to red givenat the start of darkness and this inhibition is reversed bysubsequent exposure to far-red. Thus, the red/far-red reversibleeffect is found only at the beginning of darkness for floweringof L. gibba. However, flowering of L. gibba is promoted by a red light breakgiven near the middle of a 14 hr dark period. The promotiveeffect is not reversed by subsequent exposure to far-red, i.e.,the effect of the red break converts from inhibition to promotionas when given later in the dark period, which suggests the involvementof a timing mechanism. (Received July 21, 1973; )  相似文献   

9.
The spectral dependence of Begonia evansiana in supplementarylight periods of photoperiodic tuberization and sprouting wasinvestigated. Supplementary application of red light inhibitedtuber development, thereby stimulating vegetative growth. Supplementaryblue or far-red light also suppressed tuber development, butbarely stimulated vegetative growth. However, both red and blue light, given at 6°C during themain light period or the supplementary light period, permittedthe tuberization under the subsequently given conditions ofeither long-days or darkness at 23°C. Blue light appliedafter 5-days of irradiation with white light at 10°C, showedalmost the same action as far-red light, which suppressed tuberizationin darkness. The nature and function of the pigments concernedin the photoperiodic responses are discussed. (Received October 11, 1968; )  相似文献   

10.
Flowering (number of flowers) of a short-day duckweed, Lemnapaucicostata 6746, in continuous darkness at 26?C was affectedby a red light pulse in various ways depending on the time ofapplication. A conspicuous inhibition and a slight promotionwere respectively caused by the pulse given at the 7th and 19thhours of the dark period. Of the recently introduced floral parameters (4), a (vegetativegrowth rate) and (flowering ratio) were almost unchanged bythe pulse given at any time. P1 (pre-flower induction period)was extended by one day when the pulse was given at about the7th hour of the dark period. The pulse greatly extended P2 (flowerinduction period) when given at about the 7th hour of the darkperiod. A pulse given earlier or later was increasingly ineffectiveon P2. P4 (flower production period) changed rhythmically (i.e.,was extended or shortened) with the time of the red light pulse,the maximum extension and shortening being induced by the pulsegiven at about the 7th and 19th hours, respectively. Differenttiming mechanisms were suggested as controlling the sensitivitiesto the red light pulse of P1 and P2 or P4. The floral response (number of flowers) vs. the red light pulseapplication time curve was explained in terms of the sum ofthe responses of P2 and P4 to the pulse. Floral parameters P1and P2 were defined more clearly. (Received September 4, 1978; )  相似文献   

11.
The light requirement for germination in spores of the fern Thelypteris kunthii (Desv.) Morton was fully satisfied by a long period of continuous red light or partially by intermittent, short periods of red light. Red light-potentiated spore germination was inhibited by brief far-red light irradiation, indicating phytochrome involvement. Repeated exposure of spores to prolonged red and short far-red irradiations, or exposure of red-potentiated spores to far-red light after an extended period in darkness, led to their escape from inhibition of germination by far-red light. Prolonged irradiation of spores with blue light before or after red light treatment partially antagonized the effect of red light.  相似文献   

12.
A critical duration of darkness must be exceeded for the photoperiodic induction of flowering in short-day plants. This requires detection of the light/dark transition at dusk and the coupling of this information to a time-measuring system.
Lowering the Pfr/Ptot, ratio photochemically at the end of the day did not accelerate the onset of dark timing in Pharbitis nil Choisy cv. Violet. Time-measurement was initiated when, with no change in spectral quality, the irradiance fell below a threshold value. Thus, if the light/dark transition at dusk is sensed by a reduction in Pfr, this reduction can be achieved as rapidly through thermal reactions as through photochemical ones. When given at hourly intervals during a 6-h extension of a 24-h main light period in white light, pulses of red light were as effective as continuous red light in delaying the onset of timing; pulses every 2 or 3 h were less effective. The effectiveness of intermittent red light indicates that phytochrome is the photoreceptor and the requirement for frequent exposures suggests that Pfr is lost rapidly in the dark. However, the red light pulses could not be reversed by far-red light, which argues against this hypothesis. An alternative explanation is that the perception of light as being continuous occurs only when "new" Pfr is regenerated sufficiently frequently.
The nature of the coupling of the dusk signal to the time-measuring system is discussed and it is suggested that the effect of each red light pulse is to delay the phase of the photoperiodic rhythm by 1–3 h.  相似文献   

13.
Goto  Ken 《Plant & cell physiology》1979,20(3):513-521
Two types of clocks, i.e., the circadian oscillator and thehourglass mechanism, which under continuous light and darknessrespectively control the mutually inverse temporal changes inthe activities of Cyt-NAD-GPD and Chl-NADP-GPD of Lemna gibbaG3, were studied. Both clocks controlled the apparent Km values,not the Vmax values, of the GPD reactions for their substrateand coenzymes. A red light pulse inserted 3 hr after the onsetof the dark period eliminated the sigmoidal changes in darkness,but evoked rhythmical changes which otherwise did not occurin continuous darkness. Thus, the photosynthetic rhythm, ifpresent, would not sustain the GPD rhythms. This effect of ared light pulse was not nullified by a subsequent far red lightpulse. A far red light pulse given at the 3rd hour of an extendeddark period made conspicuous the sigmoidal changes in activityof GPDs in the dark period, and its effect was nullified bya subsequent red light pulse, suggesting that phytochrome isinvolved in the hourglass mechanism. (Received September 26, 1978; )  相似文献   

14.
The effects of irradiations with different proportions of red/farred light and of gibberellic acid on the phytochrome-mediated seed germination of Kalanchoë blossfeldiana cv. Feuerblüte, were studied. The seed coat transmits much more red than far-red light, and therefore the energy ratio between 660 nm and 730 nm is given only for the transmitted light. Decreasing this ratio from 65 to 1.0 caused only a very slight inhibition. If this ratio is further lowered to 0.64, a 10 min terminal irradiation after a 3-h white light photoperiod is inhibitory, but a 12-h photoperiod or continuous irradiation is not. If the ratio is decreased to 0.44 or 0.31, a 12-h photoperiod is now also inhibitory, although continuous irradiation and 10 min terminal irradiation are still more inhibitory. These results are discussed in terms of phytochrome phototransformations. Although gibberellic acid is unable to cause any germination in complete darkness, it can result in a very high germination percentage, if combined with treatments which by themselves do not induce any germination such as continuous far-red, terminal far-red after short photoperiods, or very short photoperiods at 25°C. These results point to a strong synergism between gibberellic acid and the so-called stabilized form of phytochrome, P*FR.  相似文献   

15.
After a pre-treatment with red light, hair formation at the growing tip of the siphonaceous green alga Acetabularia mediterranea Lamour. (= A. acetabulum (L.) Silva) can be induced by a pulse of blue light. Red light is needed again after the inductive blue-light pulse if the new whorl of hairs is to develop within the next 24 h. In order to investigate the role of this red light, the duration of the red irradiation was varied and combined with periods of darkness. The response of hair-whorl formation was dependent on the total amount of red light, regardless of whether the red irradiation followed the blue pulse immediately or was separated from it by a period of darkness. Furthermore, periods of exposure to the photosynthesis inhibitor 3-(3,4-dichlorophenyl)-1-1dimethylurea had a similar effect to darkness. Both observations indicate that this red irradiation acts as a light source for photosynthesis. Whether or not the red light had an additional effect via phytochrome was tested in another type of experiment. The dependence of hair-whorl formation on red-light irradiance in the presence of simultaneous far-red irradiation was determined for the pre-irradiation period as well as for the irradiation period after the blue pulse. In both experiments, far-red light caused a small promotion of hair-whorl formation when low irradiances of red light were used. However, these differences were attributable to a low level of photosynthetic activity (which in fact was measurable) caused by red light reflected in the growth chamber. Furthermore, lowering the proportion of active phytochrome by far-red light would be expected to suppress hair-whorl formation. The influence of far-red light was also tested in a strain of Acetabularia mediterranea that developed hair whorls in about 20% of cells even when kept in complete darkness after the blue-light pulse. Far-red irradiation had no effect. These results strongly indicate that phytochrome is not involved in hair-whorl formation. Rather it is concluded that the effects of red light are caused by photosynthesis.Abbreviation DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea  相似文献   

16.
1. Effect of varied lengths of darkness given before continuousillumination, and that of dark-break of continuous light asa function of the time of its application, on the flower formationin a long-day duckweed, Lemna gibba G3, were studied. The results obtained suggested a rhythmic change in sensitivityto darkness, i.e., a cycle of 36 hr-period consisting of 12hr of sensitivity and the following 24 hr of insensitivity.The inhibition by darkness (12–36 hr) given before thestart of, or by dark-break (12, 24 hr) inserted in, the inductionperiod involved an extension of the induction period, but nota slow-down of the rate of flower formation. The dark-breakgiven after the induction period, however, suppressed the rateof flower production in proportion to the length of the darkness. 2. The inhibition of flowering by darkness given in the darksensitivephase was cancelled by a relatively brief light period insertedin the darkness. 3. Relation between the rhythm and the length of induction periodwas discussed. (Received August 13, 1965; )  相似文献   

17.
Abstract.  The Indian meal moth Plodia interpunctella Hubner (Lepidoptera: Pyralidae) measures night length and enters diapause as a last-instar larva. To examine the role of photophase on dark-time measurement, the main LD 7 : 17 h photoperiod is disrupted by various lengths of darkness at 25 °C. When the light phase is not disrupted, the incidence of diapause is 76%. As the dark pulse disrupting a 7-h photophase becomes longer, the incidence of diapause decreases. To detect the dynamic kinetics of the time-measuring process, the main scotophase of 17 h is scanned by a 2-h light pulse. When the dark pulse in a 7-h photophase is fixed at 1 h after dawn and its duration is varied systematically from 1 to 3 h, or when the end of the dark pulse is fixed at 1 h before dusk, diapause is prevented completely by a 2-h light pulse inserted in the middle of 17-h darkness. These results are compared with those of a single night interruption of a 17-h scotophase with a 2-h light pulse but with an intact 7-h photophase. The disruption of a 7-h photophase by a dark pulse shifts the descending and ascending slopes of the response curve to some extent toward dawn and dusk, respectively, indicating that the dark pulse tends to shorten the critical length of dark time for diapause induction. When the main photophase (7 h) is interrupted by a 1-h dark pulse at 3–4 h after dawn, the 2-h scanning light pulse in the main scotophase (17 h) appears to act effectively as a dusk signal in the early scotophase. However, those in the mid- and late scotophase do not define the critical night length from dusk as sharply as for the critical night length from a 2-h light pulse to dawn. The results indicate the importance of photophase in the dark-time measurement.  相似文献   

18.
Shoots of the lazy-2 (lz-2) gravitropic mutant of tomato (Lycopersicon esculentum Mill.) have a normal gravitropic response when grown in the dark, but grow downward in response to gravity when grown in the light. Experiments were undertaken to investigate the nature of the light induction of the downward growth of lz-2 shoots. Red light was effective at causing downward growth of hypocotyls of lz-2 seedlings, whereas treatment with blue light did not alter the dark-grown (wild-type) gravity response. Downward growth of lz-2 seedlings is greatest 16 h after a 1-h red light irradiation, after which the seedlings begin to revert to the dark-grown phenotype. lz-2 seedlings irradiated with a far-red light pulse immediately after a red light pulse exhibited no downward growth. However, continuous red or far-red light both resulted in downward growth of lz-2 seedlings. Thus, the light induction of downward growth of lz-2 appears to involve the photoreceptor phytochrome. Fluence-response experiments indicate that the induction of downward growth of lz-2 by red light is a low-fluence phytochrome response, with a possible high-irradiance response component.  相似文献   

19.
Light-requiring Grand Rapids lettuce ( Lactuca sativa L.) achenes develop skotodormancy when imbibed in darkness for 7 days at 25°C. Redried skotodormant achenes maintain this type of dormancy upon subsequent rehydration. At 25°C full germination of skotodormant achenes can be induced by continuous and intermittent red light illumination as well as by several brief red irradiations given daily. One brief (10 min) red light irradiation can partly break skotodormancy at 20°C, while at lower temperatures the same treatment results in full induction of germination. Phytochrome control of the release from skotodormancy is proven by a) the dependence of the germination response on the relative sequence of red and far-red light in cyclic irradiations, and b) the reversion of red action by subsequent far-red irradiation. The time course of germination of skotodormant achenes treated with intermittent red light depends upon the length of dark interval between the light pulses. Germination is considerably delayed compared to that of non-skotodormant ones, induced by a single brief red light treatment. This fact in combination with the requirement, over a long period of time, of Pfr action for full manifestation of germination, indicates that skotodormancy is a deeper form of dormancy. It is concluded that the germination of lettuce achenes may always be subjected to phytochrome control.  相似文献   

20.
To analyze how the capacity to accumulate chlorophyll a (Chia) without a lag phase develops by continuous far-red light(FR) irradiation, the time course of the capacity was investigatedunder various FR-dark conditions in Pharbitis seedlings. Thecapacity, which is negligible in darkness, rapidly developedon transfer to continuous FR irrespective of the age of theseedlings, the maximum level being attained about 18-24 h afterthe onset of.FR irradiation. The-capacity gradually decreasedthereafter whether in darkness or under extended FR irradiation.When the seedlings pretreated by 6-12 h of FR followed by 66-60h darkness (which have no capacity) were exposed to the secondFR irradiation for up to 72 h, the level of the capacity acquiredduring the second FR irradiation was the lower the higher thelevel acquired by the first FR irradiation. A possible mechanismwhich determines the time course of the development of the capacityis discussed. (Received July 2, 1990; Accepted March 25, 1991)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号