首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel actinomycete strain YIM 33378T was isolated from a soil sample collected from Lijiang, Yunnan Province, China. Based on the results of phenotypic and genotypic characteristics, strain YIM 33378T should be assigned to a new species of the genus Nocardia, for which the name Nocardia lijiangensis sp. nov. is proposed. The type strain is YIM 33378T (= CCTCC AA 204005T = KCTC 19028T). The GenBank accession number for the sequence reported in this paper is AY779043.  相似文献   

2.
A novel actinomycete strain, designated YIM 30243T, was isolated from a soil sample in Yunnan Province, China. Based on the results of phenotypic and genotypic characteristics, strain YIM 30243T should be assigned to a new species of the genus Nocardia, for which the name Nocardia alba sp. nov. is proposed. The type strain is YIM 30243T (= CCTCC AA001030T = DSM 44684T).  相似文献   

3.
The taxonomic position of three acidophilic actinomycetes isolated from acidic rhizosphere soil was established using a polyphasic approach. The morphological and chemical properties of the isolates were found to be consistent with their assignment to the genus Streptacidiphilus. Almost complete 16S rRNA gene sequences determined for the strains were aligned with corresponding sequences of representatives of the genera Kitasatospora, Streptacidiphilus and Streptomyces and phylogenetic trees inferred using three tree-making algorithms. The organisms formed a distinct subclade within the Streptacidiphilus 16S rRNA gene tree. They also shared nearly identical phenotypic profiles and rep-PCR fingerprint patterns that readily distinguished them from representatives of the established species of Streptacidiphilus. It is evident from the genotypic and phenotypic data that the three isolates form a new species in the genus Streptacidiphilus. The name proposed for this new species is Streptacidiphilus jiangxiensis, the type strain is isolate 33214T (= AS 4.1857T = JCM 12277T).  相似文献   

4.
A novel actinomycete strain, designated VRC07T, was isolated from a Callistemon citrinus rhizosphere sample collected from Hyderabad, India. Its taxonomic status was determined by using polyphasic approach. It is a Gram-positive, aerobic, non-motile, weakly acid-fast strain. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that strain VRC07T is a member of the genus Nocardia. The highest levels of 16S rRNA gene sequence similarity was found between the strains Nocardia niwae W9241T (99.6 %), Nocardia amikacinitolerans W9988T (99.3 %) and Nocardia arthritidis IFM 10035T (98.9 %); similarity to other type strains of the genus Nocardia was below 98.7 %. The organism had chemical and morphological features consistent with its classification in the genus Nocardia such as meso-diaminopimelic acid as the diagnostic diamino acid in the cell wall peptidoglycan. Arabinose and galactose as the diagnostic sugars. Diagnostic polar lipids were phosphatidylinositol, diphosphatidylglycerol, and phosphatidylglycerol. The predominant menaquinone was MK-8(H4, ω-cycl). The major fatty acids were C16:0, C18:0, C18:1 w9c, C18:0 10-methyl TBSA and sum in feature 3 (16:1 w7c/16:1 w6c). The G+C content of the genomic DNA was 68.5 mol%. The DNA–DNA relatedness data, together with phenotypic differences clearly distinguished the isolate from its closest relatives. On the basis of these phenotypic and genotypic data, the isolate represents a novel species, for which the name Nocardia bhagyanesis sp. nov., is proposed. The type strain is VRC07T (=KCTC 29209T = MTCC 11725T = ATCC BAA-2548).  相似文献   

5.
A strain of Nonomuraea was isolated from Maheshkhali, Cox's Bazar, an unexplored region of Bangladesh. Strain 16-5-14(T) is a Gram-positive, aerobic, non-motile actinomycete that formed branched substrate and aerial mycelia. On the basis of 16S rRNA gene sequence similarity studies, strain 16-5-14(T) was shown to belong to the genus Nonomuraea, being most closely related to Nonomuraea kuesteri. Chemotaxonomic data supported allocation of the strain as a member of the genus Nonomuraea. The strain 16-5-14(T) contained MK-9(H(4)) as the major menaquinone, the polar lipid was phosphatidylethanolamine and major cellular fatty acids were observed as C(16 : 0 )(15.5%), iso-C(16 : 0) (13.8%) and 10-methyl C(17 : 0) (9.6%). Results of DNA-DNA hybridization and physiological tests allowed genotypic and phenotypic differentiation of strain 16-5-14(T) from closely related species N. kuesteri. Thus 16-5-14(T) represents a novel species of the genus Nonomuraea. On the basis of evaluation of the morphological, physiological and chemotaxonomic characteristics, 16S rRNA gene sequence comparisons and DNA-DNA hybridization, Nonomuraea maheshkhaliensis sp. nov. (type strain, 16-5-14(T)=JCM 13929(T)=MTCC 8545(T)) is proposed.  相似文献   

6.
A novel plant-associated obligate methylotrophic bacterium, designated strain Ca-68T, was isolated from the rhizosphere soil of field-grown red pepper from India. The isolates are strictly aerobic, Gram negative, motile rods multiplying by binary fission and formaldehyde is assimilated via the ribulose monophosphate pathway. A comparative 16S rRNA gene sequence-based phylogenetic analysis placed the strain in a clade with the species Methylobacillus flagellatus, Methylobacillus glycogens and Methylobacillus pratensis, with which it showed pairwise similarity of 97.8, 97.4 and 96.2 %, respectively. The major fatty acids are C16:0, C10:0 3OH and C16:1 ω7c. The G+C content of the genomic DNA is 59.7 mol%. The major ubiquinone is Q-8. Dominant phospholipids are phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. Based on 16S rRNA gene sequence analysis and DNA–DNA relatedness (14–19 %) with type strains of the genus Methylobacillus, the novel isolate was classified as a new species of this genus and named Methylobacillus rhizosphaerae Ca-68T (=KCTC 22383T = NCIMB 14472T).  相似文献   

7.
8.
A novel Gram-positive, motile, non-spore-forming coccus-shaped bacterial strain, designated KLBMP 1274T, was isolated from a halophytic plant (Limonium sinense) collected from the coastal region of Nantong, Jiangsu Province, in east China. Phylogenetic analyses based on the 16S rRNA gene sequence showed that strain KLBMP 1274T belongs to the genus Kineococcus and is closely related to Kineococcus rhizosphaerae RP-B16T (98.72 %), Kineococcus aurantiacus IFO 15268T (98.71 %), Kineococcus radiotolerans SRS30216T (98.69 %) and Kineococcus gynurae KKD096T (97.33 %). The 16S rRNA gene sequence similarity to other species of the genus Kineococcus was <97 %. The cell wall contained meso-diaminopimelic acid as the diagnostic diamino acid, with arabinose and galactose as the characteristic sugars. The predominant menaquinone was MK-9(H2). The polar lipids were found to be diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannosides, an unknown phospholipid, an unknown glycolipid, and three unknown lipids. Major cellular fatty acids were found to be anteiso-C15: 0 and iso-C14: 0. The chemotaxonomic data for strain KLBMP 1274T were typical of the genus Kineococcus. The total DNA G+C content was 73.4 mol %. DNA–DNA relatedness and differential phenotypic data demonstrated that strain KLBMP 1274T was clearly distinguished from all closely related species of the genus Kineococcus. Thus, strain KLBMP 1274T represents a novel species of the genus Kineococcus, for which the name Kineococcus endophytica sp. nov. is proposed. The type strain is KLBMP 1274T (=KCTC 19886 T = NBRC 108674T).  相似文献   

9.
A novel actinomycete, designated strain KLBMP 1262T, was isolated from a coastal plant Dendranthema indicum (Linn.) Des Moul collected from the coastal region of Nantong, Jiangsu Province, in east China and was studied in detail for its taxonomic position. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that strain KLBMP 1262T is a member of the genus Amycolatopsis. The 16S rRNA gene sequence similarity indicated that strain KLBMP 1262T is most closely related to Amycolatopsis sulphurea DSM 46092T (97.96 %), Amycolatopsis ultiminotia RP-AC36T (97.50 %) and Amycolatopsis jejuensis N7-3T (97.44 %); similarity to other type strains of the genus Amycolatopsis was less than 97.0 %. The organism was determined to have chemical and morphological features consistent with its classification in the genus Amycolatopsis such as meso-diaminopimelic acid as the diagnostic diamino acid in the cell wall peptidoglycan and arabinose and galactose as the diagnostic sugars. The predominant menaquinone was determined to be MK-9 (H4). The polar lipids detected were phosphatidylmethylethanolamine, phosphatidylethanolamine, an unknown aminophospholipid, two unknown glycolipids and several unknown lipids. The major fatty acids were found to be C16:0, iso-C16:0 and iso-C15:0. DNA–DNA relatedness data, together with phenotypic differences, clearly distinguished the isolate from its closest relatives. On the basis of these phenotypic and genotypic data, the isolate is considered to represent a novel species, for which the name A. jiangsuensis sp. nov. is proposed. The type strain is KLBMP 1262T (=KCTC 19885 T = NBRC 108679T).  相似文献   

10.
11.
12.
A novel actinomycete, designated strain NEAU-NH11T, was isolated from muddy soil collected from a lake and characterized using a polyphasic approach. The 16S rRNA gene sequence analysis showed that strain NEAU-NH11T belongs to the genus Streptosporangium, and was most closely related to Streptosporangium amethystogenes subsp. amethystogenes DSM 43179T (99.0 %). Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain NEAU-NH11T formed a monophyletic clade with Streptosporangium purpuratum CY-15110T (98.3 %) and Streptosporangium yunnanense CY-11007T (98.0 %), an association that was supported by a bootstrap value of 80 % in the neighbour-joining tree and also recovered with the maximum-likelihood algorithm. However, the low level of DNA–DNA relatedness allowed the strain to be differentiated from S. amethystogenes subsp. amethystogenes DSM 43179T, S. purpuratum CY-15110T and S. yunnanense CY-11007T. Moreover, strain NEAU-NH11T could also be differentiated from its closest related strains by phenotypic characteristics. Therefore, it is proposed that strain NEAU-NH11T represents a novel Streptosporangium species, Streptosporangium nanhuense sp. nov. The type strain of S. nanhuense is NEAU-NH11T. (=CGMCC 4.7131T = DSM 46674T).  相似文献   

13.
A novel isolate, designated strain KLBMP 1282T was isolated from the surface-sterilized leaves of a coastal halophyte Tamarix chinensis Lour., collected from Nantong, Jiangsu Province, east of China. Phylogenetic analysis based on 16S rRNA gene sequences revealed that this strain belongs to the genus Pseudonocardia, being most closely related to Pseudonocardia kongjuensis LM 157T (98.33 %), Pseudonocardia autotrophica IMSNU 20050T (97.77 %), Pseudonocardia endophytica YIM 56035T (97.63 %), Pseudonocardia ammonioxydans H9 T (97.62 %) and Pseudonocardia compacta IMSNU 20111T (97.56 %); similarity to other type strains of the genus Pseudonocardia was <97.5 %. Chemotaxonomic data confirmed the affiliation of strain KLBMP 1282T to the genus Pseudonocardia. Strain KLBMP 1282T contained MK-8(H4) as the predominant ubiquinone and iso-C16:0 as the major fatty acid. The polar lipids detected in strain KLBMP 1282T were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, phosphatidylmethylethanolamine, phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositol mannosides, one unknown phospholipid and four unknown glycolipids. The DNA G + C content of strain KLBMP 1282T was 73.1 mol %. The results of DNA–DNA hybridizations and the phylogenetic analysis, together with the phenotypic and biochemical tests, allowed the differentiation of strain KLBMP 1282T from strains of other recognized Pseudonocardia species. Therefore, strain KLBMP 1282T represents a novel species of the genus Pseudonocardia, for which the name Pseudonocardia nantongensis sp. nov. is proposed. The type strain is KLBMP 1282T (=KCTC 29053T = NBRC 108677T).  相似文献   

14.
15.
A novel actinomycete, designated strain NEAU-GH7T, was isolated from a lake sediment and characterized using a polyphasic approach. Strain NEAU-GH7T was Gram-stain positive, aerobic, non-spore-forming and produced spherical sporangia. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain NEAU-GH7T formed a monophyletic clade with the closest relative Streptosporangium longisporum DSM 43180T (99.0 %), an association that was supported by a bootstrap value of 74 % in the neighbour-joining tree and also recovered with the maximum-likelihood algorithm. However, the low level of DNA–DNA relatedness allowed the strain to be differentiated from its closest relative. Moreover, strain NEAU-GH7T could also be differentiated from S. longisporum DSM 43180T and other Streptosporangium species showing high 16S rRNA gene sequence similarity (>98.0 %) by morphological and physiological characteristics. On the basis of phylogenetic analysis, DNA–DNA hybridization and phenotypic characteristics, strain NEAU-GH7T should be classified as a new species of the genus Streptosporangium, for which the name Streptosporangium shengliensis sp. nov. is proposed. The type strain is NEAU-GH7T (=CGMCC 4.7105T=DSM 45881T).  相似文献   

16.
Zhao  Shanshan  Cheng  Ming  Lin  Congyu  Liu  He  Wang  Zhengran  Zhang  Kai  Song  Simin  Yang  Qian 《Antonie van Leeuwenhoek》2021,114(11):1829-1839

During the investigation of exploring potential sources of novel species and natural bioactives, a novel actinomycete, designated strain HIT-DPA4T, was isolated from a soil sample, which was collected from Nanjing, Jiangsu Province, PR China and characterized using a polyphasic approach. On the basis of 16S rRNA gene sequence similarities and the result of phylogenetic analysis, strain HIT-DPA4T was most closely related to Streptomyces cyaneus CGMCC 4.1671 T, and shared the highest sequence similarity of 98.76%. In addition, the cell walls of the species HIT-DPA4T contained LL-diaminopimelic acid as the diagnostic diamino acid and the whole-cell hydrolysates were identified as glucose and ribose, and the principal phospholipids were found to be diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol mannoside and phosphatidylmonomethylethanolamine. MK-9(H6) and MK-9(H4) were predominant menaquinones; and C16:0, anteiso-C15:0 and C15:0 as major cellular fatty acids of the organism HIT-DPA4T. Gene Ontology database analysis and antiSMASH server predicted results displayed that strain HIT-DPA4T was a promising classification units, which has various types of functions and contains multiple biosynthetic gene clusters with the similarity more than 80%. Multilocus sequence analysis (MLSA) of five housekeeping genes (atpD, gyrB, recA, rpoB and trpB) illustrated that Streptomyces luteolifulvus formed a separate branch in the genus Streptomyces. However, a combination of low level of DNA-DNA relatedness and physiological properties indicated that strain HIT-DPA4T can be distinguished from its phylogenetically related species Streptomyces cyaneus CGMCC 4.1671 T. Moreover, gene synteny research could be further differed organism HIT-DPA4T from similarity species. Therefore, the strain is concluded to represent a novel species of the genus Streptomyces, for which the name Streptomyces luteolifulvus sp. nov. is proposed. The type strain is HIT-DPA4T (=?CGMCC 4.7558 T?=?TISTR 2751 T).

  相似文献   

17.
18.
19.
A novel actinomycete, strain NEAU-st1T, was isolated from a soil sample collected in Shaanxi province, Northwest China and characterized using a polyphasic approach. 16S rRNA gene sequence similarity studies showed that strain NEAU-st1T belongs to the genus Nonomuraea, being most closely related to Nonomuraea rosea GW12687T (98.91 %), Nonomuraea solani NEAU-Z6T (98.44 %), Nonomuraea rhizophila YIM67092T(98.24 %) and Nonomuraea monospora PT708T (98.02 %); similarities to sequences of other type strains of the genus Nonomuraea were lower than 98 %. Both tree-making algorithms used also supported the position that strain NEAU-st1T formed a distinct clade with its most closely related species. Morphological and physiological characteristics confirmed that the strain belongs to the genus Nonomuraea and distinguished it from its most closely related species. DNA–DNA hybridization further differentiated strain NEAU-st1T from its nearest phylogenetic neighbours. These results suggested that strain NEAU-st1T represents a novel species of the genus Nonomuraea, for which the name Nonomuraea shaanxiensis sp. nov. is proposed. The type strain is NEAU-st1T (=CGMCC 4.7096T = DSM 45877T).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号