共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
FoxO3a transcriptional regulation of Bim controls apoptosis in paclitaxel-treated breast cancer cell lines 总被引:15,自引:0,他引:15
Sunters A Fernández de Mattos S Stahl M Brosens JJ Zoumpoulidou G Saunders CA Coffer PJ Medema RH Coombes RC Lam EW 《The Journal of biological chemistry》2003,278(50):49795-49805
7.
8.
Endothelial cell apoptosis induced by hypoxia is implicated in the pathogenesis of vascular diseases. However, the underlying mechanism is not clearly elucidated. In this study, we found that hypoxia increased Mxi1-0 expression, and the Mxi1-0 siRNA could inhibit caspase-8 activation and apoptosis in HUVECs induced by hypoxia. In addition, hypoxia induced FOXO3 activation, while Mxi1-0 expression and apoptosis were inhibited by transfection with FOXO3 siRNA. Using ChIP assay, we confirmed that FOXO3a binds to the Mxi1-0 promoter region. Furthermore, hypoxia treatment leads to remarkable production of reactive oxygen species (ROS), while ROS scavenger N-acetyl-L-cysteine (NAC) inhibits hypoxia-induced ROS production, apoptosis and FOXO3a-mediated Mxi1-0 up-regulation. Finally, we found that the HIF-1α siRNA inhibited hypoxia-induced HIF-1α expression and ROS production, as well as FOXO3a/Mxi1-0 activation and apoptosis in HUVECs. Taken together, this study identifies a HIF-1α/FOXO3a/Mxi1-0/caspase-8 signaling pathway in hypoxia-induced endothelial cell apoptosis. These data also indicate that HIF-1α-dependent ROS production is required for FOXO3a-mediated Mxi1-0 up-regulation and apoptosis in hypoxic endothelial cells. 相似文献
9.
Li Y Wang Z Kong D Murthy S Dou QP Sheng S Reddy GP Sarkar FH 《The Journal of biological chemistry》2007,282(29):21542-21550
Previous studies from our laboratory have shown anti-proliferative and pro-apoptotic effects of 3,3'-diindolylmethane (DIM) through regulation of Akt and androgen receptor (AR) in prostate cancer cells. However, the mechanism by which DIM regulates Akt and AR signaling pathways has not been fully investigated. It has been known that FOXO3a and glycogen synthase kinase-3beta (GSK-3beta), two targets of activated Akt, interact with beta-catenin, regulating cell proliferation and apoptotic cell death. More importantly, FOXO3a, GSK-3beta, and beta-catenin are all AR coregulators and regulate the activity of AR, mediating the development and progression of prostate cancers. Here, we investigated the molecular effects of B-DIM, a formulated DIM with higher bioavailability, on Akt/FOXO3a/GSK-3beta/beta-catenin/AR signaling in hormone-sensitive LNCaP and hormone-insensitive C4-2B prostate cancer cells. We found that B-DIM significantly inhibited the phosphorylation of Akt and FOXO3a and increased the phosphorylation of beta-catenin, leading to the inhibition of cell growth and induction of apoptosis. We also found that B-DIM significantly inhibited beta-catenin nuclear translocation. By electrophoretic mobility shift and chromatin immunoprecipitation assays, we found that B-DIM inhibited FOXO3a binding to the promoter of AR and promoted FOXO3a binding to the p27(KIP1) promoter, resulting in the alteration of AR and p27(KIP1) expression, the inhibition of cell proliferation, and the induction of apoptosis in both androgen-sensitive and -insensitive prostate cancer cells. These results suggest that B-DIM-induced cell growth inhibition and apoptosis induction are partly mediated through the regulation of Akt/FOXO3a/GSK-3beta/beta-catenin/AR signaling. Therefore, B-DIM could be a promising non-toxic agent for possible treatment of hormone-sensitive but most importantly hormone-refractory prostate cancers. 相似文献
10.
11.
Jongsung Lee 《Bioscience, biotechnology, and biochemistry》2016,80(10):1947-1953
1,25-Dihydroxyvitamin D3 has been known to have the tumor-suppressive activity in various kinds of tumors. However, the exact effect and working mechanism of 1,25-dihydroxyvitamin D3 on the tumor-suppressive activity in human kidney cancer cells remains poorly understood. 1,25-Dihydroxyvitamin D3 has cytotoxicity to ACHN cells and inhibited ACHN cell proliferation compared to the vehicle control. 1,25-Dihydroxyvitamin D3 increased the expression of the cleaved PARP1, active Caspase3, Bax, and Bim but decreased the expression of Bcl2 in ACHN cells. Moreover, 1,25-dihydroxyvitamin D3 down-regulated the phosphorylated Akt and Erk which might lead to apoptosis through activation of FOXO3 in ACHN cells. Transfection of siRNA against FOXO3 attenuated the pro-apoptotic BimEL expression in ACHN cells treated with 1,25-dihydroxyvitamin D3. These results suggest that FOXO3 is involved in the apoptosis induced by 1,25-dihydroxyvitamin D3. 相似文献
12.
Cisplatin is the first-line chemotherapy for the treatment of several cancers. However, the development of cisplatin resistance represents a major clinical problem, and the mechanisms of acquired resistance are not fully understood. Here we show that degradation of the Bcl-2 homology 3-only proapoptotic protein Bim plays an important role in cisplatin resistance in ovarian cancer. Specifically, we show that treatment of ovarian cancer cells with cisplatin caused Bim phosphorylation and subsequent degradation and that its degradation is associated with cisplatin resistance. We also show that cisplatin treatment caused the activation of ERK, which correlated with Bim phosphorylation and degradation. By inhibiting ERK phosphorylation with the MEK inhibitor and knocking down ERK expression with siRNA, we show that Bim phosphorylation and degradation were blocked, which suggests that Bim is phosphorylated by ERK and that such phosphorylation is responsible for cisplatin-induced Bim degradation. We show that ERK was activated in cisplatin-resistant OV433 cells as compared with their counterpart parental OV433 cells. We also show that Bim was phosphorylated and degraded in cisplatin-resistant OV433 cells but not in the parental OV433 cells. Importantly, we show that inhibition of Bim degradation by the proteasome inhibitor MG132 sensitized resistant OV433 cells to cisplatin-induced death. Taken together, our data indicate that degradation of Bim via ERK-mediated phosphorylation can lead to cisplatin resistance. Therefore, these findings suggest that cisplatin resistance can be overcome by the combination of cisplatin and the proteasome inhibitors in ovarian cancer cells. 相似文献
13.
14.
Raver-Shapira N Marciano E Meiri E Spector Y Rosenfeld N Moskovits N Bentwich Z Oren M 《Molecular cell》2007,26(5):731-743
15.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising agent for cancer therapy. However, a number of prostate cancer cells exhibit high resistance to TRAIL effect. In this study, we found that Triptolide, a Chinese medicine, significantly sensitizes prostate cancer cells to TRAIL-mediated cellular apoptosis by up-regulating DR5 expression. Triptolide treatment can suppress Akt/Hdm2 signaling pathway, and lead to p53 accumulation, thereby up-regulating DR5 expression. Taken together, all evidences indicate that Triptolide may become a promising therapeutic agent that prevents the progression of prostate cancer. 相似文献
16.
Lovastatin-induced up-regulation of the BH3-only protein, Bim, and cell death in glioblastoma cells 总被引:7,自引:0,他引:7
The mechanism of lovastatin-induced cell death was examined in three established human glioblastoma cell lines; U87, U251, and U138. Changes in potential modifiers of apoptosis, including Bcl-2 family proteins and MAP kinase targets after such lovastatin treatment, were evaluated. Lovastatin (5 microm) treatment causes extensive cell death in two of the cell lines, U87 and U251; but only minimal in a third, U138. Lovastatin-induced death occurs in correlation with significantly increased levels of the BH3-only protein, Bim. The up-regulation of Bim levels was directly associated with an increased incidence of apoptosis. Lovastatin treatment in U87 cells results in activation of targets of three major mitogen-activating protein kinase cascades including Erk1/2, JNK and p38. Changes in levels of Bim, as well as increase phosphorylation of Erk1/2, c-jun, and p38 are all prevented by co-incubation of lovastatin and the isoprenylation metabolite, geranylgeranyl pyrophosphate. Inhibition of the MAP kinase pathways failed to block the increased expression of Bim expression or cell death. Further elucidation of the mechanisms of lovastatin-induced up-regulation of Bim and apoptosis in glioblastoma cells are important in determining a potential role for lovastatin as a chemotherapy agent. 相似文献
17.
18.
Min-Chi Yang Ru-Wei Lin Shih-Bo Huang Shin-Yuan Huang Wen-Jie Chen Shiaw Wang 《Cell cycle (Georgetown, Tex.)》2016,15(3):394-402
Doxorubicin and other anthracycline compounds exert their anti-cancer effects by causing DNA damage and initiating cell cycle arrest in cancer cells, followed by apoptosis. DNA damage generally activates a p53-mediated pathway to initiate apoptosis by increasing the level of the BH3-only protein, Puma. However, p53-mediated apoptosis in response to DNA damage has not yet been validated in prostate cancers. In the current study, we used LNCaP and PC3 prostate cancer cells, representing wild type p53 and a p53-null model, to determine if DNA damage activates p53-mediated apoptosis in prostate cancers. Our results revealed that PC3 cells were 4 to 8-fold less sensitive than LNCaP cells to doxorubicin-inuced apoptosis. We proved that the differential response of LNCaP and PC3 to doxorubicin was p53-independent by introducing wild-type or dominant negative p53 into PC3 or LNCaP cells, respectively. By comparing several apoptosis-related proteins in both cell lines, we found that Bcl-xl proteins were much more abundant in PC3 cells than in LNCaP cells. We further demonstrated that Bcl-xl protects LNCaP and PC3 cells from doxorubicin-induced apoptosis by using ABT-263, an inhibitor of Bcl-xl, as a single agent or in combination with doxorubicin to treat LNCaP or PC3 cells. Bcl-xl rather than p53, likely contributes to the differential response of LNCaP and PC3 to doxorubicin in apoptosis. Finally, co-immunoprecipitation and siRNA analysis revealed that a BH3-only protein, Bim, is involved in doxorubicin-induced apoptosis by directly counteracting Bcl-xl. 相似文献
19.
Kirschnek S Ying S Fischer SF Häcker H Villunger A Hochrein H Häcker G 《Journal of immunology (Baltimore, Md. : 1950)》2005,174(2):671-679
Cell death by apoptosis is important in immune cell homeostasis and in the defense against infectious microorganisms. The physiological event of uptake and intracellular destruction of bacteria is a powerful apoptotic stimulus to macrophages and neutrophil granulocytes. In this study, we provide a molecular analysis of phagocytosis-induced apoptosis. Apoptosis was blocked by Bcl-2 in a mouse macrophage cell line and in primary mouse macrophages. Analysis of the upstream mechanisms revealed that apoptosis was triggered by the Bcl-2 homology domain 3-only protein Bim/Bod. Contact with bacteria or bacterial components induced a strong increase in Bim-expression through TLR and MyD88. Inhibition of the MAPK p38 and JNK reduced both up-regulation of Bim and apoptosis. Phosphorylation of Bim was further observed in mouse macrophages, which appeared to be the result of TLR-dependent phosphatase inhibition. Although TLR-induced Bim was, unlike Bim in resting cells, not bound to the microtubuli cytoskeleton, the up-regulation of Bim was not sufficient to cause apoptosis. A second signal was required that was generated in the process of phagocytosis. Phagocytosis-induced apoptosis was strongly reduced in Bim(-/-) macrophages. These data provide the molecular context of a form of apoptosis that may serve to dispose of terminally differentiated phagocytes. 相似文献
20.
Yixin Tong Yuan Huang Yuchao Zhang Xiangtai Zeng Mei Yan Zhongsheng Xia Dongming Lai 《Cell death & disease》2021,12(6)
At present, colorectal cancer (CRC) has become a serious threat to human health in the world. Dipeptidyl peptidase 3 (DPP3) is a zinc-dependent hydrolase that may be involved in several physiological processes. However, whether DPP3 affects the development and progression of CRC remains a mystery. This study is the first to demonstrate the role of DPP3 in CRC. Firstly, the results of immunohistochemistry analysis showed the upregulation of DPP3 in CRC tissues compared with normal tissues, which is statistically analyzed to be positively correlated with lymphatic metastasis, pathological stage, positive number of lymph nodes. Moreover, the high expression of DPP3 predicts poor prognosis in CRC patients. In addition, the results of cell dysfunction experiments clarified that the downregulation of DPP3 significantly inhibited cell proliferation, colony formation, cell migration, and promoted apoptosis in vitro. DPP3 depletion could induce cell apoptosis by upregulating the expression of BID, BIM, Caspase3, Caspase8, HSP60, p21, p27, p53, and SMAC. In addition, downregulation of DPP3 can reduce tumorigenicity of CRC cells in vivo. Furthermore, CDK1 is determined to be a downstream target of DPP3-mediated regulation of CRC by RNA-seq, qPCR, and WB. The interaction between DPP3 and CDK1 shows mutual regulation. Specifically, downregulation of DPP3 can accentuate the effects of CDK1 knockdown on the function of CRC cells. Overexpression of CDK1 alleviates the inhibitory effects of DPP3 knockdown in CRC cells. In summary, DPP3 has oncogene-like functions in the development and progression of CRC by targeting CDK1, which may be an effective molecular target for the prognosis and treatment of CRC.Subject terms: Cancer, Diseases 相似文献