首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
A Gram-staining negative bacterium, THG-DT81T, which was isolated from soil of a ginseng field, was investigated using a polyphasic taxonomic approach. Cells were oxidase- and catalase-positive, aerobic, rod-shaped and motile with one polar flagellum. Strain THG-DT81T grew optimally at pH 7.0 and in the absence of NaCl on trypticase soy agar. Its optimum growth temperature was 25–28 °C. Phylogenetic analysis based on 16S rRNA gene sequence showed that strain THG-DT81T belongs to the family Sphingomonadaceae and was related to Sphingomonas pituitosa EDIVT (98.0 % similarity), S. leidyi ATCC 15260T (97.8 %), S. trueperi LMG 2142T (97.1 %), S. azotifigens NBRC 15497T (97.1 %), S. koreensis JSS26 T (97.1 %) and S. dokdonensis DS-4T (97.0 %). Strain THG-DT81T contained Q-10 as the predominant ubiquinone and C18:1 ω7c and C16:0 as the major fatty acids. The G+C content of the genomic DNA was determined to be 66.8 mol %. The major component in the polyamine pattern was identified as sym-homospermidine. The major polar lipids detected in strain THG-DT81T were sphingoglycolipid, phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and phosphatidylcholine. The DNA–DNA relatedness values of the strain THG-DT81T and its closest phylogenetically neighbors were below 21 %. The phenotypic characteristics and genotypic data demonstrated the affiliation of strain THG-DT81T to the genus Sphingomonas. On the basis of the polyphasic taxonomic data presented, strain THG-DT81T is described as a novel species of genus Sphingomonas, for which the name Sphingomonas kyeonggiense sp. nov. is proposed. The type strain is THG-DT81T (= KACC 17173T = JCM 18825T).  相似文献   

5.
6.
7.
8.
A novel strain of Flavobacterium, DCY55(T), a Gram-negative, yellow-pigmented, rod-shaped, non-spore-forming and gliding-motile bacterium, was isolated from the soil of a ginseng field in South Korea. Phylogenetic analysis, based on the 16S rRNA sequence, demonstrated that strain DCY55(T) belongs to the genus Flavobacterium within the family Flavobacteriaceae. Strain DCY55(T) showed the highest similarity with F. johnsoniae UW101(T) (97.1%), F. ginsenosidimutans THG 01(T) (96.8%), F. defluvii EMB 117(T) (96.6%), F. banpakuense 15F3(T) (96.3%) and F. anhuiense D3(T) (95.8%). Chemotaxonomic results showed that strain DCY55(T) predominantly contains menaquinone MK-6, that its DNA G+C content is 36.1mol%, and that its major cellular fatty acids are iso-C(15:0), summed feature 3 (comprising iso-C(15:0) 2-OH and/or C(16:1) ω 7c) and C(16:0). The chemotaxonomic and genotypic characteristics support the taxonomic classification of strain DCY55(T) to the genus Flavobacterium. The results of physiological and biochemical tests confirmed that strain DCY55(T) is distinct from previously validated species. We conclude that strain DCY55(T) should be classified as a novel species of the genus Flavobacterium, for which the name Flavobacterium ginsengiterrae sp. nov. is proposed, with the type strain DCY55(T) (=KCTC 23319(T) = JCM 17337(T)).  相似文献   

9.
10.
11.
A Gram-negative, strictly aerobic, motile bacterial strain, designated Gsoil 124T, was isolated from a soil sample taken from a ginseng field in Pocheon Province (South Korea). The isolate contained Q-10 as the predominant lipoquinone, plus C18:1 7c and summed feature 4 (C16:1 6c and/or iso- C15:0 2-OH) as the major fatty acids. The G+C content of the genomic DNA was 68.1 mol%, and the major polar lipids consisted of sphingoglycolipid, phosphatidylglycerol, phosphatidylcholine, and phosphatidylethanolamine. A comparative 16S rRNA gene sequence analysis showed that strain Gsoil 124T was most closely related to Sphingopyxis chilensis (98.7%), Sphingopyxis alaskensis (98.2%), Sphingopyxis witflariensis (98.2%), Sphingopyxis taejonensis (98.0%), and Sphingopyxis macrogoltabida (97.6%). However, the DNA-DNA relatedness between strain Gsoil 124T and its phylogenetically closest neighbors was less than 22%. Thus, on the basis of its phenotypic properties and phylogenetic distinctiveness, strain Gsoil 124T should be classified as representing a novel species in the genus Sphingopyxis, for which the name Sphingopyxis panaciterrae sp. nov. is proposed. The type strain is Gsoil 124T (=KCTC 12580T=LMG 24003T).  相似文献   

12.
Archives of Microbiology - A Gram-stain-negative, aerobic, non-motile, non-spore-forming light-yellow-coloured rod-shaped bacterial strain, designated YJ15T, was isolated from soil at Bigeum island...  相似文献   

13.
Four yellow pigmented strains (91A-561T, 91A-576, 91A-593T, and JM-1085T) isolated from plant materials, showed 97.2–98.7 % 16S rRNA gene sequence similarities among each other and were studied in a polyphasic approach for their taxonomic allocation. Cells of all four isolates were rod-shaped and stained Gram-negative. Comparative 16S rRNA gene sequence analysis showed that the four bacteria had highest sequence similarities to Chryseobacterium formosense (97.2–98.7 %), Chryseobacterium gwangjuense (97.1–97.8 %), and Chryseobacterium defluvii (94.6–98.0 %). Sequence similarities to all other Chryseobacterium species were below 97.5 %. Fatty acid analysis of the four strains showed Chryseobacterium typical profiles consisting of major fatty acids C15:0 iso, C15:0 iso 2-OH/C16:1 ω7c, C17:1 iso ω9c, and C17:0 iso 3-OH, but showed also slight differences. DNA–DNA hybridizations with type strains of C. gwangjuense, C. formosense, and C. defluvii resulted in values below 70 %. Isolates 91A-561T and 91A-576 showed DNA–DNA hybridization values >80 % indicating that they belonged to the same species; but nucleic acid fingerprinting showed that the two isolates represent two different strains. DNA–DNA hybridization results and the differentiating biochemical and chemotaxonomic properties showed, that both strains 91A-561T and 91A-576 represent a novel species, for which the name Chryseobacterium geocarposphaerae sp. nov. (type strain 91A-561T=LMG 27811T=CCM 8488T) is proposed. Strains 91A-593T and JM-1085T represent two additional new species for which we propose the names Chyrseobacterium zeae sp. nov. (type strain JM-1085T=LMG 27809T, =CCM 8491T) and Chryseobacterium arachidis sp. nov. (type strain 91A-593T=LMG 27813T, =CCM 8489T), respectively.  相似文献   

14.
15.
A bacterial isolate designated GR24-2T was isolated from Korean soil used for cultivating ginseng (Panax ginseng C. A. Meyer). The strain was aerobic, Gram-negative, motile, and rod-shaped. It grew optimally at 28–30°C, pH 7.0, and in a range of 0–1% NaCl. Phylogenetically, the strain clustered with members of the genus Rhodanobacter. The strain exhibited the highest sequence similarities (>98%) with R. panaciterrae LnR5-47T (98.4%), R. soli DCY45T (98.2%), and R. ginsengisoli GR17-7T (98.0%). However, it also showed high sequence similarities (>97%) with some other Rhodanobacter and Dyella species. The strain contained Q-8 as the predominant respiratory quinone. The major fatty acids (greater than 10% of the total fatty acids) were iso-C17:1 ω9c (24.5%), iso-C16:0 (22.8%), anteiso-C15:0 (10.5%), and iso-C15:0 (10.1%). Its major polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, and an unknown aminophospholipid. The DNA G+C content of strain GR24-2T was 65.6 mol%. The strain showed less than 70% DNA relatedness values between the closely related Rhodanobacter and Dyella species. The phylogeny, phenotype, DNA-DNA hybridization, and chemotaxonomic data generated in this study reveal that the isolate is a novel species of the genus Rhodanobacter. The name proposed for this strain is Rhodanobacter umsongensis sp. nov. (type strain GR24-2T =KACC 12917T =DSM 21300T).  相似文献   

16.
17.
18.
A Gram-staining-positive, catalase-positive, oxidase-negative, non-motile, non-flagellate and rod-shaped bacterium, was designated as DCY81T, and isolated from soil of a ginseng field in Pocheon province, Republic of Korea. The 16S rRNA gene sequence analysis revealed that strain DCY81T belonged to the genus Arthrobacter. Major fatty acid was anteiso-C15:0, while major polar lipids were diphosphatidyglycerol, phatidyglycerol, phosphatidylinositol, monogalactosyldiacylglycerol (GL1), and dimannosyldiacylglycerol (GL2). The dominant quinone was MK-9(H2). The peptidoglycan type was A3α with an l-Lys–l-Ala–l-Thr–l-Ala interpeptide bridge. The DNA–DNA hybridization relatedness between strain DCY81T and Arthrobacter siccitolerans LMG 27359T (98.2 %), Arthrobacter sulfonivorans JCM 13520T (97.81 %), Arthrobacter scleromae DSM 17756T (97.59 %), Arthrobacter oxydans KCTC 3383T (97.3 %) was 39.1 ± 0.2, 62.2 ± 1.6, 36.8 ± 1.1 and 48.3 ± 1.6 %, respectively which show that the genotypic separation of strain DCY81T from the closest reference strain of the genus Arthrobacter. The DNA G+C content was 65.2 mol%. The genotypic analysis, physiological, and chemotaxonomic results indicate that strain DCY81T represents a novel species of the genus Arthrobacter. Therefore, Arthrobacter ginsengisoli sp. nov., is proposed as the type strain (=KCTC 29225T = JCM 19357T).  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号