首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Cephamycin C production was blocked in wild-type cultures of the clavulanic acid-producing organism Streptomyces clavuligerus by targeted disruption of the gene (lat) encoding lysine epsilon-aminotransferase. Specific production of clavulanic acid increased in the lat mutants derived from the wild-type strain by 2- to 2.5-fold. Similar beneficial effects on clavulanic acid production were noted in previous studies when gene disruption was used to block the production of the non-clavulanic acid clavams produced by S. clavuligerus. Therefore, mutations in lat and in cvm1, a gene involved in clavam production, were introduced into a high-titer industrial strain of S. clavuligerus to create a double mutant with defects in production of both cephamycin C and clavams. Production of both cephamycin C and non-clavulanic acid clavams was eliminated in the double mutant, and clavulanic acid titers increased about 10% relative to those of the parental strain. This represents the first report of the successful use of genetic engineering to eliminate undesirable metabolic pathways in an industrial strain used for the production of an antibiotic important in human medicine.  相似文献   

2.
Targeted gene insertion methodology was used to study the effect of perturbing alpha-aminoadipic acid precursor flux on the overall production rate of beta-lactam biosynthesis in Streptomyces clavuligerus. A high-copy-number plasmid containing the lysine epsilon-aminotransferase gene (lat) was constructed and used to transform S. clavuligerus. The resulting recombinant strain (LHM100) contained an additional complete copy of lat located adjacent to the corresponding wild-type gene in the chromosome. Biological activity and production levels of beta-lactam antibiotics were two to five times greater than in wild-type S. clavuligerus. Although levels of lysine epsilon-aminotransferase were elevated fourfold in LHM100, the level of ACV synthetase, whose gene is located just downstream of lat, remained unchanged. These data strongly support the notion that direct perturbation of alpha-aminoadipic acid precursor flux resulted in increased antibiotic production. This strategy represents a successful application of metabolic engineering based on theoretical predictions of precursor flux in a secondary metabolic pathway.  相似文献   

3.
In order to know the effect of supports on cephamycin C production, under similar experimental conditions, S. clavuligerus cells were immobilized with--sponge, 2% agar, 2% and 4% alginate support materials. An experimental set of free cell was also maintained as control. Cephamycin C production by these immobilized and free cells was estimated at 48, 96 and 120 hr of fermentation. In all the cases cephamycin C production was found to be high at 120 hr of fermentation. Sponge was found to be a better support material than other supports used for immobilization.  相似文献   

4.
Cephamycin C is produced in a nine steps pathway by the actinomycetes S. clavuligerus and N. lactamdurans. The genes encoding the biosynthesis enzymes are clustered in both microorganisms as well as in the cephabacin producer Lysobacter lactamgenus, a Gram negative bacterium. The clusters of genes include genes encoding enzymes common to the biosynthesis of penicillin and cephalosporin C by the eukaryotic producers Penicillium chrysogenum and Cephalosporiun acremonium and genes for steps specific for the formation of the precursor -aminoadipic acid as well as for the enzymes involved in the late modification of the cephalosporin intermediates of the pathway. Present are also genes for proteins involved in the export and/or resistance to cephamycin C. In S. clavuligerus a gene encoding a regulatory protein controlling the formation of cephamycin C and clavulanic acid is also present in the cluster.  相似文献   

5.
To investigate the temporal and spatial expression patterns of the gene (lat ) encoding lysine epsilon-aminotransferase (LAT) for cephamycin C biosynthesis, a mutant form of green fluorescent protein (mut1GFP) was integrated into the Streptomyces clavuligerus chromosome (strain LH369), resulting in a translational fusion with lat. LAT activity and fluorescence profiles of the recombinant protein paralleled the native LAT enzyme activity profile in wild-type S. clavuligerus, which peaked during exponential growth phase and decreased slowly towards stationary phase. These results indicate that the LAT-Mut1GFP fusion protein retains both LAT and GFP functionality in S. clavuligerus LH369. LH369 produced wild-type levels of cephamycin C in minimal medium culture conditions supplemented with lysine. Time-lapsed confocal microscopy of the S. clavuligerus LH369 strain revealed the temporal and spatial characteristics of lat gene expression and demonstrated that physiological development of S. clavuligerus colonies leading to cephamycin C biosynthesis is limited to the substrate mycelia.  相似文献   

6.
The pcd gene from Flavobacterium lutescens IFO3084 encoding Delta'-piperideine-6-carboxylate dehydrogenase (PCD) was cloned, sequenced, and expressed in Escherichia coli. The deduced amino acid sequence of PCD from F. lutescens IFO3084 showed strong similarity to that from Streptomyces clavuligerus. The molecular mass of the recombinant PCD was estimated to be approximately 58,000 Da by SDS-PAGE and native PAGE, which indicated that the enzyme molecule is a monomer. The in vitro analysis of L-alpha-aminoadipic acid (L-AAA) production showed that L-AAA is synthesized from L-lysine in two steps catalyzed by L-lysine 6-aminotransferase (LAT) and PCD from F. lutescens IFO3084.  相似文献   

7.
8.
A Streptomyces clavuligerus ccaR::aph strain, which has a disruption in the regulatory gene ccaR, does not produce cephamycin C or clavulanic acid, but does produce a bioactive compound that was identified as holomycin by high-performance liquid chromatography (HPLC) and infrared and mass spectrometry. S. clavuligerus strains with disruptions in different genes of the clavulanic acid pathway fall into three groups with respect to holomycin biosynthesis. (i) Mutants with mutations in the early steps of the pathway blocked in the gene ceaS (pyc) (encoding carboxyethylarginine synthase), bls (encoding a beta-lactam synthetase), or open reading frame 6 (ORF6; coding for an acetyltransferase of unknown function) are holomycin nonproducers. (ii) Mutants blocked in the regulatory gene ccaR or claR or blocked in the last gene of the pathway encoding clavulanic acid reductase (car) produce holomycin at higher levels than the wild-type strain. (iii) Mutants with disruption in cyp (coding for cytochrome P450), ORF12, and ORF15, genes that appear to be involved in the conversion of clavaminic acid into clavaldehyde or in secretion steps, produce up to 250-fold as much holomycin as the wild-type strain. An assay for holomycin synthetase was developed. This enzyme forms holomycin from holothin by using acetyl coenzyme A as an acetyl group donor. The holomycin synthase activities in the different clavulanic acid mutants correlate well with their production of holomycin.  相似文献   

9.
Cephamycin C production was blocked in wild-type cultures of the clavulanic acid-producing organism Streptomyces clavuligerus by targeted disruption of the gene (lat) encoding lysine -aminotransferase. Specific production of clavulanic acid increased in the lat mutants derived from the wild-type strain by 2- to 2.5-fold. Similar beneficial effects on clavulanic acid production were noted in previous studies when gene disruption was used to block the production of the non-clavulanic acid clavams produced by S. clavuligerus. Therefore, mutations in lat and in cvm1, a gene involved in clavam production, were introduced into a high-titer industrial strain of S. clavuligerus to create a double mutant with defects in production of both cephamycin C and clavams. Production of both cephamycin C and non-clavulanic acid clavams was eliminated in the double mutant, and clavulanic acid titers increased about 10% relative to those of the parental strain. This represents the first report of the successful use of genetic engineering to eliminate undesirable metabolic pathways in an industrial strain used for the production of an antibiotic important in human medicine.  相似文献   

10.
Cell-free extracts from Streptomyces clavuligerus, purified by elution from heparin-agarose with an ARE-containing DNA fragment or by salt elution chromatography, bind to a 26 nt ARE sequence, for butyrolactone receptor proteins (ARE(ccaR)). This sequence is [corrected] located upstream of the ccaR gene, encoding [corrected] the activator protein CcaR required for clavulanic acid and cephamycin C biosynthesis. The binding is specific for the ARE sequence as shown by competition with a 34 nt unlabelled probe identical to the ARE sequence. A brp gene, encoding a butyrolactone receptor protein, was cloned from S. clavuligerus. Sixty-one nucleotides upstream of brp another ARE sequence (ARE(brp)) was found, suggesting that Brp autoregulates its expression. Pure recombinant rBrp protein binds specifically to the ARE sequences present upstream of ccaR and brp. A brp-deleted mutant, S. clavuligerus Deltabrp::neo1, produced 150-300% clavulanic acid and 120-220% cephamycin C as compared with the parental strain, suggesting that Brp exerts a repressor role in antibiotic biosynthesis. EMSA assays using affinity chromatography extracts from the deletion mutant S. clavuligerus Deltabrp::neo1 lacked a high-mobility band-shift due to Brp but still showed a [corrected] slow-mobility band-shift observed in the wild-type strain. These results indicate that two different proteins bind specifically to the ARE sequence and modulate clavulanic acid and cephamycin C [corrected] biosynthesis by its action on ccaR gene expression.  相似文献   

11.
12.
The effects of growth rate and nutrient uptake rate on the production of cephamycin C were determined in the parental strain, deltarelA mutant, and deltarsh null mutant of S. clavuligerus. Production of cephamycin C was inversely related to mycelium growth and the phosphate feed rate was more critical for the production of cephamycin C. On the contrary, the production of cephamycin C was completely abolished in the deltarelA mutant, but not in deltarsh mutant. The changes in the cephamycin C production by disruption of the relA and rsh genes are presumably associated with the consequent ability of the mutants to accumulate (p)ppGpp under nutrient starvation. Therefore, it is concluded that the stringent response of S. clavuligerus to starvation for nutrients is governed mainly by RelA rather than Rsh and that the response is more apparently regulated by the limitation of phosphate.  相似文献   

13.
14.
orf7 (oppA1) and orf15 (oppA2) are located 8 kb apart in the clavulanic acid gene cluster of Streptomyces clavuligerus and encode proteins which are 48.0% identical. These proteins show sequence similarity to periplasmic oligopeptide-binding proteins. Mutant S. clavuligerus oppA1::acc, disrupted in oppA1, lacks clavulanic acid production. Clavulanic acid production is restored by transformation with plasmid pIJ699-oppA1, which carries oppA1, but not with the multicopy plasmid pIJ699-oppA2, which carries oppA2. The mutant S. clavuligerus oppA2::aph also lacks clavulanic acid production, shows a bald phenotype, and overproduces holomycin (5). Clavulanic acid production at low levels is restored in the oppA2-disrupted mutants by transformation with plasmid pIJ699-oppA2, but it is not complemented by the multicopy plasmid pIJ699-oppA1. Both genes encode oligopeptide permeases with different substrate specificities. The disrupted S. clavuligerus oppA2::aph is not able to grow on RPPGFSPFR (Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg; bradykinin), but both mutants grow on VAPG (Val-Ala-Pro-Gly) as the only nitrogen source, indicating differences in the peptide bound by the proteins encoded by both genes. The null S. clavuligerus oppA1::acc and S. clavuligerus oppA2::aph mutants are more resistant to the toxic tripeptide phosphinothricyl-alanyl-alanine (also named bialaphos) than the wild-type strain, suggesting that this peptide might be transported by these peptide-binding proteins.  相似文献   

15.
《Process Biochemistry》1999,34(4):325-328
Solid state cultivation of Streptomyces clavuligerus for cephamycin C production was carried out in a system consisting of wheat rawa 5 g; cotton seed deoiled cake 5 g; sunflower cake 0·5 g; corn steep liquor 1 g; MgSO4.7H2O 0·06 g; CaCO3 0·1 g; K2HPO4 4·4 g; with initial moisture content of 80%, initial pH 6·5 and a fermentation temperature in the range 28–30°C. The fermentation cycle was about 5 days. Streptomyces clavuligerus growth was observed on the 2nd day and production of cephamycin C was initiated on 3rd day. Abundant mycelial growth was observed from the 3rd day and reached stationary phase by the 5th day. Cephamycin C was produced maximally at a rate of 15 mg/g substrate on the 5th day and was stable until the 30th day with only marginal decrease in titre.  相似文献   

16.
Summary Streptomyces clavuligerus produces cephamycin C while growing on chemically defined basal medium. Cephamycin C production takes place during the exponential growth phase and is accompanied by vigorous activity of the cephamycin C synthetase system and of expandase. An excessive amount of glycerol decreases cephamycin C production. Its negative effect appears to be greatest when it is added in the first phase of fermentation either alone or in the presence of starch. Starch excess also reduces cephamycin C production, but its effect is slight compared with glycerol. Glycerol hinders cephamycin C production by the repression of the cephamycin C synthetase system and particularly expandase biosynthesis. Starch and glycerol inhibit neither cephamycin C synthetase nor expandase activities. However, the phosphorylated intermediates of the glycolytic pathway, glucose 6-phosphate and fructose 1,6-phosphate, strongly inhibit expandase activity.  相似文献   

17.
 The bla gene of the cephamycin cluster of Nocardia lactamdurans has been subcloned in the shuttle plasmids pULVK2 and pULVK2A and amplified in N. lactamdurans LC411. The transformants showed two- to threefold higher β-lactamase activity. Formation of β-lactamase preceded the onset of cephamycin biosynthesis. The β-lactamase of N. lactamdurans inactivated penicillins and, to a lesser extent, cephalosporin C but did not hydrolyse cephamycin C. This β-lactamase was highly sensitive to clavulanic acid (50% inhibition was observed at 0.48 μg/ml clavulanic acid). The N. lactamdurans bla gene was disrupted in vivo by inertion of the kanamycin-resistance gene. Three bla-disrupted mutants, BD4, BD8 and BD12, were selected that lacked β-lactamase activity. Overexpresion of the bla gene resulted in N. lactamdurans transformants that were resistant to penicillin whereas mutants in which the bla gene was disrupted were supersensitive to this antibiotic. The three N. lactamdurans mutants with the bla gene disrupted showed a significant increase of cephamycin biosynthesis in solid medium, whereas transformants with the amplified bla gene produced reduced levels of cephamycin. The cephamycin-overproducing Merck strain N. lactamdurans MA4213 showed no detectable levels of β-lactamase activity. The β-lactamase plays a negative role in cephamycin biosynthesis in solid medium, but not in liquid medium. Received: 26 July 1995/Received revision: 18 December 1995/Accepted: 8 January 1996  相似文献   

18.
Ornithine and arginine (5 to 20 mM), but not glutamic acid or proline, exerted a concentration-dependent stimulatory effect on the biosynthesis of clavulanic acid in both resting-cell cultures and long-term fermentations of Streptomyces clavuligerus. Ornithine strongly inhibited cephamycin biosynthesis in the same strain. [1-14C]-, [5-14C]-, or [U-14 C] ornithine was efficiently incorporated into clavulanic acid, whereas the incorporation of uniformly labeled glutamic acid was very poor. [U-14C] citrulline were not incorporated at all. Mutant nca-1, a strain that is blocked in clavulanic acid biosynthesis, did not incorporate arginine into clavulanic acid. S. clavuligerus showed arginase activity, converting arginine into ornithine, but not amidinotransferase activity. Both arginase activity and clavulanic acid formation were enhanced simultaneously by supplementing the production medium with 10 mM arginine.  相似文献   

19.
During screening of ethylmethane sulphonate-mutagenized pea ( Pisum sativum L.) seedlings under far-red light a mutant line, AF130, was isolated which showed a reduction in both red and far-red light-induced de-etiolation responses. The photomorphogenic phenotype of AF130 results from a single recessive mutation which is not allelic with the previously described phytochrome chromophore biosynthesis mutant pcd1 . This new mutant has been designated pcd2 , for p hytochrome c hromophore d eficient 2. Like pcd1 , etiolated pcd2 seedlings are severely deficient in spectrally active phytochrome and contain wild-type levels of phytochrome A apoprotein which is not substantially depleted by red light treatment. Etioplast preparations from pcd2 seedlings can metabolize heme to biliverdin (BV) IXα, but are unable to convert BV IXα to the phytochrome chromophore, phytochromobilin. The PCD1 and PCD2 genes therefore control consecutive steps in phytochromobilin synthesis. Despite a similarly severe impairment of photomorphogenic responses, pcd2 mutant seedlings do not display the strongly chlorotic phenotype of pcd1 , suggesting that this characteristic of pcd1 does not result from phytochrome deficiency per se , but is a specific effect of the pcd1 mutation. A double mutant between pcd1 and pcd2 was constructed. This mutant is paler than pcd1 and less responsive to red light than either single mutant, but retains a strong response to blue light.  相似文献   

20.
In this study, the effect of homologous multiple copies of the ask gene, which encodes aspartokinase catalyzing the first step of the aspartate pathway, on cephamycin C biosynthesis in S. clavuligerus NRRL 3585 and its hom mutant was investigated. The intracellular pool levels of aspartate pathway amino acids accorded well with the Ask activity levels in TB3585 and AK39. When compared with the control strain carrying vector alone without any gene insert, amplification of the ask gene in the wild strain resulted in a maximum of 3.1- and 3.3-fold increase in specific, 1.7- and 1.9-fold increase in volumetric cephamycin C production when grown in trypticase soy broth (TSB) and a modified chemically defined medium (mCDM), respectively. However, expression of multicopy ask gene in a hom-deleted background significantly decreased cephamycin C yields when the cells were grown in either TSB or mCDM, most probably due to physiological disturbance resulting from enzyme overexpression and high copy number plasmid burden in an auxotrophic host, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号