首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Comparison of primate genomes sequences has confirmed the evidence that substantial part of intra- and interspecies differences is provided by retroelements. Human genome contains thousands of polymorphic retroelement copies considered to be perspective molecular genetic markers of new generation. However utilization of polymorphic retroelements as molecular genetic markers is limited due to lack of systematic data on their number, genomic context and distribution among human populations. We have created first bilingual (Russian/English) internet-resource devoted to known polymorphic retroelements discovered in human genome by our group as well as by other researchers worldwide. The database contains information about each retroelement copy location, position relative to known and predicted genes, frequency of alleles in human populations and others. Our internet portal allows to perform a search in database using multiple search conditions and available on http://labcfg.ibch.ru/home.html. The database provides an opportunity to investigate distribution of polymorphic retroelements in human genome and to design new genetic markers for various population and medical studies.  相似文献   

2.
Retroelements (REs) occupy up to 40% of the human genome. Newly integrated REs can change the pattern of expression of pre-existing host genes and therefore might play a significant role in evolution. In particular, human- and primate-specific REs could affect the divergence of the Hominoidea superfamily. A comparative genome-wide analysis of RE sites of integration, neighboring genes, and their regulatory interplay in human and ape genomes would be of help in understanding the impact of REs on evolution and genome regulation. We have developed a technique for the genome-wide comparison of the integrations of transposable elements in genomic DNAs of closely related species. The technique called targeted genome differences analysis (TGDA) is also useful for the detection of deletion/insertion polymorphisms of REs. The technique is based on an enhanced version of subtractive hybridization and does not require preliminary knowledge of the genome sequences under comparison. In this report, we describe its application to the detection and analysis of human specific L1 integrations and their polymorphisms. We obtained a library highly enriched in human-specific L1 insertions and identified 24 such new insertions. Many of these insertions are polymorphic in human populations. The total number of human-specific L1 inserts was estimated to be approximately 4000. The results suggest that TGDA is a universal method that can be successfully used for the detection of evolutionary and polymorphic markers in any closely related genomes.  相似文献   

3.
Lee YK  Lee KH  Kim SG  Melhem R  Moon CS  Liu S  Greenhalgh DG  Cho K 《PloS one》2012,7(4):e35156
The entirety of all protein coding sequences is reported to represent a small fraction (~2%) of the mouse and human genomes; the vast majority of the rest of the genome is presumed to be repetitive elements (REs). In this study, the C57BL/6J mouse reference genome was subjected to an unbiased RE mining to establish a whole-genome profile of RE occurrence and arrangement. The C57BL/6J mouse genome was fragmented into an initial set of 5,321 units of 0.5 Mb, and surveyed for REs using unbiased self-alignment and dot-matrix protocols. The survey revealed that individual chromosomes had unique profiles of RE arrangement structures, named RE arrays. The RE populations in certain genomic regions were arranged into various forms of complexly organized structures using combinations of direct and/or inverse repeats. Some of these RE arrays spanned stretches of over 2 Mb, which may contribute to the structural configuration of the respective genomic regions. There were substantial differences in RE density among the 21 chromosomes, with chromosome Y being the most densely populated. In addition, the RE array population in the mouse chromosomes X and Y was substantially different from those of the reference human chromosomes. Conversion of the dot-matrix data pertaining to a tandem 13-repeat structure within the Ch7.032 genome unit into a line map of known REs revealed a repeat unit of ~11.3 Kb as a mosaic of six different RE types. The data obtained from this study allowed for a comprehensive RE profiling, including the establishment of a library of RE arrays, of the reference mouse genome. Some of these RE arrays may participate in a spectrum of normal and disease biology that are specific for mice.  相似文献   

4.
A new experimental technique for genome-wide detection of integration sites of polymorphic retroelements (REs) is described. The technique allows one to reveal the absence of a retroelement in an individual genome provided that this retroelement is present in at least one of several other genomes under comparison. Since quite a number of genomes are compared simultaneously, the search for polymorphic REs insertions is very efficient. The technique includes two whole-genome selective PCR amplifications of sequences flanking REs: one for a particular genome and another one for a mixture of ten different genomes. A subsequent subtractive hybridization of the obtained amplicons with DNA of a particular genome as driver results in isolation of polymorphic insertions. The technique was successfully applied for identification of 41 new polymorphic human AluYa5/Ya8 insertions. Among them, 18 individual Alu elements first sequenced in this work were not found in the available human genome databases. This result suggests that significant part of polymorphic REs were not identified during genome sequencing and remain to be detected and characterized. The proposed method does not depend on preliminary knowledge of evolutionary history of retroelements and can be applied for identification of insertion/deletion polymorphic markers in genomes of different species.  相似文献   

5.
Admixture results from interbreeding between individuals from different populations or species that were previously genetically isolated from each other (Fig.  1 ). Identifying admixture events in the genome is not always a straightforward task, because the genetic signature left behind fades with time as recombination events fragment the genomic segments introduced during the interbreeding event. Additionally, when the genetic architecture of populations or species that admix is not very different (e.g. they coalesce to a common ancestor recently), admixture signatures may be difficult to detect. Ignoring the effects of admixture can, however, pose severe problems for population genetic analyses that rely on the distribution of polymorphic markers across the genome. In this issue of Molecular Ecology, Bosse et al. ( 2014 ) analyse genomic data from modern pigs to understand hybridization processes that occurred between domestic pigs from European and Asiatic origin, and between pigs and wild boars. Their results are interesting regarding the fine‐scale distribution of admixture across the pig genome, and the way in which this admixture biases estimates of the effective population size in European domestic pigs. The implications of these results are significant, as they serve as a cautionary note on genomic analyses that depend on the distribution of polymorphic variants in potentially admixed populations.  相似文献   

6.
InDel标记的研究和应用进展   总被引:2,自引:0,他引:2  
InDel是指在近缘种或同一物种不同个体之间基因组同一位点的序列发生不同大小核苷酸片段的插入或缺失(insertion-deletion), 是同源序列比对产生空位(gap)的现象。InDel在基因组中分布广泛、密度大、数目众多。InDel多态性分子标记是基于插入/缺失位点两侧的序列设计特异引物进行PCR扩增的标记, 其本质仍属于长度多态性标记, 可利用便捷的电泳平台进行分型。InDel标记准确性高、稳定性好, 避免了由于特异性和复杂性导致的后续分析模糊。此外, InDel标记能扩增混合DNA样品和高度降解的微量DNA样品, 并进行有效分型。InDel标记目前已开始应用于动植物群体遗传分析、分子辅助育种以及人类法医遗传学、医学诊断等领域。随着位于功能基因上InDel标记的开发, 结合染色体步移和基因精细定位, 可将这些标记应用于相关物种经济性状的功能基因的筛选, 有利于优良基因的进一步开发和利用。  相似文献   

7.
The discovery of an abundance of copy number variants (CNVs; gains and losses of DNA sequences >1 kb) and other structural variants in the human genome is influencing the way research and diagnostic analyses are being designed and interpreted. As such, comprehensive databases with the most relevant information will be critical to fully understand the results and have impact in a diverse range of disciplines ranging from molecular biology to clinical genetics. Here, we describe the development of bioinformatics resources to facilitate these studies. The Database of Genomic Variants (http://projects.tcag.ca/variation/) is a comprehensive catalogue of structural variation in the human genome. The database currently contains 1,267 regions reported to contain copy number variation or inversions in apparently healthy human cases. We describe the current contents of the database and how it can serve as a resource for interpretation of array comparative genomic hybridization (array CGH) and other DNA copy imbalance data. We also present the structure of the database, which was built using a new data modeling methodology termed Cross-Referenced Tables (XRT). This is a generic and easy-to-use platform, which is strong in handling textual data and complex relationships. Web-based presentation tools have been built allowing publication of XRT data to the web immediately along with rapid sharing of files with other databases and genome browsers. We also describe a novel tool named eFISH (electronic fluorescence in situ hybridization) (http://projects.tcag.ca/efish/), a BLAST-based program that was developed to facilitate the choice of appropriate clones for FISH and CGH experiments, as well as interpretation of results in which genomic DNA probes are used in hybridization-based experiments.  相似文献   

8.
Microsatellite (MS) polymorphism is an important source of genetic diversity, providing support for map-based cloning and molecular breeding. We have developed a new database that contains 52 845 polymorphic MS loci between indica and japonica, composed of ample Class II MS markers, and integrated 18 828 MS loci from IRGSP and genetic markers from RGP. Based on genetic marker positions on the rice genome (http://rise.genomics.org.cn/rice2/index.jsp ), we determined the approximate genetic distances of these MS loci and validated 100 randomly selected markers experimentally with 90% success rate. In addition, we recorded polymorphic MS positions in indica cv. 9311 that is the most important paternal parent of the two-line hybrid rice in China. Our database will undoubtedly facilitate the application of MS markers in genetic researches and marker-assisted breeding. The data set is freely available from www.wigs.zju.edu.cn/achievment/polySSR.  相似文献   

9.
10.
AIMS: The aim of this work was the selection of six polymorphic microsatellite loci for their use as molecular markers in the identification, typification and genetic differentiation of S. cerevisiae strains. METHODS AND RESULTS: The selection was undertaken following a search of the genomic DNA database of Saccharomyces cerevisiae for simple tandem repeat sequences (microsatellites) of di- and trinucleotides. The genetic variability generated by these markers was evaluated in 51 isolates. The discriminatory power produced by combining the information obtained by the six microsatellites was very high. A total of 57 alleles, which generated 44 genotypes, were found. CONCLUSIONS, SIGNIFICANCE AND IMPACT OF THE STUDY: The multiple analysis of microsatellites proved to be a powerful and agile tool for analysing the genome of S. cerevisiae populations.  相似文献   

11.
We constructed an integrated DNA marker linkage map of eggplant (Solanum melongena L.) using DNA marker segregation data sets obtained from two independent intraspecific F(2) populations. The linkage map consisted of 12 linkage groups and encompassed 1,285.5 cM in total. We mapped 952 DNA markers, including 313 genomic SSR markers developed by random sequencing of simple sequence repeat (SSR)-enriched genomic libraries, and 623 single-nucleotide polymorphisms (SNP) and insertion/deletion polymorphisms (InDels) found in eggplant-expressed sequence tags (ESTs) and related genomic sequences [introns and untranslated regions (UTRs)]. Because of their co-dominant inheritance and their highly polymorphic and multi-allelic nature, the SSR markers may be more versatile than the SNP and InDel markers for map-based genetic analysis of any traits of interest using segregating populations derived from any intraspecific crosses of practical breeding materials. However, we found that the distribution of microsatellites in the genome was biased to some extent, and therefore a considerable part of the eggplant genome was first detected when gene-derived SNP and InDel markers were mapped. Of the 623 SNP and InDel markers mapped onto the eggplant integrated map, 469 were derived from eggplant unigenes contained within Solanum orthologous (SOL) gene sets (i.e., sets of orthologous unigenes from eggplant, tomato, and potato). Out of the 469 markers, 326 could also be mapped onto the tomato map. These common markers will be informative landmarks for the transfer of tomato's more saturated genomic information to eggplant and will also provide comparative information on the genome organization of the two solanaceous species. The data are available from the DNA marker database of vegetables, VegMarks (http://vegmarks.nivot.affrc.go.jp).  相似文献   

12.
Chung BI  Lee KH  Shin KS  Kim WC  Kwon DN  You RN  Lee YK  Cho K  Cho DH 《Genomics》2011,98(5):381-389
Repetitive elements (REs) constitute a substantial portion of the genomes of human and other species; however, the RE profiles (type, density, and arrangement) within the individual genomes have not been fully characterized. In this study, we developed an RE analysis tool, called REMiner, for a chromosome-wide investigation into the occurrence of individual REs and arrangement of clusters of REs, and REMiner's functional features were examined using the human chromosome Y. The algorithm implemented by REMiner focused on unbiased mining of REs in large chromosomes and data interface within a viewer. The data from the chromosome demonstrated that REMiner is an efficient tool in regard to its capacity for a large query size and the availability of a high-resolution viewer, featuring instant retrieval of alignment data and control of magnification and identity ratio. The chromosome-wide survey identified a diverse population of ordered RE arrangements, which may participate in the genome biology.  相似文献   

13.
Jun TH  Michel AP  Mian MA 《Génome》2011,54(5):360-367
Simple sequence repeats (SSRs) or microsatellites are very useful molecular markers, owing to their locus-specific codominant and multiallelic nature, high abundance in the genome, and high rates of transferability across species. The soybean aphid (Aphis glycines Matsumura) has become the most damaging insect pest of soybean (Glycine max (L.) Merr.) in North America, since it was first found in the Midwest of the United States in 2000. Biotypes of the soybean aphid capable of colonizing newly developed aphid-resistant soybean cultivars have been recently discovered. Genetic resources, including molecular markers, to study soybean aphids are severely lacking. Recently developed next generation sequencing platforms offer opportunities for high-throughput and inexpensive genome sequencing and rapid marker development. The objectives of this study were (i) to develop and characterize genomic SSR markers from soybean aphid genomic sequences generated by next generation sequencing technology and (ii) to evaluate the utility of the SSRs for genetic diversity or relationship analyses. In total 128 SSR primer pairs were designed from sequences generated by Illumina GAII from a reduced representation library of A. glycines. Nearly 94% (120) of the primer pairs amplified SSR alleles of expected size and 24 SSR loci were polymorphic among three aphid samples from three populations. The polymorphic SSRs were successfully used to differentiate among 24 soybean aphids from Ohio and South Dakota. Sequencing of PCR products of two SSR markers from four aphid samples revealed that the allelic polymorphism was due to variation in the SSR repeats among the aphids. These markers should be particularly useful for genetic differentiation among aphids collected from soybean fields at different localities and regions. These SSR markers provide the soybean aphid research community with the first set of PCR-based codominant markers developed from the genomic sequences of A. glycines.  相似文献   

14.
Polymorphic Alu-repeat loci of human genome are commonly used as effective genetic markers in population and evolution studies. In this work, the data on genetic structure of two Russian populations from Siberia obtained via analysis of five polymorphic Alu repeats are presented. The urban population was characterized by a slightly higher level of genetic diversity compared to the rural population. The value of genetic differentiation coefficient for the populations studied was 0.57%, pointing to the absence of genetic subdivision within the urban and rural populations. Phylogenetic analysis of these populations, together with literature data, shows that, with respect to the markers examined, the gene pool structure of Russian population is similar to that of other Caucasoid populations.  相似文献   

15.
We have created a federated database for genome studies of Magnaporthe grisea, the causal agent of rice blast disease, by integrating end sequence data from BAC clones, genetic marker data and BAC contig assembly data. A library of 9216 BAC clones providing >25-fold coverage of the entire genome was end sequenced and fingerprinted by HindIII digestion. The Image/FPC software package was then used to generate an assembly of 188 contigs covering >95% of the genome. The database contains the results of this assembly integrated with hybridization data of genetic markers to the BAC library. AceDB was used for the core database engine and a MySQL relational database, populated with numerical representations of BAC clones within FPC contigs, was used to create appropriately scaled images. The database is being used to facilitate sequencing efforts. The database also allows researchers mapping known genes or other sequences of interest, rapid and easy access to the fundamental organization of the M.grisea genome. This database, MagnaportheDB, can be accessed on the web at http://www.cals.ncsu.edu/fungal_genomics/mgdatabase/int.htm.  相似文献   

16.
The ascertainment of the rates and driving forces of human genome evolution along with the genetic diversity of populations or separate population groups remains a topical problem of fundamental and applied genomics. According to the results of comparative analysis, the most numerous human genome structure peculiarities are connected with the distribution of mobile genetic retroelements—LTR, LINE1, SVA, and Alu repeats. Due to the wide distribution in different genome loci, conversed retropositional activity, and the retroelements’ regulatory potential, let us regard them as one of the significant evolutionary driving forces and the source of human genome variability. In the current review, we summarize published data and recent results of our research aimed at the analysis of the evolutionary impact of the young retroelements group on the function and variability of the human genome. We examine modern approaches of the polygenomic identification of polymorphic retroelements inserts. Using an original Internet resource, we analyze special features of the genomic polymorphic inserts of AluY repeats. We thoroughly characterize the strategy of large-scale functional analysis of polymorphic retroelement inserts. The presented results confirm the hypothesis of the roles of retroelements as active cis regulatory elements that are able to modulate surrounding genes.  相似文献   

17.
Simple sequence repeats are predominantly found in most organisms. They play a major role in studies of genetic diversity, and are useful as diagnostic markers for many diseases. The simple sequence repeats database (SSRD) for the human genome was created for easy access to such repeats, for analysis, and to be used to understand their biological significance. The data includes the abundance and distribution of SSRs in the coding and non-coding regions of the genome, as well as their association with the UTRs of genes. The exact locations of repeats with respect to genomic regions (such as UTRs, exons, introns or intergenic regions) and their association with STS markers are also highlighted. The resource will facilitate repeat sequence analysis in the human genome and the understanding of the functional and evolutionary significance of simple sequence repeats. SSRD is available through two websites, http://www.ccmb.res.in/ssr and http://www.ingenovis.com/ssr.  相似文献   

18.
The human genome contains one short tandem repeat (STR) roughly every 2,000 base pairs. They are particularly useful markers for gene mapping and disease association studies due to their high degree of polymorphism and ubiquitous frequency throughout the genome. The major histocompatibility complex (MHC) has been the focus of many disease association studies, and the recent availability of the entire sequence of the complex has logarithmically expanded the density of potential markers for fine mapping disease loci. Here we present a complete assessment of the available STRs within a 3.8-Mb genomic segment encompassing the MHC. Of 443 potential STRs identified by computer analysis and tested for variation in a single sample containing pooled DNA from 36 individuals, 249 polymorphic STRs located throughout the complex were identified. The class of repeat (di-, tri-, etc.), precise nucleotide position, position relative to known genes, PCR conditions, and D6S numbers for the 249 polymorphic STRs are provided as a resource for selecting appropriate markers to use in future studies of MHC molecular genetics and disease association.  相似文献   

19.
Sugarcane has become an increasingly important first-generation biofuel crop in tropical and subtropical regions. It has a large, complex, polyploid genome that has hindered the progress of genomic research and marker-assisted selection. Genetic mapping and ultimately genome sequence assembly require a large number of DNA markers. Simple sequence repeats (SSRs) are widely used in genetic mapping because of their abundance, high rates of polymorphism, and ease of use. The objectives of this study were to develop SSR markers for construction of a saturated genetic map and to characterize the frequency and distribution of SSRs in a polyploid genome. SSR markers were mined from expressed sequence tag (EST), reduced representation library genomic sequences, and bacterial artificial chromosome (BAC) sequences. A total of 5,675 SSR markers were surveyed in a segregating population. The overall successful amplification and polymorphic rates were 87.9 and 16.4%, respectively. The trinucleotide repeat motifs were most abundant, with tri- and hexanucleotide motifs being the most abundant for the ESTs. BAC and genomic SSRs were mostly AT-rich while the ESTs were relatively GC-rich due to codon bias. These markers were also aligned to the sorghum genome, resulting in 1,203 markers mapped in the sorghum genome. This set of SSRs conserved in sugarcane and sorghum would be the most informative for mapping quantitative trait loci in sugarcane and for comparative genomic analyses. This large collection of SSR markers is a valuable resource for sugarcane genomic research and crop improvement.  相似文献   

20.
Simple sequence repeats (SSRs) are widely used genetic markers in ecology, evolution, and conservation even in the genomics era, while a general limitation to their application is the difficulty of developing polymorphic SSR markers. Next‐generation sequencing (NGS) offers the opportunity for the rapid development of SSRs; however, previous studies developing SSRs using genomic data from only one individual need redundant experiments to test the polymorphisms of SSRs. In this study, we designed a pipeline for the rapid development of polymorphic SSR markers from multi‐sample genomic data. We used bioinformatic software to genotype multiple individuals using resequencing data, detected highly polymorphic SSRs prior to experimental validation, significantly improved the efficiency and reduced the experimental effort. The pipeline was successfully applied to a globally threatened species, the brown eared‐pheasant (Crossoptilon mantchuricum), which showed very low genomic diversity. The 20 newly developed SSR markers were highly polymorphic, the average number of alleles was much higher than the genomic average. We also evaluated the effect of the number of individuals and sequencing depth on the SSR mining results, and we found that 10 individuals and ~10X sequencing data were enough to obtain a sufficient number of polymorphic SSRs, even for species with low genetic diversity. Furthermore, the genome assembly of NGS data from the optimal number of individuals and sequencing depth can be used as an alternative reference genome if a high‐quality genome is not available. Our pipeline provided a paradigm for the application of NGS technology to mining and developing molecular markers for ecological and evolutionary studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号