首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The TonB protein plays a key role in the energy-coupled transport of iron siderophores, of vitamin B12, and of colicins of the B-group across the outer membrane of Escherichia coli. In order to obtain more data about which of its particular amino acid sequences are necessary for TonB function, we have cloned and sequenced the tonB gene of Serratia marcescens. The nucleotide sequence predicts an amino acid sequence of 247 residues (Mr 27,389), which is unusually proline-rich and contains the tandem sequences (Glu-Pro)5 and (Lys-Pro)5. In contrast to the TonB proteins of E. coli and Salmonella typhimurium, translation of the S. marcescens TonB protein starts at the first methionine residue of the open reading frame, which is the only amino acid removed during TonB maturation and export. Only the N-terminal sequence is hydrophobic, suggesting its involvement in anchoring the TonB protein to the cytoplasmic membrane. The S. marcescens tonB gene complemented an E. coli tonB mutant with regard to uptake of iron siderophores, and sensitivity to phages T1 and phi 80, and to colicins B and M. However, an E. coli tonB mutant transformed with the S. marcescens tonB gene remained resistant to colicins Ia and Ib, to colicin B derivatives carrying the amino acid replacements Val/Ala and Val/Gly at position 20 in the TonB box, and they exhibited a tenfold lower activity with colicin D. In addition, the S. marcescens TonB protein did not restore T1 sensitivity of an E. coli exbB tolQ double mutant, as has been found for the overexpressed E. coli TonB protein, indicating a lower activity of the S. marcescens TonB protein. Although the S. marcescens TonB protein was less prone to proteolytic degradation, it was stabilized in E. coli by the ExbBD proteins. In E. coli, TonB activity of S. marcescens depended either on the ExbBD or the TolQR activities.  相似文献   

2.
The crystal structure of Escherichia coli FhuA reveals a beta-barrel domain that is closed by a globular cork domain. It has been assumed that the proton motive force of the cytoplasmic membrane through the interaction of the TonB protein with the TonB box of the cork opens the FhuA channel. Yet, deletion of the cork results in an FhuA derivative, FhuADelta5-160, that still displays TonB-dependent substrate transport and phage receptor activity. To investigate this unexpected finding further, we constructed FhuADelta5-160 derivatives of FhuA proteins from Salmonella paratyphi B, Salmonella enterica serovar Typhimurium, and Pantoea agglomerans. The FhuADelta5-160 proteins inserted correctly into the outer membrane, and with the exception of the P. agglomerans protein, transported ferrichrome and albomycin. FhuA hybrids consisting of the beta-barrel of one strain and the cork of another strain were active and showed higher TonB-dependent ferrichrome transport rates than the corkless derivatives. Exceptions were the E. coli beta-barrel/Salmonella serovar Typhimurium cork hybrid protein and the Salmonella serovar Typhimurium beta-barrel/P. agglomerans cork hybrid protein, both of which were less active than the beta-barrels alone. Each of the FhuA mutant proteins displayed activity for each of their ligands, except for phage T5, only when coupled to TonB. The hybrid FhuA proteins displayed a similar activity with the E. coli TonB protein as with their cognate TonB proteins. Sensitivity to phages T1, T5, and phi80, rifamycin CGP 4832, and colicin M was determined by the beta-barrel, whereas sensitivity to phage ES18 and microcin J25 required both the beta-barrel and cork domains. These results demonstrate that the beta-barrel domain of FhuA confers activity and specificity and responds to TonB and that the cork domains of various FhuA proteins can be interchanged and contribute to the activities of the FhuA hybrids.  相似文献   

3.
Abstract The current model of TonB-dependent colicin transport through the outer membrane of Escherichia coli proposes initial binding to receptor proteins, vectorial release from the receptors and uptake into the periplasm from where the colicins, according to their action, insert into the cytoplasmic membrane or enter the cytoplasm. The uptake is energy-dependent and the TonB protein interacts with the receptors as well as with the colicins. In this paper we have studied the uptake of colicins B and Ia, both pore-forming colicins, into various tonB point mutants. Colicin Ia resistance of the tonB mutant (G186D, R204H) was consistent with a defective Cir receptor-TonB interaction while colicin Ia resistance of E. coli expressing TonB of Serratia marcescens , or TonB of E. coli carrying a C-terminal fragment of the S. marcescens TonB, seemed to be caused by an impaired colicin Ia-TonB interaction. In contrast, E. coli tonB (G174R, V178I) was sensitive to colicin Ia and resistant to colicin B unless TonB, ExbB and ExbD were overproduced which resulted in colicin B sensitivity. The differential effects of tonB mutations indicate differences in the interaction of TonB with receptors and colicins.  相似文献   

4.
The hemin receptor HemR of Yersinia enterocolitica was identified as a 78 kDa iron regulated outer membrane protein. Cells devoid of the HemR receptor as well as cells mutated in the tonB gene were unable to take up hemin as an iron source. The hemin uptake operon from Y. enterocolitica was cloned in Escherichia coli K12 and was shown to encode four proteins: HemP (6.5 kDa), HemR (78 kDa), HemS (42 kDa) and HemT (27 kDa). When expressed in E.coli hemA aroB, a plasmid carrying genes for HemP and HemR allowed growth on hemin as a porphyrin source. Presence of genes for HemP, HemR and HemS was necessary to allow E.coli hemA aroB cells to use hemin as an iron source. The nucleotide sequence of the hemR gene and its promoter region was determined and the amino acid sequence of the HemR receptor deduced. HemR has a signal peptide of 28 amino acids and a typical TonB box at its amino-terminus. Upstream of the first gene in the operon (hemP), a well conserved Fur box was found which is in accordance with the iron-regulated expression of HemR.  相似文献   

5.
In Gram-negative bacteria, the TonB-ExbB-ExbD inner membrane multiprotein complex is required for active transport of diverse molecules through the outer membrane. We present evidence that Serratia marcescens, like several other Gram-negative bacteria, has two TonB proteins: the previously characterized TonBSM, and also HasB, a newly identified component of the has operon that encodes a haemophore-dependent haem acquisition system. This system involves a soluble extracellular protein (the HasA haemophore) that acquires free or haemoprotein-bound haem and presents it to a specific outer membrane haemophore receptor (HasR). TonBSM and HasB are significantly similar and can replace each other for haem acquisition. However, TonBSM, but not HasB, mediates iron acquisition from iron sources other than haem and haemoproteins, showing that HasB and TonBSM only display partial redundancy. The reconstitution in Escherichia coli of the S. marcescens Has system demonstrated that haem uptake is dependent on the E. coli ExbB, ExbD and TonB proteins and that HasB is non-functional in E. coli. Nevertheless, a mutation in the HasB transmembrane anchor domain allows it to replace TonBEC for haem acquisition. As the change affects a domain involved in specific TonBEC-ExbBEC interactions, HasB may be unable to interact with ExbBEC, and the HasB mutation may allow this interaction. In E. coli, the HasB mutant protein was functional for haem uptake but could not complement the other TonBEC-dependent functions, such as iron siderophore acquisition, and phage DNA and colicin uptake. Our findings support the emerging hypothesis that TonB homologues are widespread in bacteria, where they may have specific functions in receptor-ligand uptake systems.  相似文献   

6.
We have recently cloned and characterized the hemoglobin (Hb) receptor gene, hmbR, from Neisseria meningitidis. To identify additional proteins that are involved in Hb utilization, the N. meningitidis Hb utilization system was reconstituted in Escherichia coli. Five cosmids from N. meningitidis DNA library enabled a heme-requiring (hemA), HmbR-expressing mutant of E. coli to use Hb as both porphyrin and iron source. Nucleotide sequence analysis of DNA fragments subcloned from the Hb-complementing cosmids identified four open reading frames, three of them homologous to Pseudomonas putida, E. coli, and Haemophilus influenzae exbB, exbD, and tonB genes. The N. meningitidis TonB protein is 28.8 to 33.6% identical to other gram-negative TonB proteins, while the N. meningitidis ExbD protein shares between 23.3 and 34.3% identical amino acids with other ExbD and TolR proteins. The N. meningitidis ExbB protein was 24.7 to 36.1% homologous with other gram-negative ExbB and TolQ proteins. Complementation studies indicated that the neisserial Ton system cannot interact with the E. coli FhuA TonB-dependent outer membrane receptor. The N. meningitidis tonB mutant was unable to use Hb, Hb-haptoglobin complexes, transferrin, and lactoferrin as iron sources. Insertion of an antibiotic cassette in the 3' end of the exbD gene produced a leaky phenotype. Efficient usage of heme by N. meningitidis tonB and exbD mutants suggests the existence of a Ton-independent heme utilization mechanism. E. coli complementation studies and the analysis of N. meningitidis hmbR and hpu mutants suggested the existence of another Hb utilization mechanism in this organism.  相似文献   

7.
Plesiomonas shigelloides is a gram-negative pathogen which can utilize heme as an iron source. In previous work, P. shigelloides genes which permitted heme iron utilization in a laboratory strain of Escherichia coli were isolated. In the present study, the cloned P. shigelloides sequences were found to encode ten potential heme utilization proteins: HugA, the putative heme receptor; TonB and ExbBD; HugB, the putative periplasmic binding protein; HugCD, the putative inner membrane permease; and the proteins HugW, HugX, and HugZ. Three of the genes, hugA, hugZ, and tonB, contain a Fur box in their putative promoters, indicating that the genes may be iron regulated. When the P. shigelloides genes were tested in E. coli K-12 or in a heme iron utilization mutant of P. shigelloides, hugA, the TonB system genes, and hugW, hugX, or hugZ were required for heme iron utilization. When the genes were tested in a hemA entB mutant of E. coli, hugWXZ were not required for utilization of heme as a porphyrin source, but their absence resulted in heme toxicity when the strains were grown in media containing heme as an iron source. hugA could replace the Vibrio cholerae hutA in a heme iron utilization assay, and V. cholerae hutA could complement a P. shigelloides heme utilization mutant, suggesting that HugA is the heme receptor. Our analyses of the TonB system of P. shigelloides indicated that it could function in tonB mutants of both E. coli and V. cholerae and that it was similar to the V. cholerae TonB1 system in the amino acid sequence of the proteins and in the ability of the system to function in high-salt medium.  相似文献   

8.
Haem iron-transport system in enterohaemorrhagic Escherichia coli O157:H7   总被引:9,自引:5,他引:4  
In this study, we identified the iron-transport systems of Escherichia coli O157:H7 strain EDL933. This strain synthesized and transported enterobactin and had a ferric citrate transport system but lacked the ability to produce or use aerobactin. It used haem and haemoglobin, but not transferrin or lactoferrin, as iron sources. We cloned the gene encoding an iron-regulated haem-transport protein and showed that this E. coli haem-utilization gene ( chuA ) encoded a 69 kDa outer membrane protein that was synthesized in response to iron limitation. Expression of this protein in a laboratory strain of E. coli was sufficient for utilization of haem or haemoglobin as iron sources. Mutation of the chromosomal chuA and tonB genes in E. coli O157:H7 demonstrated that the utilization of haemin and haemoglobin was ChuA- and TonB-dependent. Nucleotide sequence analysis of chuA revealed features characteristic of TonB-dependentFur-regulated, outer membrane iron-transport proteins. It was highly homologous to the shuA gene of Shigella dysenteriae and less closely related to hemR of Yersinia enterocolitica and hmuR of Yersinia pestis . A conserved Fur box was identified upstream of the chuA gene, and regulation by Fur was confirmed.  相似文献   

9.
10.
A 5.9-kb DNA fragment was cloned from Pseudomonas aeruginosa PA103 by its ability to functionally complement a fur mutation in Escherichia coli. A fur null mutant E. coli strain that contains multiple copies of the 5.9-kb DNA fragment produces a 15-kDa protein which cross-reacts with a polyclonal anti-E. coli Fur serum. Sequencing of a subclone of the 5.9-kb DNA fragment identified an open reading frame predicted to encode a protein 53% identical to E. coli Fur and 49% identical to Vibrio cholerae Fur and Yersinia pestis Fur. While there is extensive homology among these Fur proteins, Fur from P. aeruginosa differs markedly at its carboxy terminus from all of the other Fur proteins. It has been proposed that this region is a metal-binding domain in E. coli Fur. A positive selection procedure involving the isolation of manganese-resistant mutants was used to isolate mutants of strain PA103 that produce altered Fur proteins. These manganese-resistant Fur mutants constitutively produce siderophores and exotoxin A when grown in concentrations of iron that normally repress their production. A multicopy plasmid carrying the P. aeruginosa fur gene restores manganese susceptibility and wild-type regulation of exotoxin A and siderophore production in these Fur mutants.  相似文献   

11.
E Schramm  J Mende  V Braun    R M Kamp 《Journal of bacteriology》1987,169(7):3350-3357
Colicin B formed by Escherichia coli kills sensitive bacteria by dissipating the membrane potential through channel formation. The nucleotide sequence of the structural gene (cba) which encodes colicin B and of the upstream region was determined. A polypeptide consisting of 511 amino acids was deduced from the open reading frame. The active colicin had a molecular weight of 54,742. The carboxy-terminal amino acid sequence showed striking homology to the corresponding channel-forming region of colicin A. Of 216 amino acids, 57% were identical and an additional 19% were homologous. In this part 66% of the nucleotides were identical in the colicin A and B genes. This region contained a sequence of 48 hydrophobic amino acids. Sequence homology to the other channel-forming colicins, E1 and I, was less pronounced. A homologous pentapeptide was detected in colicins B, M, and I whose uptake required TonB protein function. The same consensus sequence was found in all outer membrane proteins involved in the TonB-dependent uptake of iron siderophores and of vitamin B12. Upstream of cba a sequence comprising 294 nucleotides was identical to the sequence upstream of the structural gene of colicin E1, with the exception of 43 single-nucleotide replacements, additions, or deletions. Apparently, the region upstream of colicins B and E1 and the channel-forming sequences of colicins A and B have a common origin.  相似文献   

12.
13.
E Fischer  K Günter    V Braun 《Journal of bacteriology》1989,171(9):5127-5134
The exb locus in Escherichia coli consists of two genes, termed exbB and exbD. Exb functions are related to TonB function in that most TonB-dependent processes are enhanced by Exb. Like tonB mutants, exb mutants were resistant to colicin M and albomycin but, in contrast to tonB mutants, showed only reduced sensitivity to colicins B and D. Overexpressed tonB on the multicopy vector pACYC177 largely restored the sensitivity of exb mutants to colicins B, D, and M but only marginally increased sensitivity to albomycin. Suppression of the btuB451 mutation in the structural gene for the vitamin B12 outer membrane receptor protein by a mutation in tonB occurred only in an exb+ strain. Degradation of the unstable overproduced TonB protein was prevented by overproduced ExbB protein. The ExbB protein also stabilized the ExbD protein. Pulse-chase experiments with radiolabeled ferrichrome revealed release of ferrichrome from exbB, tonB, and fhuC mutants, showing that ferrichrome had not crossed the cytoplasmic membrane. It is concluded that the ExbB and ExbD proteins contribute to the activity of TonB and, like TonB, are involved in receptor-dependent transport processes across the outer membrane.  相似文献   

14.
The nucleotide sequence of a 2.4 kb Dral-EcoRV fragment of pColD-CA23 DNA was determined. The segment of DNA contained the colicin D structural gene (cda) and the colicin D immunity gene (cdi). From the nucleotide sequence it was deduced that colicin D had a molecular weight of 74683D and that the immunity protein had a molecular weight of 10057D. The amino-terminal portion of colicin D was found to be 96% homologous with the same region of colicin B. Both colicins share the same cell-surface receptor, FepA, and require the TonB protein for uptake. A putative TonB box pentapeptide sequence was identified in the amino terminus of the colicin D protein sequence. Since colicin D inhibits protein synthesis, it was unexpected that no homology was found between the carboxy-terminal part of this colicin and that of the protein synthesis inhibiting colicin E3 and cloacin DF13. This could indicate that colicin D does not function in the same manner as the latter two bacteriocins. The observed homology with colicin B supports the domain structure concept of colicin organization. The structural organization of the colicin operon is discussed. The extensive amino-terminal homology between colicins D and B, and the strong carboxy-terminal homology between colicins B, A, and N suggest an evolutionary assembly of colicin genes from a few DNA fragments which encode the functional domains responsible for colicin activity and uptake.  相似文献   

15.
We created hybrid proteins to study the functions of TonB. We first fused the portion of Escherichia coli tonB that encodes the C-terminal 69 amino acids (amino acids 170 to 239) of TonB downstream from E. coli malE (MalE-TonB69C). Production of MalE-TonB69C in tonB(+) bacteria inhibited siderophore transport. After overexpression and purification of the fusion protein on an amylose column, we proteolytically released the TonB C terminus and characterized it. Fluorescence spectra positioned its sole tryptophan (W213) in a weakly polar site in the protein interior, shielded from quenchers. Affinity chromatography showed the binding of the TonB C-domain to other proteins: immobilized TonB-dependent (FepA and colicin B) and TonB-independent (FepADelta3-17, OmpA, and lysozyme) proteins adsorbed MalE-TonB69C, revealing a general affinity of the C terminus for other proteins. Additional constructions fused full-length TonB upstream or downstream of green fluorescent protein (GFP). TonB-GFP constructs had partial functionality but no fluorescence; GFP-TonB fusion proteins were functional and fluorescent. The activity of the latter constructs, which localized GFP in the cytoplasm and TonB in the cell envelope, indicate that the TonB N terminus remains in the inner membrane during its biological function. Finally, sequence analyses revealed homology in the TonB C terminus to E. coli YcfS, a proline-rich protein that contains the lysin (LysM) peptidoglycan-binding motif. LysM structural mimicry occurs in two positions of the dimeric TonB C-domain, and experiments confirmed that it physically binds to the murein sacculus. Together, these findings infer that the TonB N terminus remains associated with the inner membrane, while the downstream region bridges the cell envelope from the affinity of the C terminus for peptidoglycan. This architecture suggests a membrane surveillance model of action, in which TonB finds occupied receptor proteins by surveying the underside of peptidoglycan-associated outer membrane proteins.  相似文献   

16.
The transfer RNase colicin D and ionophoric colicin B appropriate the outer membrane iron siderophore receptor FepA and share a common translocation requirement for the TonB pathway to cross the outer membrane. Despite the almost identical sequences of the N-terminal domains required for the translocation of colicins D and B, two spontaneous tonB mutations (Arg158Ser and Pro161Leu) completely abolished colicin D toxicity but did not affect either the sensitivity to other colicins or the FepA-dependent siderophore uptake capacity. The sensitivity to colicin D of both tonB mutants was fully restored by specific suppressor mutations in the TonB box of colicin D, at Ser18(Thr) and Met19(Ile), respectively. This demonstrates that the interaction of colicin D with TonB is critically dependent on certain residues close to position 160 in TonB and on the side chains of certain residues in the TonB box of colicin D. The effect of introducing the TonB boxes from other TonB-dependent receptors and colicins into colicins D and B was studied. The results of these and other changes in the two TonB boxes show that the role of residues at positions 18 and 19 in colicin D is strongly modulated by other nearby and/or distant residues and that the overall function of colicin D is much more dependent on the interaction with TonB involving the TonB box than is the function of colicin B.  相似文献   

17.
A segment of Bacillus subtilis chromosomal DNA homologous to the Escherichia coli spc ribosomal protein operon was isolated using cloned E. coli rplE (L5) DNA as a hybridization probe. DNA sequence analysis of the B. subtilis cloned DNA indicated a high degree of conservation of spc operon ribosomal protein genes between B. subtilis and E. coli. This fragment contains DNA homologous to the promoter-proximal region of the spc operon, including coding sequences for ribosomal proteins L14, L24, L5, S14, and part of S8; the organization of B. subtilis genes in this region is identical to that found in E. coli. A region homologous to the E. coli L16, L29 and S17 genes, the last genes of the S10 operon, was located upstream from the gene for L14, the first gene in the spc operon. Although the ribosomal protein coding sequences showed 40-60% amino acid identity with E. coli sequences, we failed to find sequences which would form a structure resembling the E. coli target site for the S8 translational repressor, located near the beginning of the L5 coding region in E. coli, in this region or elsewhere in the B. subtilis spc DNA.  相似文献   

18.
Genetics of the iron dicitrate transport system of Escherichia coli.   总被引:43,自引:23,他引:20       下载免费PDF全文
Escherichia coli B and K-12 express a citrate-dependent iron(III) transport system for which three structural genes and their arrangement and products have been determined. The fecA gene of E. coli B consists of 2,322 nucleotides and encodes a polypeptide containing a signal sequence of 33 amino acids. The cleavage site was determined by amino acid sequence analysis of the unprocessed protein and the mature protein. For the processed form a length of 741 amino acids was calculated. The mature FecA protein in the outer membrane contains at the N terminus the "TonB box," a pentapeptide, which has hitherto been found in all receptors and colicins which functionally require the TonB protein. In addition, the dyad repeat sequence GAAAATAATTCTTATTTCG is proposed to serve as the binding site of the Fur iron repressor protein. The fecB gene was mapped downstream of fecA and encodes a protein with an apparent molecular weight of 30,000. It was synthesized as a precursor, and the mature form was found in the periplasm. The fecD gene follows fecB and was related to a membrane-bound protein with an apparent molecular weight of 28,000. In Mu d1 insertion mutants upstream of fecA, the fec genes were not inducible by iron limitation and citrate, indicating a regulatory region, termed fecI, which controls fec gene expression.  相似文献   

19.
20.
I Riede 《Journal of bacteriology》1987,169(7):2956-2961
The lysis gene t of the T-even-like bacteriophage K3 has been cloned and sequenced. The gene codes for a protein with a predicted molecular weight of 25,200. Expression of the complete lysis protein was impossible, but peptides complementing T4 amber mutants in t are described. No known lysis protein of other phages is homologous to protein T. Also, the Escherichia coli phospholipase A is different from protein T. CelB, the lysis protein of the colicin E2 operon, shows a similarity to protein T. Sequences of colicins A, E1, and E2 are related to gene 38 sequences, the gene preceding t and coding for the phage adhesin. A common origin for colicin genes and phage genes is discussed, and a protein region in colicins that is responsible for receptor recognition is predicted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号