首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Ca(2+)/calmodulin (CaM) competitive inhibitor KN-93 has previously been used to evaluate 5'-AMP-activated protein kinase (AMPK)-independent Ca(2+)-signaling to contraction-stimulated glucose uptake in muscle during intense electrical stimulation ex vivo. With the use of low-intensity tetanic contraction of mouse soleus and extensor digitorum longus (EDL) muscles ex vivo, this study demonstrates that KN-93 can potently inhibit AMPK phosphorylation and activity after 2 min but not 10 min of contraction while strongly inhibiting contraction-stimulated 2-deoxyglucose uptake at both the 2- and 10-min time points. These data suggest inhibition of Ca(2+)/CaM-dependent signaling events upstream of AMPK, the most likely candidate being the novel AMPK kinase CaM-dependent protein kinase kinase (CaMKK). CaMKK protein expression was detected in mouse skeletal muscle. Similar to KN-93, the CaMKK inhibitor STO-609 strongly reduced AMPK phosphorylation and activity at 2 min and less potently at 10 min. Pretreatment with STO-609 inhibited contraction-stimulated glucose uptake at 2 min in soleus, but not EDL, and in both muscles after 10 min. Neither KN-93 nor STO-609 inhibited 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside-stimulated glucose uptake, AMPK phosphorylation, or recombinant LKB1 activity, suggestive of an LKB1-independent effect. Finally, neither KN-93 nor STO-609 had effects on the reductions in glucose uptake seen in mice overexpressing a kinase-dead AMPK construct, indicating that the effects of KN-93 and STO-609 on glucose uptake require inhibition of AMPK activity. We propose that CaMKKs act in mouse skeletal muscle regulating AMPK phosphorylation and glucose uptake at the onset of mild tetanic contraction and that an intensity- and/or time-dependent switch occurs in the relative importance of AMPKKs during contraction.  相似文献   

2.
3.
Protein-protein interactions are thought to modulate the efficiency and specificity of Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII) signaling in specific subcellular compartments. Here we show that the F-actin-binding protein α-actinin targets CaMKIIα to F-actin in cells by binding to the CaMKII regulatory domain, mimicking CaM. The interaction with α-actinin is blocked by CaMKII autophosphorylation at Thr-306, but not by autophosphorylation at Thr-305, whereas autophosphorylation at either site blocks Ca(2+)/CaM binding. The binding of α-actinin to CaMKII is Ca(2+)-independent and activates the phosphorylation of a subset of substrates in vitro. In intact cells, α-actinin selectively stabilizes CaMKII association with GluN2B-containing glutamate receptors and enhances phosphorylation of Ser-1303 in GluN2B, but inhibits CaMKII phosphorylation of Ser-831 in glutamate receptor GluA1 subunits by competing for activation by Ca(2+)/CaM. These data show that Ca(2+)-independent binding of α-actinin to CaMKII differentially modulates the phosphorylation of physiological targets that play key roles in long-term synaptic plasticity.  相似文献   

4.
5.
Conjugated linoleic acid (CLA), a dietary fat, has been considered beneficial in metabolic syndrome. Despite several findings indicating that CLA improves glucose clearance, little information is available regarding the cellular dynamics of CLA on skeletal muscle. We sought to investigate the role of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) in cis-9, trans-11(c9,t11) and trans-10, cis-12 (t10,c12) CLA isomer-mediated glucose transport by L6 myotubes. t10,c12-CLA stimulated both intracellular Ca(2+) release (Ca(i)(2+)) and CaMKII phosphorylation, whereas c9,t11-CLA showed only modest effects on both. Sequestering Ca(i)(2+) with BAPTA/AM abrogated the effect of both CLA isomers on Akt substrate-160 kDa (AS160) phosphorylation and glucose uptake by myotubes. Exposing myotubes to KN-93 or autocamtide 2-related inhibitory peptide to block CaMKII activity prevented both CLA isomers from inducing AS160 phosphorylation and glucose transport. Likewise, genetic knockdown of CaMKII in myotubes using siRNA completely abolished CLA isomer-mediated glucose uptake. These results indicate that CLA isomers require Ca(i)(2+)-CaMKII to mediate glucose uptake. Evidence that CaMKII blockers inhibit t10,c12-CLA-mediated AMP-activated protein kinase (AMPK) activation indicated that CaMKII acts upstream of AMPK in response to t10,c12-CLA. Lastly, CLA isomers stimulated the formation of reactive oxygen species but had no effect on stress-activated protein kinase/c-jun NH(2)-terminal kinase. These data establish that t10,c12-CLA acts via Ca(i)(2+)-CaMKII-AMPK-AS160 to stimulate skeletal muscle glucose transport, whereas the mechanism of c9,t11-CLA remains unclear. Given that impairments in muscle glucose utilisation are apparent in metabolic syndrome, delineating the molecular mechanisms by which CLA isomers mediate muscle glucose uptake may identify new approaches to manage this condition.  相似文献   

6.
Cohen JE  Fields RD 《Cell calcium》2006,39(5):445-454
A mechanism by which Ca(2+)/CaM-dependent protein kinase (CaMKII) is autophosphorylated by changes in extracellular calcium in the absence of detectable changes in cytoplasmic [Ca(2+)] has been identified. We find that when the external Ca(2+) concentration ([Ca(2+)](O)) is lowered, Ca(2+) is released from intracellular stores to maintain a constant cytoplasmic Ca(2+) level, gradually depleting the endoplasmic Ca(2+) stores. Accompanying the store-depletion is a rapid decrease in CaMKII activity. Approximately 25% of the measured CaMKII autophosphorylation in DRG neurons in culture can be regulated by Ca(2+) flux from intracellular stores caused by manipulating [Ca(2+)](O), as shown by blocking refilling of store-operated Ca(2+)-channels with SK&F 96365, Ruthenium Red, and a partial block with Ni(2+). Blocking voltage-gated Ca(2+)-channels with either isradipine or SR 33805, had no effect on CaMKII autophosphorylation induced by restoring Ca(2+)(O) to normal after depleting the intracellular Ca(2+) stores. These results show that removal of Ca(2+)(O) has profound effects on intracellular Ca(2+) signaling and CaMKII autophosphorylation, in the absence of measurable changes in intracellular Ca(2+). These findings have wide-ranging significance, because [Ca(2+)](O) is manipulated in many experimental studies. Moreover, this explanation for the paradoxical changes in CaMKII phosphorylation in response to manipulating [Ca(2+)](O) provides a possible mechanism linking activity-dependent depletion of Ca(2+) from the synaptic cleft to a protein kinase regulating many neuronal properties.  相似文献   

7.
8.
Protein phosphorylation is one of the major mechanisms by which eukaryotic cells transduce extracellular signals into intracellular responses. Calcium/calmodulin (Ca(2+)/CaM)-dependent protein phosphorylation has been implicated in various cellular processes, yet little is known about Ca(2+)/CaM-dependent protein kinases (CaMKs) in plants. From an Arabidopsis expression library screen using a horseradish peroxidase-conjugated soybean calmodulin isoform (SCaM-1) as a probe, we isolated a full-length cDNA clone that encodes AtCK (Arabidopsis thaliana calcium/calmodulin-dependent protein kinase). The predicted structure of AtCK contains a serine/threonine protein kinase catalytic domain followed by a putative calmodulin-binding domain and a putative Ca(2+)-binding domain. Recombinant AtCK was expressed in E. coli and bound to calmodulin in a Ca(2+)-dependent manner. The ability of CaM to bind to AtCK was confirmed by gel mobility shift and competition assays. AtCK exhibited its highest levels of autophosphorylation in the presence of 3 mM Mn(2+). The phosphorylation of myelin basic protein (MBP) by AtCK was enhanced when AtCK was under the control of calcium-bound CaM, as previously observed for other Ca(2+)/CaM-dependent protein kinases. In contrast to maize and tobacco CCaMKs (calcium and Ca(2+)/CaM-dependent protein kinase), increasing the concentration of calmodulin to more than 3 microgram suppressed the phosphorylation activity of AtCK. Taken together our results indicate that AtCK is a novel Arabidopsis Ca(2+)/CaM-dependent protein kinase which is presumably involved in CaM-mediated signaling.  相似文献   

9.
Fertilization in mammalian eggs is accompanied by oscillatory changes in intracellular Ca(2+) concentration, which are critical for initiating and completing egg activation events and the developmental program. Ca(2+)/Camodulin-dependent protein kinase II (CaMKII) is a multifunctional enzyme that is postulated to be the downstream transducer of the Ca(2+) signal in many cell types. We tested the hypothesis that CaMKII is the major integrator of Ca(2+)-induced egg activation events and embryo development by microinjecting a cRNA that encodes a constitutively active (Ca(2+)-independent) mutant form of CaMKII (CA-CaMKII) into mouse eggs. Expression of this cRNA, which does not increase intracellular Ca(2+), induced a sustained rise in CaMKII activity and triggered egg activation events, including cell cycle resumption, and degradation and recruitment of maternal mRNAs; cortical granule exocytosis, however, did not occur normally. Furthermore, when mouse eggs were injected with sperm devoid of Ca(2+)-releasing activity and activated with either CA-CaMKII cRNA or by SrCl(2), similar rates and incidence of development to the blastocyst stage were observed. These results strongly suggest that CaMKII is a major integrator of the Ca(2+) changes that occur following fertilization.  相似文献   

10.
Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is activated by Ca(2+) entry into neurons. Autophosphorylation of T286 is of special importance because it makes the enzyme active in the absence of Ca(2+), providing a biochemical memory that is critical for plasticity. To understand the factors controlling the duration of this state of CaMKII, we studied dephosphorylation of CaMKII in the post-synaptic density (PSD), a structure that defines a neuronal subcompartment critical for plasticity. We found that PSD-resident PP1 can dephosphorylate many sites on CaMKII, but not the T286 site that produces Ca(2+)-independent activity. This, together with previous work showing that soluble PP2A cannot dephosphorylate PSD CaMKII, provides a novel explanation for the in vivo persistence of T286 phosphorylation: after activated CaMKII translocates from the cytoplasm to the PSD, structural constraints prevent phosphatases from dephosphorylating T286. These results also suggest that the PSD is more than a simple scaffold for synaptic proteins; it may act to regulate the activity of proteins by positioning them in orientations that either prevent or favor specific biochemical reactions.  相似文献   

11.
Neuronal Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) interacts with several prominent dendritic spine proteins, which have been termed CaMKII-associated proteins. The NR2B subunit of N-methyl-d-aspartate (NMDA)-type glutamate receptor, densin-180, and alpha-actinin bind comparable, approximately stoichiometric amounts of Thr(286)-autophosphorylated CaMKIIalpha, forming a ternary complex (Robison, A. J., Bass, M. A., Jiao, Y., Macmillan, L. B., Carmody, L. C., Bartlett, R. K., and Colbran, R. J. (2005) J. Biol. Chem. 280, 35329-35336), but their impacts on CaMKII function are poorly understood. Here we show that these interactions are differentially regulated and exert distinct effects on CaMKII activity. Nonphosphorylated and Thr(286)-autophosphorylated CaMKII bind to alpha-actinin with similar efficacy, but autophosphorylation at Thr(305/306) or Ca(2+)/calmodulin binding significantly reduce this binding. Moreover, alpha-actinin antagonizes CaMKII activation by Ca(2+)/calmodulin, as assessed by autophosphorylation and phosphorylation of a peptide substrate. CaMKII binding to densin (1247-1542) is partially independent of Thr(286) autophosphorylation and is unaffected by Ca(2+)-independent autophosphorylation or Ca(2+)/calmodulin. In addition, the CaMKII binding domain of densin-180 has little effect on CaMKII activity. In contrast, the interaction of CaMKIIalpha with NR2B requires either Thr(286) autophosphorylation or the binding of both Ca(2+)/calmodulin and adenine nucleotides. NR2B inhibits both the Ca(2+)/calmodulin-dependent and autonomous activities of CaMKII by a mechanism that is competitive with autocamtide-2 substrate, non-competitive with syntide-2 substrate, and uncompetitive with respect to ATP. In combination, these data suggest that dynamically regulated interactions with CaMKII-associated proteins could play pleiotropic roles in finetuning CaMKII signaling in defined subcellular compartments.  相似文献   

12.
Ca(2+)/calmodulin dependent protein kinase (CaMPK) II is a key enzyme in many physiological processes. The enzyme is inactive unless Ca(2+)/CaM binds to it. In this inactive form CaMPK-II does not bind ATP suggesting that the ATP-binding domain is involved in an intramolecular interaction. We show here that F12, a 12 amino acid long peptide fragment of the ATP-binding domain (CaMPK-II(23-34), GAFSVVRRCVKV) can inhibit the Ca(2+)/CaM-dependent activity (IC(50) of 3 microM) but has no effect on the Ca(2+)/CaM-independent activity of CaMPK-II. Kinetic analysis exhibited mixed inhibition with respect to autocamtide-2 and ATP. The inhibition by F12 showed specificity towards CaMPK-II, but also inhibited CaMPK-I (IC(50) = 12.5 microM), while CaMPK-IV (IC(50) = 85 microM) was inhibited poorly and cAMP-dependent protein kinase (PKA) was not inhibited. Substitution of phenylalanine at position 25 to alanine (A12), had little effect on the inhibition of different Ca(2+)/CaM-dependent protein kinases, suggesting that phenylalanine 25 does not play a crucial role in the interactions involving F12. Thus the molecular interactions involving the ATP-binding domain appears to play a role in the regulation of nonphosphorylated CaMPK-II activity.  相似文献   

13.
Okamoto H  Ichikawa K 《Bio Systems》2000,55(1-3):65-71
Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) undergoes Ca(2+)/calmodulin-dependent autophosphorylation of threonine-286/287 (Thr(286/287)). Extremely high concentration of CaMKII in the postsynaptic spine indicates that increase in the Ca(2+) concentration in the spine induced by synaptic activation results in Thr(286/287) autophosphorylation of this enzyme. It has recently been shown that the K(d) value of CaMKII for Ca(2+)/calmodulin (Ca(2+)/CaM) drastically decreases after Thr(286/287) autophosphorylation. Therefore, Ca(2+)/CaM associated with CaMKII becomes tightly bound to this kinase after Thr(286/287) autophosphorylation. This has been called 'Ca(2+)/CaM trapping'. We discussed the functional significance of Ca(2+)/CaM trapping in the neuronal system by a mathematical-modelling approach. We considered neighbouring synapses formed on the same dendrite and different increase in the Ca(2+) concentration in each spine. CaMKII undergoing Thr(286/287) autophosphorylation in each spine is eager to recruit nearby calmodulin in the dendrite for Ca(2+)/CaM trapping. Since the amount of calmodulin is limited, recruiting calmodulin to each spine causes competition among synapses for this finite resource. The results of our computer simulation show that this competition leads to 'winner-take-all': almost all calmodulin is taken by a few synapses to which relatively large increases in the Ca(2+) concentration are assigned. These results suggest a novel form of synaptic encoding of information.  相似文献   

14.
15.
Persistent elevation of the intracellular free Ca(2+) concentration [Ca(2+)](i) is neurotoxic and therefore it is important to understand how it affects downstream components of the Ca(2+) signaling pathway. The response of calmodulin (CaM) and alphaCa(2+)/CaM-dependent protein kinase II (alphaCaMKII), to intracellular Ca(2+) overload in hippocampal neurons is studied by confocal imaging of fluorescently tagged proteins. Transient and persistent redistribution of CaM and alphaCaMKII together is seen from the cytosol to dendritic and somatic punctae. Typical persistent redistribution occurs following a lag of 138+/-(S.E.M.) 12 s and is complete at 460+/-(S.E.M.) 34 s (n=18), lack of Thr(286)-autophosphorylation of alphaCaMKII however promotes the formation of early transient punctae (peak at 40 s). In contrast, the T286D-mimick of phospho-Thr(286)-alphaCaMKII forms punctae with a delay >10 min, indicating that Thr(286)-autophosphorylation is antagonistic to CaMKII clustering. A two-state model is proposed in which phospho-Thr(286)-alphaCaMKII, formed immediately upon Ca(2+) stimulation, is primarily responsible for target interactions and memory functions of alphaCaMKII. However, a distinct clustering form denoted alphaCaMKII(c), generated upon persistent intracellular free Ca(2+) elevation, is deposited in the punctae which are made of self-interacting CaM/CaMKII complexes. Punctate deposition disables both the interactions and the activity of CaMKII.  相似文献   

16.
Calmodulin (CaM) is the major component of calcium signaling pathways mediating the action of various effectors. Transient increases in the intracellular calcium level triggered by a variety of stimuli lead to the formation of Ca(2+)/CaM complexes, which interact with and activate target proteins. In the present study the role of Ca(2+)/CaM in the regulation of the ligand-dependent activation of the epidermal growth factor receptor (EGFR) has been examined in living cells. We show that addition of different cell permeable CaM antagonists to cultured cells or loading cells with a Ca(2+) chelator inhibited ligand-dependent EGFR auto(trans)phosphorylation. This occurred also in the presence of inhibitors of protein kinase C, CaM-dependent protein kinase II and calcineurin, which are known Ca(2+)- and/or Ca(2+)/CaM-dependent EGFR regulators, pointing to a direct effect of Ca(2+)/CaM on the receptor. Furthermore, we demonstrate that down-regulation of CaM in conditional CaM knock out cells stably transfected with the human EGFR decreased its ligand-dependent phosphorylation. Substitution of six basic amino acid residues within the CaM-binding domain (CaM-BD) of the EGFR by alanine resulted in a decreased phosphorylation of the receptor and of its downstream substrate phospholipase Cγ1. These results support the hypothesis that Ca(2+)/CaM regulates the EGFR activity by directly interacting with the CaM-BD of the receptor located at its cytosolic juxtamembrane region.  相似文献   

17.
Stimulation of hippocampal 5-HT(1A) receptors impairs memory retention. The highly selective 5-HT(1A) antagonist, WAY-100635, prevents the cognitive deficits induced not only by 5-HT(1A) stimulation but also by cholinergic or NMDA receptor blockade. On this basis, the effects of WAY-100635 on molecular events associated with memory storage were explored. In rat hippocampus, WAY-100635 produced a rapid increase in phosphorylated Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and in Ca(2+)-independent CaMKII and protein kinase A (PKA) enzyme activity. This increase was followed a few hours later by an enhanced membrane expression of AMPA receptor subunits, especially of the GluR1 subunit phosphorylated at the CaMKII site, pGluR1(Ser831). The same qualitative effects were found with the weaker 5-HT(1A) antagonist NAN-190. The effects of both antagonists were no longer apparent in rats with a previous 5-HT depletion induced by the tryptophan hydroxylase inhibitor p-chlorophenylalanine (PCPA), suggesting that 5-HT(1A) receptor blockade removes the tonic inhibition of 5-HT through 5-HT(1A) receptor stimulation on excitatory hippocampal neurons, with the consequent increase in PKA activity. In addition, administration of WAY-100635 potentiated the learning-specific increase in the hippocampus of phospho-CaMKII, Ca(2+)-independent CaMKII activity, as well as the phosphorylation of either the CaMKII or the PKA site on the AMPA receptor GluR1 subunit. This study suggests that blockade of hippocampal 5-HT(1A) receptors favours molecular events critically involved in memory formation, and provides an in vivo molecular basis for the proposed utility of 5-HT(1A) receptor antagonists in the treatment of cognitive disorders.  相似文献   

18.
The skeletal muscle specific Ca(2)+/calmodulin-dependent protein kinase (CaMKIIbeta(M)) is localized to the sarcoplasmic reticulum (SR) by an anchoring protein, alphaKAP, but its function remains to be defined. Protein interactions of CaMKIIbeta(M) indicated that it exists in complex with enzymes involved in glycolysis at the SR membrane. The kinase was found to complex with glycogen phosphorylase, glycogen debranching enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and creatine kinase in the SR membrane. CaMKIIbeta(M) was also found to assemble with aldolase A, GAPDH, enolase, lactate dehydrogenase, creatine kinase, pyruvate kinase, and phosphorylase b kinase from the cytosolic fraction. The interacting proteins were substrates of CaMKIIbeta(M), and their phosphorylation was enhanced in a Ca(2+)- and calmodulin (CaM)-dependent manner. The CaMKIIbeta(M) could directly phosphorylate GAPDH and markedly increase ( approximately 3.4-fold) its activity in a Ca(2+)/CaM-dependent manner. These data suggest that the muscle CaMKIIbeta(M) isoform may serve to assemble the glycogen-mobilizing and glycolytic enzymes at the SR membrane and specifically modulate the activity of GAPDH in response to calcium signaling. Thus, the activation of CaMKIIbeta(M) in response to calcium signaling would serve to modulate GAPDH and thereby ATP and NADH levels at the SR membrane, which in turn will regulate calcium transport processes.  相似文献   

19.
Calcium-calmodulin/dependent protein kinase II (CaMKII), AMP-activated protein kinase (AMPK), and extracellular signal-regulated kinase (ERK1/2) have each been implicated in the regulation of substrate metabolism during exercise. The purpose of this study was to determine whether CaMKII is involved in the regulation of FA uptake and oxidation and, if it is involved, whether it does so independently of AMPK and ERK1/2. Rat hindquarters were perfused at rest with (n = 16) or without (n = 10) 3 mM caffeine, or during electrical stimulation (n = 14). For each condition, rats were subdivided and treated with 10 muM of either KN92 or KN93, inactive and active CaMKII inhibitors, respectively. Both caffeine treatment and electrical stimulation significantly increased FA uptake and oxidation. KN93 abolished caffeine-induced FA uptake, decreased contraction-induced FA uptake by 33%, and abolished both caffeine- and contraction-induced FA oxidation (P < 0.05). Caffeine had no effect on ERK1/2 phosphorylation (P > 0.05) and increased alpha(2)-AMPK activity by 68% (P < 0.05). Electrical stimulation increased ERK1/2 phosphorylation and alpha(2)-AMPK activity by 51% and 3.4-fold, respectively (P < 0.05). KN93 had no effect on caffeine-induced alpha(2)-AMPK activity, ERK1/2 phosphorylation, or contraction-induced ERK1/2 phosphorylation (P > 0.05). Alternatively, it decreased contraction-induced alpha(2)-AMPK activity by 51% (P < 0.05), suggesting that CaMKII lies upstream of AMPK. These results demonstrate that regulation of contraction-induced FA uptake and oxidation occurs in part via Ca(2+)-independent activation of ERK1/2 as well as Ca(2+)-dependent activation of CaMKII and AMPK.  相似文献   

20.
Ca(2+) oscillations are required in various signal trans duction pathways, and contain information both in their amplitude and frequency. Remarkably, the Ca(2+)/calmodulin(CaM)-dependent protein kinase II (CaMKII) can decode such frequencies. A Ca(2+)/CaM-stimulated autophosphorylation leads to Ca(2+)/CaM-independent (autonomous) activity of the kinase that outlasts the initial stimulation. This autonomous activity increases exponentially with the frequency of Ca(2+) oscillations. Here we show that three beta-CaMKII splice variants (beta(M), beta and beta(e)') have very similar specific activity and maximal autonomy. However, their autonomy generated by Ca(2+) oscillations differs significantly. A mechanistic basis was found in alterations of the CaM activation constant and of the initial rate of autophosphorylation. Structurally, the splice variants differ only in a variable 'linker' region between the kinase and association domains. Therefore, we propose that differences in relative positioning of kinase domains within multimeric holoenzymes are responsible for the observed effects. Notably, the beta-CaMKII splice variants are differentially expressed, even among individual hippocampal neurons. Taken together, our results suggest that alternative splicing provides cells with a mechanism to modulate their sensitivity to Ca(2+) oscillations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号