首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Antioxidants in plant cells mainly include glutathione, ascorbate, tocopherol, proline, betaine and others, which are also information-rich redox buffers and important redox signaling components that interact with cellular compartments. As an unfortunate consequence of aerobic life for higher plants, reactive oxygen species (ROS) are formed by partial reduction of molecular oxygen. The above enzymatic and non-enzymatic antioxidants in higher plant cells can protect their cells from oxidative damage by scavenging ROS. In addition to crucial roles in defense system and as enzyme cofactors, antioxidants influence higher plant growth and development by modifying processes from miotosis and cell elongation to senescence and death. Most importantly, they provide essential information on cellular redox state, and regulate gene expression associated with biotic and abiotic stress responses to optimize defense and survival. An overview of the literature is presented in terms of primary antioxidant free radical scavenging and redox signaling in plant cells. Special attention is given to ROS and ROS-anioxidant interaction as a metabolic interface for different types of signals derived from metabolisms and from the changing environment. This interaction regulates the appropriate induction of acclimation processes or execution of cell death programs, which are the two essential directions for higher plant cells.  相似文献   

2.
Reactive oxygen species (ROS) are key intermediates in cellular signal transduction pathways whose function may be counterbalanced by antioxidants. Acting as an antioxidant, ascorbic acid (AA) donates two electrons and becomes oxidized to dehydroascorbic acid (DHA). We discovered that DHA directly inhibits IkappaBalpha kinase beta (IKKbeta) and IKKalpha enzymatic activity in vitro, whereas AA did not have this effect. When cells were loaded with AA and induced to generate DHA by oxidative stress in cells expressing a constitutive active IKKbeta, NF-kappaB activation was inhibited. Our results identify a dual molecular action of vitamin C in signal transduction and provide a direct linkage between the redox state of vitamin C and NF-kappaB signaling events. AA quenches ROS intermediates involved in the activation of NF-kappaB and is oxidized to DHA, which directly inhibits IKKbeta and IKKalpha enzymatic activity. These findings define a function for vitamin C in signal transduction other than as an antioxidant and mechanistically illuminate how vitamin C down-modulates NF-kappaB signaling.  相似文献   

3.
During normal cellular activities, various processes inside of cells produce reactive oxygen species (ROS). Some of the most common ROS are hydrogen peroxide (H(2)O(2)), superoxide ion (O(2)(-)), and hydroxide radical (OH(-)). These compounds, when present in a high enough concentration, can damage cellular proteins and lipids or form DNA adducts that may promote carcinogenic activity. The purpose of antioxidants in a physiological setting is to prevent ROS concentrations from reaching a high-enough level within a cell that damage may occur. Cellular antioxidants may be enzymatic (catalase, glutathione peroxidase, superoxide dismutase) or nonenzymatic (glutathione, thiols, some vitamins and metals, or phytochemicals such as isoflavones, polyphenols, and flavanoids). Reactive oxygen species are a potential double-edged sword in disease prevention and promotion. Whereas generation of ROS once was viewed as detrimental to the overall health of the organism, advances in research have shown that ROS play crucial roles in normal physiological processes including response to growth factors, the immune response, and apoptotic elimination of damaged cells. Notwithstanding these beneficial functions, aberrant production or regulation of ROS activity has been demonstrated to contribute to the development of some prevalent diseases and conditions, including cancer and cardiovascular disease (CVD). The topic of antioxidant usage and ROS is currently receiving much attention because of studies linking the use of some antioxidants with increased mortality in primarily higher-risk populations and the lack of strong efficacy data for protection against cancer and heart disease, at least in populations with adequate baseline dietary consumption. In normal physiological processes, antioxidants effect signal transduction and regulation of proliferation and the immune response. Reactive oxygen species have been linked to cancer and CVD, and antioxidants have been considered promising therapy for prevention and treatment of these diseases, especially given the tantalizing links observed between diets high in fruits and vegetables (and presumably antioxidants) and decreased risks for cancer.  相似文献   

4.
Higher plant antioxidants and redox signaling under environmental stresses   总被引:5,自引:0,他引:5  
Main antioxidants in higher plants include glutathione, ascorbate, tocopherol, proline, betaine, and others, which are also information-rich redox buffers and important redox signaling components that interact with biomembrane-related compartments. As an evolutionary consequence of aerobic life for higher plants, reactive oxygen species (ROS) are formed by partial reduction of molecular oxygen. The above enzymatic and non-enzymatic antioxidants in higher plants can protect their cells from oxidative damage by scavenging ROS. In addition to crucial roles in defense system and as enzyme cofactors, antioxidants influence higher plant growth and development by modifying processes from mitosis and cell elongation to senescence and death. Most importantly, they provide essential information on cellular redox state, and regulate gene expression associated with biotic and abiotic stress responses to optimize defense and survival. An overview of the literature is presented in terms of main antioxidants and redox signaling in plant cells. Special attention is given to ROS and ROS-antioxidant interaction as a metabolic interface for different types of signals derived from metabolism and from the changing environment, which regulates the appropriate induction of acclimation processes or, execution of cell death programs, which are the two essential directions for higher plants.  相似文献   

5.
6.
活性氧调控植物生长发育的研究进展   总被引:6,自引:0,他引:6  
林植芳  刘楠 《植物学报》2012,47(1):74-86
活性氧(ROS)是植物有氧代谢过程中的副产物, 它在植物的许多生命过程中均具有有害和有利的双重功能。ROS对细胞的氧化损伤作用和信号转导诱导植物防卫反应已有详尽的研究。近年来, 越来越多的关于ROS调控植物生长发育的证据开始引起了人们的广泛关注。细胞的生长是植物发育的重要部分, ROS通过直接或间接调节细胞的生长来控制植物的发育, 成为植物发育的重要调节剂。该文综述了羟自由基(.OH)及其前体超氧阴离子自由基(O2. )和过氧化氢(H2O2)调控植物生长发育的研究进展, 包括ROS调控植物不同器官生长的证据和机理、ROS产生的途径及其检测方法, 同时对今后的研究进行了展望。  相似文献   

7.
The maintenance of the redox-homeostasis is an essential task of antioxidants. Reactive oxygen species (ROS) formed during oxidative stress can potentially damage the normal cellular functions and support pathological processes like atherosclerosis in vessels or malignant growth in other tissues, but also the aging process. However, recent findings link ROS also to cell survival and/or proliferation, which revolutionises the age-old dogmatic view of ROS being exclusively involved in cell damage and death. Low concentrations of hydrogenperoxide e.g. are involved in cell signaling and can activate mitogen-activated kinases (MAPK) to initiate cell growth. Nutritional antioxidants like vitamin C or E can promote endothelial cell growth, but can also inhibit growth of muscle cells, and influence MAPK. Thus, keeping the redox-homeostasis in a steady state especially in the context of tissue regeneration appears to be more important than previously known and seems to be a controlled synergistic action of antioxidants and ROS. The present review summarizes the properties and functions of ROS and nutritional antioxidants like the vitamins C and E, and polyphenols in redox-homeostasis. Their relevance in the treatment of various diseases is discussed in the context of a multitarget therapy with nutraceuticals and phytotherapeutic drugs.  相似文献   

8.
Mechanical stretch activates a number of signaling pathways in endothelial cells, and it elicits a variety of functional responses including increases in the phosphorylation of focal adhesion kinase (FAK), a nonreceptor tyrosine kinase involved in integrin-mediated signal transduction. Stretch also triggers an increase in the generation of reactive oxygen species (ROS), which may function as second messengers in the signal transduction cascades that activate cellular responses to strain. Mitochondria represent an important source of ROS in the cell, and these organelles may release ROS in response to strain by virtue of their attachment to cytoskeletal proteins. We therefore tested whether cyclic stretch increases FAK phosphorylation at Tyr397 through a mitochondrial ROS signaling pathway in bovine pulmonary artery endothelial cells (BPAEC). Oxidant signaling, measured using 2'7'-dichlorofluorescin (DCFH), increased 152 +/- 16% during 1.5 h of cyclic strain relative to unstrained controls. The mitochondrial inhibitors diphenylene iodonium (5 microM) or rotenone (2 microM) attenuated this increase, whereas L-nitroarginine (100 microM), allopurinol (100 microM), or apocynin (30 microM) had no effect. The antioxidants ebselen (5 microM) and dithiodidiethyldithiocarbamate (1 mM) inhibited the strain-induced increase in oxidant signaling, but Hb (5 microM) had no effect. These results indicate that strain induces oxidant release from mitochondria. Treatment with cytochalasin D (5 microM) abrogated strain-induced DCFH oxidation in BPAEC, indicating that actin filaments were required for stretch-induced mitochondrial ROS generation. Cyclic strain increased FAK phosphorylation at Tyr397, but this was abolished by mitochondrial inhibitors as well as by antioxidants. Strain-induced FAK phosphorylation was abrogated by inhibition of protein kinase C (PKC) with Ro-31-8220 or G?-6976. These findings indicate that mitochondrial oxidants generated in response to endothelial strain trigger FAK phosphorylation through a signaling pathway that involves PKC.  相似文献   

9.
植物盐胁迫应答蛋白质组学分析   总被引:3,自引:0,他引:3  
张恒  郑宝江  宋保华  王思宁  戴绍军 《生态学报》2011,31(22):6936-6946
土壤盐渍化是限制植物生长和分布的关键因素之一,揭示植物盐胁迫应答的分子机理是借助分子生物学手段提高植物耐盐性的基础.近年来,人们利用高通量蛋白质组学技术分析了拟南芥、水稻等19种植物的盐胁迫应答蛋白质表达图谱.从植物类群(盐生植物和甜土植物)、组织器官(根、地上部分/茎、胚根和胚轴、叶片、花序和配子体)、细胞(悬浮培养细胞、愈伤组织细胞和单细胞生物)和亚细胞结构(叶绿体、质膜和质外体)几方面整合分析了植物盐胁迫应答蛋白质组表达模式特征,主要特征包括:(1)盐生植物通过全面调节细胞骨架重塑、离子转运和区隔化、渗透平衡、活性氧(ROS)清除、信号转导、光合作用和能量代谢等信号与代谢网络体系,获得相对较高的抗/耐盐能力;(2)植物地上部分(叶片、茎、配子体)或光合组织细胞(悬浮培养细胞、愈伤组织细胞和单细胞盐藻)通过调节参与光合作用、碳和能量代谢、ROS清除过程蛋白质的表达模式应对盐胁迫环境;(3)植物地下部分(根、胚根)通过调控信号转导和离子转运相关蛋白质感知/传递盐胁迫信号并维持离子平衡;(4)花序中参与渗透调节、转录调控、蛋白质加工和ROS清除的蛋白质在盐胁迫条件下变化显著;(5)叶绿体通过调控参与光合作用、蛋白质加工和周转,以及氧化还原系统平衡等过程应对盐胁迫;(6)质外体中参与细胞壁代谢、胁迫防御和信号转导过程的蛋白质受盐胁迫影响明显;(7)细胞膜中参与维持膜结构稳定、物质/离子运输和信号转导过程的蛋白质对植物盐胁迫应答具有重要作用.这些分析为深入研究植物耐盐的分子机制提供了重要信息.  相似文献   

10.
11.
Reactive oxygen species (ROS) are known mediators of intracellular signal cascades. Excessive production of ROS may lead to oxidative stress, loss of cell function, and cell death by apoptosis or necrosis. Lipid hydroperoxides are one type of ROS whose biological function has not yet been clarified. Phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) is a unique antioxidant enzyme that can directly reduce phospholipid hydroperoxide in mammalian cells. This contrasts with most antioxidant enzymes, which cannot reduce intracellular phospholipid hydroperoxides directly. In this review, we focus on the structure and biological functions of PHGPx in mammalian cells. Recently, molecular techniques have allowed overexpression of PHGPx in mammalian cell lines, from which it has become clear that lipid hydroperoxides also have an important function as activators of lipoxygenase and cyclooxygenase, participate in inflammation, and act as signal molecules for apoptotic cell death and receptor-mediated signal transduction at the cellular level.  相似文献   

12.
13.
Reactive oxygen species (ROS) are formed by fungi in the course of metabolic activity. ROS production increases in fungi due to various stress agents such as starvation, light, mechanical damage, and interactions with some other living organisms. Regulation of ROS level appears to be very important during development of the fungal organism. ROS sources in fungal cells, their sensors, and ROS signal transduction pathways are discussed in this review. Antioxidant defense systems in different classes of fungi are characterized in detail. Particular emphasis is placed on ROS functions in interactions of phytopathogenic fungi with plant cells.  相似文献   

14.
Reactive oxygen species (ROS) are natural by products of cellular metabolism that were initially considered only deleterious towards the cellular macromolecules. Research advances have broadened the scope and now numerous studies are available rendering ROS molecules essential for plants to combat several biotic and abiotic stresses after being involved in essential defense mechanisms such as hypersensitivity reactions (HR) that lead to programmed cell death (PCD), cell wall reinforcement by cross-linking of cellular glycoproteins with other entities and salicylic acid mediated signal transduction pathways. During fungal attack, the fungal components like chitin and other elicitors activates the plant immune responses that employ ROS with other molecules like nitric oxide (NO), calcium ions to fight back the pathogen attack and restrict its spread to further plant parts. Here, several defense mechanisms mediated by ROS are discussed. Verticillium dahliae is one of the dreadful fungal pathogen to plants that cause wilts in many important plant species causing huge economic burden in food sector. The major constraint in its scenario being the deficit of field management systems based on chemicals or agronomics. It is evident by studying their interactions with the variety of hosts that in most cases, ROS mediated defenses play a key central role via cross-talk with other mechanisms making them a potential target for transgenics as well as resistant genotype selection.  相似文献   

15.
Mitochondrial reactive oxygen species in cell death signaling   总被引:49,自引:0,他引:49  
Fleury C  Mignotte B  Vayssière JL 《Biochimie》2002,84(2-3):131-141
During apoptosis, mitochondrial membrane permeability (MMP) increases and the release into the cytosol of pro-apoptotic factors (procaspases, caspase activators and caspase-independent factors such as apoptosis-inducing factor (AIF)) leads to the apoptotic phenotype. Apart from this pivotal role of mitochondria during the execution phase of apoptosis (documented in other reviews of this issue), it appears that reactive oxygen species (ROS) produced by the mitochondria can be involved in cell death. These toxic compounds are normally detoxified by the cells, failing which oxidative stress occurs. However, ROS are not only dangerous molecules for the cell, but they also display a physiological role, as mediators in signal transduction pathways. ROS participate in early and late steps of the regulation of apoptosis, according to different possible molecular mechanisms. In agreement with this role of ROS in apoptosis signaling, inhibition of apoptosis by anti-apoptotic Bcl-2 and Bcl-x(L) is associated with a protection against ROS and/or a shift of the cellular redox potential to a more reduced state. Furthermore, the fact that active forms of cell death in yeast and plants also involve ROS suggests the existence of an ancestral redox-sensitive death signaling pathway that has been independent of caspases and Bcl-2.  相似文献   

16.
Fas-Fas ligand (FasL)-dependent pathways exert a suppressive effect on inflammatory responses in immune-privileged organs. FasL expression in hepatic Kupffer cells (KC) has been implicated in hepatic immunoregulation. In this study, modulation of FasL expression of KC by endogenous gut-derived bacterial LPS and the role of reactive oxygen species (ROS) as potential mediators of FasL expression in KC were investigated. LPS stimulation of KC resulted in upstream ROS generation and, subsequently, increased FasL expression and consequent Jurkat cell (Fas-positive) apoptosis. The NADPH oxidase and xanthine oxidase enzymatic pathways appear to be major sources of this upstream ROS generation. Increased FasL expression was blocked by antioxidants and by enzymatic blocking of ROS generation. Exogenous administration of H2O2 stimulated KC FasL expression and subsequent Jurkat cell apoptosis. Intracellular endogenous ROS generation may therefore represent an important signal transduction pathway for FasL expression in KC.  相似文献   

17.
18.
19.
Mitochondrial catalase and oxidative injury   总被引:2,自引:0,他引:2  
Mitochondria dysfunction induced by reactive oxygen species (ROS) is related to many human diseases and aging. In physiological conditions, the mitochondrial respiratory chain is the major source of ROS. ROS could be reduced by intracellular antioxidant enzymes including superoxide dismutase, glutathione peroxidase and catalase as well as some antioxidant molecules like glutathione and vitamin E. However, in pathological conditions, these antioxidants are often unable to deal with the large amount of ROS produced. This inefficiency of antioxidants is even more serious in mitochondria, because mitochondria in most cells lack catalase. Therefore, the excessive production of hydrogen peroxide in mitochondria will damage lipid, proteins and mDNA, which can then cause cells to die of necrosis or apoptosis. In order to study the important role of mitochondrial catalase in protecting cells from oxidative injury, a HepG2 cell line overexpressing catalase in mitochondria was developed by stable transfection of a plasmid containing catalase cDNA linked with a mitochondria leader sequence which would encode a signal peptide to lead catalase into the mitochondria. Mitochondria catalase was shown to protect cells from oxidative injury induced by hydrogen peroxide and antimycin A. However, it increased the sensitivity of cells to tumor necrosis factor-alpha-induced apoptosis by changing the redox-oxidative status in the mitochondria. Therefore, the antioxidative effectiveness of catalase when expressed in the mitochondrial compartment is dependent upon the oxidant and the locus of ROS production.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号