首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
By means of limited proteolysis of Bacillus stearothermophilus initiation factor IF2 and genetic manipulation of its structural gene, infB, we have been able to produce (or hyperproduce) and purify two polypeptide fragments corresponding to two structurally and functionally separate domains of the protein. The first is the G-domain (approximately 41 kDa), which makes up the central part of the molecule and contains the conserved structural elements found in all GTP/GDP-binding sites of G-proteins. This domain is resistant to proteolysis in the presence of GTP or GDP, retains the capacity to interact with the 50 S subunit, binds weakly to the 30 S subunit, and displays ribosome-dependent GTPase activity with an approximately 2-fold higher Km for GTP and the same Vmax as compared with intact IF2. The second is the C-domain (approximately 24 kDa), which corresponds to the COOH-terminal part of IF2 and constitutes an extraordinarily compact domain containing the fMet-tRNA binding site of IF2. In spite of its negligible affinity for the ribosomes, the C-domain weakly stimulates the ribosomal binding of fMet-tRNA, presumably by affecting the conformation of the initiator tRNA molecule.  相似文献   

2.
3.
The bacterial translational GTPases (initiation factor IF2, elongation factors EF-G and EF-Tu and release factor RF3) are involved in all stages of translation, and evidence indicates that they bind to overlapping sites on the ribosome, whereupon GTP hydrolysis is triggered. We provide evidence for a common ribosomal binding site for EF-G and IF2. IF2 prevents the binding of EF-G to the ribosome, as shown by Western blot analysis and fusidic acid-stabilized EF-G.GDP.ribosome complex formation. Additionally, IF2 inhibits EF-G-dependent GTP hydrolysis on 70 S ribosomes. The antibiotics thiostrepton and micrococcin, which bind to part of the EF-G binding site and interfere with the function of the factor, also affect the function of IF2. While thiostrepton is a strong inhibitor of EF-G-dependent GTP hydrolysis, GTP hydrolysis by IF2 is stimulated by the drug. Micrococcin stimulates GTP hydrolysis by both factors. We show directly that these drugs act by destabilizing the interaction of EF-G with the ribosome, and provide evidence that they have similar effects on IF2.  相似文献   

4.
Translational initiation factor IF-2 is involved in a multistep pathway leading to the synthesis of the first peptide bond. IF-2 is a guanine nucleotide binding protein (G-protein) and catalyzes GTP hydrolysis in the presence of ribosomes. According to sequence homologies with other G-proteins, particularly EF-Tu, a theoretical model for the tertiary structure of the putative G-domain of IF-2 has been previously proposed [Cenatiempo, Y., Deville, F., Dondon, J., Grunberg-Manago, M., Hershey, J. W. B., Hansen, H. F., Petersen, H. U., Clark, B. F. C., Kjeldgaard, M., La Cour, T. F. M., Mortensen, K. K., & Nyborg, J. (1987) Biochemistry 26, 5070-5076]. A short fragment of IF-2 encompassing the putative G-domain was purified by limited proteolysis of a chimeric protein, synthesized from a gene fusion, between a segment of the IF-2 gene and lacZ. The N- and C-terminal sequences of this IF-2 peptide were characterized. Its calculated length is 181 amino acids and its molecular mass 19.4 kDa, whereas it migrates at 14 kDa in SDS-polyacrylamide gels. This segment of IF-2 can form binary complexes with GDP and can be cross-linked to GTP, therefore indicating that it really corresponds to the G-domain. However, in contrast to the situation described for the purified G-domain of EF-Tu, the IF-2 fragment did not hydrolyze GTP even in the presence of ribosomes. It is assumed that active centers of IF-2 located outside the G-domain are needed for the latter reaction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Translation initiation factor IF2 from Bacillus stearothermophilus (741 amino acids, Mr 82,043) was subjected to trypsinolysis alone or in the presence of fMet-tRNA. The initiator tRNA was found to protect very efficiently the Arg308-Ala309 bond within the GTP binding site of IF2 and, more weakly, three bonds (Lys146-Gln147, Lys154-Glu155 and Arg519-Ser520). The first two are located at the border between the non-conserved, dispensable (for translation) N-terminal portion and the conserved G-domain of the protein, the third is located at the border between the G- and C-domains. Since IF2 is known to interact with fMet-tRNA through its protease-resistant C- (carboxyl terminus) domain, the observed protection suggests that, upon binding of fMet-tRNA, long-distance tertiary interactions between the IF2 domains may take place.  相似文献   

6.
The infB gene encodes translation initiation factor IF2. We have determined the entire sequence of infB from two cold-sensitive Escherichia coli strains IQ489 and IQ490. These two strains have been isolated as suppressor strains for the temperature-sensitive secretion mutation secY24. The mutations causing the suppression phenotype are located within infB. The only variations from the wild-type (wt) infB found in the two mutant strains are a replacement of Asp409 with Glu in strain IQ489 and an insertion of Gly between Ala421 and Gly422 in strain IQ490. Both positions are located in the GTP-binding G-domain of IF2. A model of the G-domain of E.coli IF2 is presented in. Physiological quantities of the recombinant mutant proteins were expressed in vivo in E.coli strains from which the chromosomal infB gene has been inactivated. At 42 degrees C, the mutants sustained normal cell growth, whereas a significant decrease in growth rate was found at 25 degrees C for both mutants as compared to wt IF2 expressed in the control strain. Circular dichroism spectra were recorded of the wt and the two mutant proteins to investigate the structural properties of the proteins. The spectra are characteristic of alpha-helix dominated structure, and reveal a significant different behavior between the wt and mutant IF2s with respect to temperature-induced conformational changes. The temperature-induced conformational change of the wt IF2 is a two-state process. In a ribosome-dependent GTPase assay in vitro the two mutants showed practically no activity at temperatures below 10 degrees C and a reduced activity at all temperatures up to 45 degrees C, as compared to wt IF2. The results indicate that the amino acid residues, Asp409 and Gly422, are located in important regions of the IF2 G-domain and demonstrate the importance of GTP hydrolysis in translation initiation for optimal cell growth.  相似文献   

7.
We have recently shown that the Escherichia coli initiation factor 2 (IF2) G-domain mutants V400G and H448E do not support cell survival and have a strong negative effect on growth even in the presence of wild-type IF2. We have isolated both mutant proteins and performed an in vitro study of their main functions. The affinity of both mutant proteins for GTP is almost unchanged compared with wild-type IF2. However, the uncoupled GTPase activity of the V400G and H448E mutants is severely impaired, the Vmax values being 11- and 40-fold lower, respectively. Both mutant forms promoted fMet-tRNAfMet binding to 70 S ribosomes with similar efficiencies and were as sensitive to competitive inhibition by GDP as wild-type IF2. Formation of the first peptide bond, as measured by the puromycin reaction, was completely inhibited in the presence of the H448E mutant but still significant in the case of the V400G mutant. Sucrose density gradient centrifugation revealed that, in contrast to wild-type IF2, both mutant proteins stay blocked on the ribosome after formation of the 70 S initiation complex. This probably explains their dominant negative effect in vivo. Our results underline the importance of GTP hydrolysis for the recycling of IF2.  相似文献   

8.
Initiation of translation in prokaryotes requires the participation of at least three soluble proteins: the initiation factors IF1, IF2 and IF3. Initiation factor 2, which is one of the largest proteins involved in translation (97.3 kDa) has been shown to stimulate in vitro the binding of fMet-tRNA(fMet) to the 30S ribosomal subunit. After formation of 70S translation initiation complex, IF2 is believed to participate in GTP hydrolysis, thereby promoting its own release. Here we review evidence which indicates the functional importance of the different structural domains of IF2, emphasizing new information obtained by in vivo experiments.  相似文献   

9.
Translation initiation factor IF2 from Bacillus stearothermophilus (741 amino acids, Mr = 82,043) was subjected to trypsinolysis alone or in the presence of GTP. Following electroblotting and automated amino acid sequencing of the resulting peptides, the location and the sequential order of the main cleavage sites were identified. Trypsinolysis of IF2 ultimately generates two compact domains: a 24.5 kDa C-terminal fragment and a 40 kDa G-fragment which is obtained only in the presence of GTP which strongly protects a cleavage site within the GTP binding domain.  相似文献   

10.
During the IF2-catalysed formation of the 30S initiation complex, the GTP requirement and Its subsequent hydrolysis during 70S complex formation are considered to be essential for translation initiation in Escherichia coli. In order to clarify the role of certain amino acid residues believed to be crucial for the GTP hydrolytic activity of E. coli IF2, we have introduced seven single amino acid substitutions into its GTP-binding site (Gly for Val-400; Thr for Pro-446; Gly, Glu, Gin for His-448; and Asn, Glu for Asp-501). These mutated IF2 proteins were expressed in vivo in physiological quantities and tested for their ability to maintain the growth of an E. coli strain from which the functional chromosomal copy of the infB gene has been deleted. Only one of the mutated proteins (Asp-501 to Giu) was able to sustain cell viability and several displayed a dominant negative effect. These results emphasize that the amino acid residues we substituted are essential for the iF2 functions and demonstrate the importance of GTP hydrolysis in translation initiation. These findings are discussed in relation to a previously proposed theoretical model for the IF2 G-domain.  相似文献   

11.
Shin BS  Maag D  Roll-Mecak A  Arefin MS  Burley SK  Lorsch JR  Dever TE 《Cell》2002,111(7):1015-1025
Translation initiation factor eIF5B/IF2 is a GTPase that promotes ribosomal subunit joining. We show that eIF5B mutations in Switch I, an element conserved in all GTP binding domains, impair GTP hydrolysis and general translation but not eIF5B subunit joining function. Intragenic suppressors of the Switch I mutation restore general translation, but not eIF5B GTPase activity. These suppressor mutations reduce the ribosome affinity of eIF5B and increase AUG skipping/leaky scanning. The uncoupling of translation and eIF5B GTPase activity suggests a regulatory rather than mechanical function for eIF5B GTP hydrolysis in translation initiation. The translational defect suggests eIF5B stabilizes Met-tRNA(i)(Met) binding and that GTP hydrolysis by eIF5B is a checkpoint monitoring 80S ribosome assembly in the final step of translation initiation.  相似文献   

12.
Ribosome recycling factor (RRF), elongation factor G (EF-G) and GTP split 70S ribosomes into subunits. Here, we demonstrated that the splitting was transient and the exhaustion of GTP resulted in re-association of the split subunits into 70S ribosomes unless IF3 (initiation factor 3) was present. However, the splitting was observed with sucrose density gradient centrifugation (SDGC) without IF3 if RRF, EF-G and GTP were present in the SDGC buffer. The splitting of 70S ribosomes causes the decrease of light scattering by ribosomes. Kinetic constants obtained from the light scattering studies are sufficient to account for the splitting of 70S ribosomes by RRF and EF-G/GTP during the lag phase for activation of ribosomes for the log phase. As the amount of 70S ribosomes increased, more RRF, EF-G and GTP were necessary to split 70S ribosomes. In the presence of a physiological amount of polyamines, GTP and factors, even 0.6 μM 70S ribosomes (12 times higher than the 70S ribosomes for routine assay) were split. Spermidine (2 mM) completely inhibited anti-association activity of IF3, and the RRF/EF-G/GTP-dependent splitting of 70S ribosomes.  相似文献   

13.
Protein synthesis is initiated on ribosomal subunits. However, it is not known how 70S ribosomes are dissociated into small and large subunits. Here we show that 70S ribosomes, as well as the model post-termination complexes, are dissociated into stable subunits by cooperative action of three translation factors: ribosome recycling factor (RRF), elongation factor G (EF-G), and initiation factor 3 (IF3). The subunit dissociation is stable enough to be detected by conventional sucrose density gradient centrifugation (SDGC). GTP, but not nonhydrolyzable GTP analog, is essential in this process. We found that RRF and EF-G alone transiently dissociate 70S ribosomes. However, the transient dissociation cannot be detected by SDGC. IF3 stabilizes the dissociation by binding to the transiently formed 30S subunits, preventing re-association back to 70S ribosomes. The three-factor-dependent stable dissociation of ribosomes into subunits completes the ribosome cycle and the resulting subunits are ready for the next round of translation.  相似文献   

14.
Roll-Mecak A  Cao C  Dever TE  Burley SK 《Cell》2000,103(5):781-792
X-ray structures of the universal translation initiation factor IF2/eIF5B have been determined in three states: free enzyme, inactive IF2/eIF5B.GDP, and active IF2/eIF5B.GTP. The "chalice-shaped" enzyme is a GTPase that facilitates ribosomal subunit joining and Met-tRNA(i) binding to ribosomes in all three kingdoms of life. The conserved core of IF2/eIF5B consists of an N-terminal G domain (I) plus an EF-Tu-type beta barrel (II), followed by a novel alpha/beta/alpha-sandwich (III) connected via an alpha helix to a second EF-Tu-type beta barrel (IV). Structural comparisons reveal a molecular lever, which amplifies a modest conformational change in the Switch 2 region of the G domain induced by Mg(2+)/GTP binding over a distance of 90 A from the G domain active center to domain IV. Mechanisms of GTPase function and ribosome binding are discussed.  相似文献   

15.
A role for HflX in 50S-biogenesis was suggested based on its similarity to other GTPases involved in this process. It possesses a G-domain, flanked by uncharacterized N- and C-terminal domains. Intriguingly, Escherichia coli HflX was shown to hydrolyze both GTP and adenosine triphosphate (ATP), and it was unclear whether G-domain alone would explain ATP hydrolysis too. Here, based on structural bioinformatics analysis, we suspected the possible existence of an additional nucleotide-binding domain (ND1) at the N-terminus. Biochemical studies affirm that this domain is capable of hydrolyzing ATP and GTP. Surprisingly, not only ND1 but also the G-domain (ND2) can hydrolyze GTP and ATP too. Further; we recognize that ND1 and ND2 influence each other’s hydrolysis activities via two salt bridges, i.e. E29-R257 and Q28-N207. It appears that the salt bridges are important in clamping the two NTPase domains together; disrupting these unfastens ND1 and ND2 and invokes domain movements. Kinetic studies suggest an important but complex regulation of the hydrolysis activities of ND1 and ND2. Overall, we identify, two separate nucleotide-binding domains possessing both ATP and GTP hydrolysis activities, coupled with an intricate inter-domain regulation for Escherichia coli HflX.  相似文献   

16.
Pisareva VP  Hellen CU  Pestova TV 《Biochemistry》2007,46(10):2622-2629
Eukaryotic translation initiation factor eIF5B is a ribosome-dependent GTPase that is responsible for the final step in initiation, which involves the displacement of initiation factors from the 40S ribosomal subunit in initiation complexes and its joining with the 60S subunit. Hydrolysis of eIF5B-bound GTP is not required for its function in subunit joining but is necessary for the subsequent release of eIF5B from assembled 80S ribosomes. Here we investigated the kinetics of guanine nucleotide binding to eIF5B by a fluorescent stopped-flow technique using fluorescent mant derivatives of GTP and GDP and of the GTP analogues GTPgammaS and GMPPNP. The affinity of eIF5B for mant-GTP (Kd approximately 14-18 microM) was approximately 7-fold less than for mant-GDP (Kd approximately 2.3 microM), and both guanine nucleotides dissociated rapidly from eIF5B (k-1mant-GTP approximately 22-28 s-1, k-1mant-GDP approximately 10-14 s-1). These properties of eIF5B suggest a rapid spontaneous GTP/GDP exchange on eIF5B and are therefore consistent with it having no requirement for a special guanine nucleotide exchange factor. The affinity of eIF5B for mant-GTPgammaS was about 2 times lower (Kd approximately 6.9 microM) and for mant-GMPPNP 1.5 times higher (Kd approximately 25.7 microM) than for mant-GTP, indicating that eIF5B tolerates modifications of the triphosphate moiety well.  相似文献   

17.
Translational initiation factor 2 (IF2) is the largest of the 3 factors required for translation initiation in prokaryotes and has been shown to be essential in Escherichia coli. It stimulates the binding of fMet-tRNA(f)(Met) to the 30S ribosomal subunit in the presence of GTP. The selectivity is achieved through specific recognition of the tRNA(f)(Met) blocked alpha-amino group. IF2 is composed of 3 structural domains: N-domain, whose function is not known; G-domain, which contains the GTP/GDP binding site and the GTPase catalytic center; and C-domain, which recognizes and binds fMet-tRNA(f)(Met). Its activity is strictly bacteria specific and highly conserved among prokaryotes. So far, antibiotics targeting IF2 function are not known, and this makes it an ideal target for new drugs with mechanisms of resistance not yet developed. A few assays have been developed in the past, which allow the detection of IF2 activity either directly or indirectly. In both instances, the assays are based on radioactive detection and do not allow for high throughput because of the need for separation or solvent extraction steps. The authors describe a novel biochemical assay for IF2 that exploits the molecular recognition of fMet-tRNA(f)(Met) by the C-domain. The assay is based on the incubation of biotinyl-IF2 with fMet-tRNA(f)(Met) and the subsequent capture of the radiolabeled complex by streptavidin-coated beads, exploiting the scintillation proximity assay (SPA) technology. The assay has been designed in an automatable, homogeneous, miniaturized fashion suitable for high-throughput screening and is rapid, sensitive, and robust to dimethyl sulfoxide (DMSO) up to 10% v/v. The assay, used to screen a limited chemical collection of about 5000 compounds and a subset of compounds originated by a 2-D substructural search, has shown to be able to detect potential IF2 inhibitors.  相似文献   

18.
Protein biosynthesis is a complex biochemical process involving a number of stages at which different translation factors specifically interact with ribosome. Some of these factors belong to GTP-binding proteins, or G-proteins. Due to their functioning, GTP is hydrolyzed to yield GDP and the inorganic phosphate ion Pi. Interaction with ribosome enhances GTPase activity of translation factors; i.e., ribosome plays a role of GTPase-activating protein (GAP). GTPases involved in translation interact with ribosome at every stage of protein biosynthesis. Initiation factor 2 (IF2) catalyzes initiator tRNA binding to the ribosome P site and subsequent binding of the 50S subunit to the initiation complex of the 30S subunit. Elongation factor Tu (EF-Tu) controls aminoacyl-tRNA delivery to the ribosome A site, while elongation factor G (EF-G) catalyzes translocation of the mRNA-tRNA complex by one codon on the ribosome. Release factor 3 (RF3) catalyzes the release of termination factors 1 or 2 (RF1 or RF2) from the ribosomal complex after completion of protein synthesis and peptidyl-tRNA hydrolysis. The functional properties of translational GTPases as related to other G-proteins, the putative mechanism of GTP hydrolysis, structural features, and the functional cycles of translational GTPases are considered.  相似文献   

19.
The pathway of bacterial ribosome recycling following translation termination has remained obscure. Here, we elucidate two essential steps and describe the roles played by the three translation factors EF-G, RRF, and IF3. Release factor RF3 is known to catalyze the dissociation of RF1 or RF2 from ribosomes after polypeptide release. We show that the next step is dissociation of 50S subunits from the 70S posttermination complex and that it is catalyzed by RRF and EF-G and requires GTP hydrolysis. Removal of deacylated tRNA from the resulting 30S:mRNA:tRNA posttermination complex is then necessary to permit rapid 30S subunit recycling. We show that this step requires initiation factor IF3, whose role was previously thought to be restricted to promoting specific 30S initiation complex formation from free 30S subunits.  相似文献   

20.
The role of IF2 from Escherichia coli was studied in vitro using a system for protein synthesis with purified components. Stopped flow experiments with light scattering show that IF2 in complex with guanosine triphosphate (GTP) or a non-cleavable GTP analogue (GDPNP), but not with guanosine diphosphate (GDP), promotes fast association of ribosomal subunits during initiation. Biochemical experiments show that IF2 promotes fast formation of the first peptide bond in the presence of GTP, but not GDPNP or GDP, and that IF2-GDPNP binds strongly to post-initiation ribosomes. We conclude that the GTP form of IF2 accelerates formation of the 70S ribosome from subunits and that GTP hydrolysis accelerates release of IF2 from the 70S ribosome. The results of a recent report, suggesting that GTP and GDP promote initiation equally fast, have been addressed. Our data, indicating that eIF5B and IF2 have similar functions, are used to rationalize the phenotypes of GTPase-deficient mutants of eIF5B and IF2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号