首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we analysed autotrophic sources of the carbon ( 13C) and the trophic position ( 15N) of Leporinus friderici in the influence area of Corumbá Reservoir, Brazil. We collected samples of muscles of fish from different sizes riparian vegetation, C4 grasses, zooplankton, periphyton and particulate organic carbon (POC). There were significant differences for the carbon isotope proportion found in muscles of L.friderici in the different size groups analysed. The highest values of 13C recorded for middle sized individuals is attributed to the large contribution of C4 plants in their diet. Small individuals sampled upstream also receive similar contribution from C4 plants. In contrast the same size group sampled downstream from the reservoir, has a much smaller of C4 plants. The 13C negative character of small individuals from downstream is due to the larger contribution of C3 plants (except periphyton). At larger sizes we found intermediate 13C values. The 15N proportions we found for each size group were not significantly different, however we found decreasing mean values with increasing size. The trophic level calculated from the dietary data was higher than that found with the 13C concentration in the muscle, except for small individuals, when the values were equal.  相似文献   

2.
Temporal and spatial changes in 13C and 15N of seston (mainly phytoplankton) and isotopic relationship between seston and the lake anchovy (Coilia ectenes) were studied in the large eutrophic freshwater Lake Chaohu in China. Much of the spatial and temporal variation in 13C of lake anchovies was explained by variation in seston, indicating a strong link between pelagic primary production and higher order consumers. Because the lake is shallow, there were no significant differences in 13C and 15N of seston between surface and overlying waters. Spatially, the relatively high 13C and 15N of seston in the western part of the lake might be due to high levels of anthropogenically derived N and C introduced from the surrounding cities through sewage drainage systems. The trophic position of the lake anchovy in the food web of Lake Chaohu was estimated to be 2.9–4.1 (3.5 ± 0.4), which agrees well with the previous stomach content analysis suggesting that the lake anchovy fed both on zooplankton and small planktivorous fishes.  相似文献   

3.
The effect of pH and transmembrane pH on the efficiency of the proton pump of the mitochondrialbc 1 complex bothin situ and in the reconstituted state was studied. In both cases the H+/e ratio for vectorial proton translocation by thebc 1 complex respiring at the steady state, under conditions in which the transmembrane pH difference (pH) represents the only component of the proton motive force (p), was significantly lower than that measured under level flow conditions. The latter amounts, at neutral pH, to 1 (2 including the scalar H+ release). In the reconstituted system steady-state pH was modulated by changing the intravesicular buffer as well as the intra/extra-liposomal pH. Under these conditions the H+/e ratio varied inversely with the pH. The data presented show that pH exerts a critical control on the proton pump of thebc 1 complex. Increasing the external pH above neutrality caused a decrease of the level flowH +/e ratio. This effect is explained in terms of proton/electron linkage inb cytochromes.  相似文献   

4.
We present the results of a 5-year examination of variation in the stable carbon isotope composition () of three C3 graminoid species from a Sandhills prairie: Agropyron smithii, Carex heliophila and Stipa comata. Although consistent species-specific patterns for mean were seen, there was also significant and substantial among-year and within-season variation in . A smaller contribution to variation in came from topographic variation among sampling sites. Effects of species, year, season and topography contribute to variation in in an additive manner. An association between climate and exists that is consistent with previous work suggesting that reflects the interplay between photosynthetic gas exchange and plant water relations. Within the growing season, the time over which integrates plant response to the environment ranges from days to months.  相似文献   

5.
Novel linear hydroxamate/hydroxycarboxylate siderophores from strains of Pseudomonas cepacia were isolated and named ornibactins. The ornibactins represent modified tetrapeptide siderophores, possessing the sequence l-Orn1(N -OH, N -acyl)-d-threo-Asp(-OH)-l-Ser-l-Orn4(N -OH, N -formyl)-1,4-diaminobutane. The N -acyl groups of Orn1(N -OH, N -acyl) may vary and represent the three acids 3-hydroxybutanoic acid, 3-hydroxyhexanoic acid and 3-hydroxyoctanoic acid, leading to a mixture of three different ornibactins, designated according to their acyl chain length as ornibactin-C4, ornibactin-C6 and ornibactin-C8. Each of the siderophores is accompanied by a small amount of a more hydrophilic component with a 16 a.m.u. higher mass. The structure elucidation was based on results from gas chromatography amino acid analysis, electrospray mass spectrometry, and one- and two-dimensional nuclear magnetic resonance techniques.  相似文献   

6.
In order to assess the ability of Porites corals to accurately record environmental variations, high-resolution (weekly/biweekly) coral 18O records were obtained from four coral colonies from the northern Gulf of Aqaba, which grew at depths of 7, 19, 29, and 42 m along one transect. Adjacent to each colony, hourly temperatures, biweekly salinities, and monthly 18O of seawater were continuously recorded over a period of 14 months (April 1999 to June 2000). Contrary to water temperature, which shows a regular and strong seasonal variation and change with depth, seawater 18O exhibits a weak seasonality and little change with depth. Positive correlations between seawater 18O and salinity were observed. The two parameters were related to each other by the equation 18O Seawater (, VSMOW) = 0.281 × Salinity – 9.14. The high-resolution coral 18O records from this study show a regular pattern of seasonality and are able to capture fine details of the weekly average temperature records. They resolve more than 95% of the weekly average temperature range. On the other hand, attenuation and amplification of coral seasonal amplitudes were recorded in deep, slow-growing corals, which were not related to environmental effects (temperature and/or seawater 18O) or sampling resolution. We propose that these result from a combined effect of subannual variations in extension rate and variable rates of spine thickening of skeletal structures within the tissue layer. However, no smoothing or distortion of the isotopic signals was observed due to calcification within the tissue layer in shallow-water, fast-growing corals. The calculations from coral 18O calibrations against the in situ measurements show that temperature (T) is related to coral 18O ( c ) and seawater 18O ( w ) by the equation T (°C) = –5.38 ( c w ) –1.08. Our results demonstrate that coral 18O from the northern Gulf of Aqaba is a reliable recorder of temperature variations, and that there is a minor contribution of seawater 18O to this proxy, which could be ignored.  相似文献   

7.
Summary Carbon isotope composition, photosynthetic gas exchange, and nitrogen content were measured in leaves of three varieties of Metrosideros polymorpha growing in sites presenting a variety of precipitation, temperature and edaphic regimes. The eight populations studied could be divided into two groups on the basis of their mean foliar 13C values, one group consisting of three populations with mean 13C values ca.-26 and another group with 13C values ca.-28. Less negative 13C values appeared to be associated with reduced physiological availability of soil moisture resulting from hypoxic conditions at a poorly drained high elevation bog site and from low precipitation at a welldrained, low elevation leeward site. Gas exchange measurements indicated that foliar 13C and intrinsic wateruse efficiency were positively correlated. Maximum photosynthetic rates were nearly constant while maximum stomatal conductance varied substantially in individuals with foliar 13C ranging from-29 to-24. In contrast with the patterns of 13C observed, leaf nitrogen content appeared to be genetically determined and independent of site characteristics. Photosynthetic nitrogenuse efficiency was nearly constant over the range of 13C observed, suggesting that a compromise between intrinsic water- and N-use efficiency did not occur. In one population variations in foliar 13C and gas exchange with leaf cohort age, caused the ratio of intercellular to atmospheric partial pressure of CO2 predicted from gas exchange and that calculated from 13C to be in close agreement only in the two youngest cohorts of fully expanded leaves. The results indicated that with suitable precautions concerning measurement protocol, foliar 13C and gas exchange measurements were reliable indicators of potential resource use efficiency by M. polymorpha along environmental gradients.  相似文献   

8.
Given a uniform N source, the 15N of barley shoots provided a genotypic range within treatments and a separation between control and salt-stress treatments as great as did 13C*. Plant 15N has been represented in the literature as a bioassay of external source 15N and used to infer soil N sources, thus precluding consideration of the plant as a major cause in determining its own 815N. We believe this to be the first report of plant 15N as a genetic trait. No mechanistic model is needed for use of 15N as a trait in controlled studies; however, a qualitative model is suggested for further testing.Symbol 15N (or 13C) the difference between: (1) the ratio of heavy to light isotopes of the element in a sample and (2) that of its reference standard  相似文献   

9.
At five European sites, differing in atmospheric Sinputs by a factor of 6, and differing in S isotope signatures ofthese inputs by up to 14 (CDT), we investigated thedirection and magnitude of an assimilation-related 34S shiftand the relationship between atmospheric deposition and Sretention in selected ecosystem compartments. Bulk precipitationand spruce throughfall were collected between 1994 and 1996 inthe Isle of Mull (Scotland), Connemara (Ireland), Thorne Moors(England), Rybárenská slat' and Oceán (both Czech Republic) andanalyzed for sulfate concentrations and 34S ratios. Eighteenreplicate samples per site of living Sphagnum collected inunforested peatlands and 18 samples of spruce forest floorcollected near each of the peatlands were also analyzed for Sconcentrations and 34S ratios. Assimilation of S was associatedwith a negative 34S shift. Plant tissues systematicallypreferred the light isotope 32S, on average by 2. There wasa strong positive correlation between the non-marine portion ofthe atmospheric S input and total S concentration in forest floorand Sphagnum, respectively (R = 0.97 and R = 0.85). Elevated Sinputs lead to higher S retention in these two organic-richcompartments of the ecosystem. It follows that equal emphasismust be placed on organic S as on adsorption/desorption ofinorganic sulfate when studying acidification reversal inecosystems. The sea-shore sites had rainfall enriched in theheavy isotope 34S due to an admixture of sea-spray. The inlandsites had low 34S reflecting 34S of sulfur emitted from localcoal-burning power stations. Sphagnum had always lower S contentsand higher 34S ratios compared to forest floor. The within-siterange of 34S ratios of Sphagnum and forest floor was wide (upto 12) suggesting that at least six replicate samples shouldbe taken when using 34S as a tracer.  相似文献   

10.
We have determined the 18O and 13C values of azooxanthellate (Lophelia pertusa) and zooxanthellate (Porites lutea) corals at a micrometer scale using an ion microprobe (SIMS—secondary ion mass spectrometry). In P. lutea, centers of calcification are small (10 to 15 m) and difficult to locate during measurements. In L. pertusa, they are large (50 m) and arranged in lines of centers of calcification. Our results show that centers of calcification in L. pertusa have a restricted range of variation in 18O [-2.8±0.3 (PDB)], and a larger range in 13C [14.3 to 10.9 (PDB)]. Surrounding skeletal fibers exhibit large isotopic variation both for C and O (up to 12), and 13C and 18O are positively correlated. The C and O isotopic compositions of the center of calcification deviate from this linear trend at the lightest 18O values of the surrounding fibers. Ion microprobe results on P. lutea demonstrate also a large range of variation for the 18O values (up to 10). No correlation is found with C isotopes that exhibit, in comparison with L. pertusa, a small range of variation (2). This variation of 18O at a micrometer scale is probably the result of two processes: (1) an isotopic equilibrium calcification with 1 pH unit variation in the calcification fluid as indicated by direct measurements of coelenteron pH in the coral Galaxea fascicularis (Al-Horani et al. 2003) and (2) a kinetic fractionation. The 13C apparent disequilibrium in P. lutea may be the result of mixing between metabolic CO2 (respiration) and dissolved inorganic carbon (DIC) coming directly from seawater.  相似文献   

11.
The carbon isotope composition of an animals breath reveals the composition of the nutrients that it catabolizes for energy. Here we describe the use of Keeling plots, a method widely applied in ecosystem ecology, to measure the 13C of respired CO2 of small vertebrates. We measured the 13C of Rufous Hummingbirds (Selasphorus rufus) in the laboratory and of Mourning (Zenaida macroura) and White-winged (Z. asiatica) Doves in the field. In the laboratory, when hummingbirds were fed a sucrose based C3 diet, the 13C of respired CO2 was not significantly different from that of their diet (13CC3 diet). The 13C of respired CO2 for C3 fasted birds was slightly, albeit significantly, depleted in 13C relative to 13CC3 diet. Six hours after birds were shifted to a sucrose based C4 diet, the isotopic composition of their breath revealed that birds were catabolizing a mixture of nutrients derived from both the C3 and the C4 diet. In the field, the 13C of respired CO2 from Mourning and White-winged Doves reflected that of their diets: the CAM saguaro cactus (Carnegeia gigantea) and C3 seeds, respectively. Keeling plots are an easy, effective and inexpensive method to measure 13C of respired CO2 in the lab and the field.  相似文献   

12.
Variation in stable nitrogen isotope ratios (15N) was assessed for plants comprising two wetland communities, a bog-fen system and a flood plain, in central Japan. 15N of 12 species from the bog-fen system and six species from the flood plain were remarkably variable, ranging from –5.9 to +1.1 and from +3.1 to +8.7, respectively. Phragmites australis exhibited the highest 15N value at both sites. Rooting depth also differed greatly with plant species, ranging from 5cm to over 200cm in the bog-fen system. There was a tendency for plants having deeper root systems to exhibit higher 15N values; plant 15N was positively associated with rooting depth. Moreover, an increasing gradient of peat 15N was found along with depth. This evidence, together with the fact that inorganic nitrogen was depleted under a deep-rooted Phragmites australis stand, strongly suggests that deep-rooted plants actually absorb nitrogen from the deep peat layer. Thus, we successfully demonstrated the diverse traits of nitrogen nutrition among mire plants using stable isotope analysis. The ecological significance of deep rooting in mire plants is that it enables those plants to monopolize nutrients in deep substratum layers. This advantage should compensate for any consequential structural and/or physiological costs. Good evidence of the benefits of deep rooting is provided by the fact that Phragmites australis dominates as a tall mire grass.  相似文献   

13.
Three species of the reef coral genus Madracis display skeletal isotopic characteristics that relate to depth, colony topography, and consequently to coral physiology. The joint interpretation of skeletal 13C and 18O provides information on the ecological plasticity and adaptation to depth of a coral species. Isotopic results are most easily understood in terms of kinetic effects, which reduce both 18O and 13C below isotopic equilibrium values, and metabolic effects, which only influence the skeletal 13C. Madracis mirabilis is adapted to depths shallower than 20 m, and shows the greatest range in kinetic effects and the strongest metabolic 13C enrichments caused by symbiont photosynthesis. Madracis formosa lives deeper than 40 m, and shows a reduced range of kinetic effects and relatively weak metabolic 13C enrichments. Madracis pharensis inhabits depths from 5 to >60 m, and does not attain the strength of kinetic effects of either of the other two species, apparently because it is not quite as well adapted to rapid growth at either extreme.  相似文献   

14.
The stable isotope ratios of nitrogen were measured in the mysid,Neomysis intermedia, together with various biogenic materials in a eutrophic lake, Lake Kasumigaura, in Japan throughout a year of 1984/85. The mysid, particulate organic matter (POM, mostly phytoplankton), and zooplankton showed a clear seasonal change in 15N with high values in spring and fall, but the surface bottom mud did not. A year to year variation as well as seasonal change in 15N was found in the mysid. The annual averages of 15N of each material collected in 1984/85 are as follows: surface bottom mud, 6.3 (range: 5.7–6.9); POM, 7.9 (5.8–11.8); large sized mysid, 11.6 (7.7–14.3); zooplankton, 12.5 (10.0–16.4); prawn, 13.2 (9.9–15.4); goby, 15.1 (13.8–16.7). The degree of15N enrichment by the mysid was determined as 3.2 by the laboratory rearing experiments. The apparent parallel relationship between the POM and the mysid in the temporal patterns of 15N with about 3 difference suggests the POM (mostly phytoplankton) as a possible food source ofN. intermedia in this lake through the year.  相似文献   

15.
Compared to marine research, there have been few attempts to search for general predictive patterns in stable isotope ratios across lakes. Previous work has determined, however, that the 13C values of both littoral epilithon and pelagic zooplankton decrease with increasing concentration of dissolved organic carbon (DOC) in boreal forest lakes. Despite a substantial contribution of allochthonous carbon to fuelling littoral foodwebs in northwestern Ontario, a survey of 12 lakes showed that enough autochthonous carbon must be assimilated by leeches (Macrodella decora, Percymoorensis mannoratis) to demonstrate inverse relationships between leech 13C and lake DOC. Establishing such baseline empirical relationships between limnological variables and organism 13C will enable inter-lake comparisons, and is a maturing direction in freshwater isotope ecology.  相似文献   

16.
The biosynthesis of conglutin has been studied in developing cotyledons of Lupinus angustifolius L. Precursors of conglutin formed the major sink for [35S]-cysteine incorporated by developing lupin cotyledons, and these precursors were rapidly sequestered into the endoplasmic reticulum. The sequence of a cDNA clone coding for one such precursor of conglutin was determined. The structure of the precursor polypeptide for conglutin predicted from the cDNA sequence contained an N-terminal leader peptide of 22 amino acids directly preceding a subunit polypeptide of M r 4520, together with a linking region of 13 amino acids and a subunit polypeptide of M r 9558 at the C-terminus. The amino acid sequence predicted from the cDNA sequence showed minor variations from that established by sequencing of the protein purified from mature dried seeds (Lilley and Inglis, 1986). These were consistent with the existence of a multi-gene family coding for conglutin . Comparison of the sequences of conglutin with those of other 2S storage proteins showed that the cysteines involved in internal disulphide bridges between the mature subunits of conglutin , were maintained throughout this family of proteins but that little else was conserved either at the protein or DNA level.  相似文献   

17.
The study deals with a comparative analysis of the relative abundances of the carbon isotopes 12C and 13C in the metabolites and biomass of the Burkholderia sp. BS3702 and Pseudomonas putida BS202-p strains capable of utilizing aliphatic (n-hexadecane) and aromatic (naphthalene) hydrocarbons as sources of carbon and energy. The isotope compositions of the carbon dioxide, biomass, and exometabolites produced during the growth of Burkholderia sp. BS3702 on n-hexadecane (13C = –44.6 ± 0.2) were characterized by the values of 13CCO 2 = –50.2 ± 0.4, 13Cbiom = –46.6 ± 0.4, and 13Cexo = –41.5 ± 0.4, respectively. The isotope compositions of the carbon dioxide, biomass, and exometabolites produced during the growth of the same bacterial strain on naphthalene (13C = –21 ± 0.4) were characterized by the isotope effects 13CCO 2 = –24.1 ± 0.4, 13Cbiom = –19.2 ± 0.4, and 13Cexo = –19.1 ± 0.4, respectively. The possibility of using the isotope composition of metabolic carbon dioxide for the rapid monitoring of the microbial degradation of petroleum hydrocarbons in the environment is discussed.  相似文献   

18.
This report describes a method for quantifying -endotoxin contents in spray-dried preparations ofBacillus thuringiensis strain GC-91. -Endotoxin is solubilized in the pro-toxin form and separated from other soluble compounds by ion exchange chromatography. The method does not discriminate between the different -endotoxins produced by strain GC-91. It is suitable for quality control, since -endotoxin concentrations found in different preparations correlate inversely with the LC 50 in bioassays on artificial diet against freshly hatched larvae ofSpodoptera littoralis. A typical batch of spray-dried material contains 1.22%±0.08% -endotoxin. The method is most accurate with preparations containing 0.5 to 2.0% toxin, for which triplicate estimations give standard errors close to±0.2%.  相似文献   

19.
Felis  T.  Pätzold  J.  Loya  Y. 《Coral reefs (Online)》2003,22(4):328-336
The assessment of inter-colony variability in the mean skeletal 18O signatures of modern Porites spp. corals is a prerequisite for the estimation of past mean climate conditions based on fossil colonies. Here we show that the mean 18O signatures of Porites spp. corals from the northern end of the Gulf of Aqaba (Red Sea) with mean extension rates between 0.2 and 1.5 cm/year can have an inter-colony variability as large as 1.28. At extension rates of less than 0.6 cm/year the mean coral 18O values of the individual colonies are strongly dependent on the mean extension rate, with increasingly higher 18O values corresponding to decreasing extension rate. This suggests that extension-rate-related kinetic isotope disequilibrium effects are responsible for a large proportion of the inter-colony differences in the mean coral 18O signatures. A correction procedure for these effects based on the relationship between mean 18O values and mean extension rate reduces the variability of mean coral 18O values among the individual colonies to 0.43. Although certainly not perfect, the correction procedure enables a better assessment of mid-Holocene climate conditions at this location based on Porites spp. with mean extension rates of less than 0.6 cm/year.  相似文献   

20.
Changes in carbon isotope composition(13C) and leaf morphology associated withvegetative phase change were monitored in Metrosiderosexcelsa Sol. ex Gaertn. (family Myrtaceae). Plants of threeontogenetic states were used: juvenile seedlings, micropropagated plants in arejuvenated state, and reproductively mature plants bearing leaves with adultcharacteristics. The effects of temperature regime (32/24 °C,24/16 °C, and 16/8 °C day/night) and plantarchitecture (branched and single-stemmed plants) were studied in two separateexperiments. Although both juvenile and rejuvenated plants exhibited juvenileleaf morphology at the start of the experiments, there was no differencebetweenleaf 13C in these plants and that in adultplantsat this time (mean ca. –27%). Vegetative phase change occurred injuvenileand rejuvenated plants grown at 24/16 °C, and there was acorresponding increase in leaf 13C (from ca.–27% to –23%) in these two groups of plants. Leaf13C in adult plants remained relatively constant(ca. –26%) at 24/16 °C. There was little change in leaf13C in all plant states maintained at 32/24°C or 16/8 °C, and vegetative phase change didnot occur in juvenile and rejuvenated plants grown under these two temperatureregimes. Rejuvenated plants grown in a greenhouse also exhibited a progressivedevelopment of adult leaf morphology, accompanied by an increase in leaf13C, an effect that was more pronounced insingle-stemmed (from –26.4% to ca. –24%) than in branched plants. Itis suggested that increasing 13C in juvenile andrejuvenated plants undergoing phase change is a result of reduced sink strengthin single-stemmed plants, and to a lesser extent within each branch of branchedplants, causing reduced stomatal conductance and photosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号