首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hog cholera virus: molecular composition of virions from a pestivirus.   总被引:37,自引:19,他引:18       下载免费PDF全文
Virions from hog cholera virus (HCV), a member of the genus Pestivirus, were analyzed by using specific antibodies. The nucleocapsid protein was found to be a 14-kDa molecule (HCV p14). An equivalent protein could also be demonstrated for virions from another pestivirus, bovine viral diarrhea virus. The HCV envelope is composed of three glycoproteins, HCV gp44/48, gp33, and gp55. All three exist in the form of disulfide-linked dimers in virus-infected cells and in virions; HCV gp44/48 and gp55 each form homodimers, whereas gp55 is also found dimerized with gp33. Such complex covalent interactions between structural glycoproteins have not been described so far for any RNA virus.  相似文献   

2.
The human cytomegalovirus (HCMV) envelope glycoprotein complex gp55-116 was expressed in both Escherichia coli and cells infected with a recombinant vaccinia virus. E. coli produced a single protein of Mr 100,000 which approximated the size of the nonglycosylated gp55-116 precursor found in HCMV-infected cells. Cells infected with the recombinant vaccinia virus contained three intracellular forms of Mr 160,000, 150,000, and 55,000 which were detected by a monoclonal antibody reactive with gp55. Comparison of the immunological properties of these recombinant proteins indicated that several of the HCMV gp55-116 monoclonal antibodies and sera from patients infected with HCMV reacted with the vaccinia virus-derived proteins whereas a more restricted group of monoclonal antibodies recognized the E. coli-produced protein. Immunization of mice with either E. coli or vaccinia virus recombinant HCMV gp55-116 resulted in production of virus-neutralizing antibodies. In contrast to the almost exclusive production of complement-dependent neutralizing antibodies following immunization with recombinant vaccinia virus, the E. coli-derived protein induced complement-independent neutralizing antibodies.  相似文献   

3.
The equine herpesvirus 1 (EHV-1) gene encoding glycoprotein 13 (gp13) was cloned into the hemagglutinin (HA) locus of vaccinia virus (Copenhagen strain). Expression of the gp13 gene was driven by the early/late vaccinia virus H6 promoter. Metabolically radiolabeled polypeptides of approximately 47 and 44 kilodaltons and 90 kilodaltons (glycosylated form) were precipitated with both polyclonal and gp13-specific monoclonal antibodies. Presentation of gp13 on the cytoplasmic membrane of cells infected with the recombinant gp13 vaccinia virus was demonstrated by immunofluorescence of unfixed cells. Inoculation of the recombinant gp13 vaccinia virus into guinea pigs induced neutralizing antibodies to both EHV-1 and vaccinia virus. Hamsters vaccinated with the recombinant gp13 vaccinia virus survived a lethal challenge with the hamster-adapted Kentucky strain of EHV-1. These results indicate that expression in vaccinia virus vectors of EHV-1 gp13, the glycoprotein homolog of herpes simplex virus gC-1 and gC-2, pseudorabies virus gIII, and the varicella-zoster virus gpV may provide useful vaccine candidates for equine herpesvirus infections.  相似文献   

4.
We studied immune responses to hepatitis C virus (HCV) genes delivered as DNA encoding the entire HCV protein coding genome in two polycistronic plasmids encoding HCV capsid-E1-E2-NS2-NS3 and HCV NS3-NS4-NS5 in HLA-A2.1-transgenic mice. Immune responses to HCV DNA prime and recombinant canarypox virus boost were also studied with the above constructs. At 8 weeks after a canarypox virus boost, the DNA prime/canarypox virus boosting regimen induced potent cellular immune responses to HCV structural and nonstructural proteins on target cells expressing the HLA-A2.1 allele. High frequencies of gamma interferon-secreting cells, as detected by enzyme-linked immunospot assay, were obtained in response to several endogenously expressed HCV proteins. We also observed cytotoxic-T-lymphocyte reactivity in response to endogenously expressed HCV proteins in fresh spleen cells without in vitro expansion. Upon challenge with a recombinant vaccinia virus expressing HCV proteins at 2 months postimmunization, the HCV DNA prime/canarypox virus-immunized mice showed a complete reduction in vaccinia virus titers compared to HCV DNA prime/boost- and mock-immunized controls. Immune responses were still detectable 4 months after canarypox virus boost in immunized mice. Interestingly, at 10 months postimmunization (8 months after canarypox virus boost), the protection in HCV DNA prime/boost-immunized mice against recombinant HCV-vaccinia virus challenge was higher than that observed in HCV DNA prime/canarypox virus boost-immunized mice.  相似文献   

5.
The Epstein-Barr virus membrane antigen gene gp340 was isolated, inserted into several strains of vaccinia virus and expressed under the control of a vaccinia virus promoter. The EBV-derived protein which was produced by the recombinant vaccinia viruses was heavily glycosylated, readily labelled with threonine, could be detected at the surface of infected cells and had a mol. wt. of approximately 340 kd, all of which are properties of the authentic gp340. Polyclonal rabbit antisera against gp340 and an EBV-neutralising anti-gp340 monoclonal antibody both recognised cells infected with the recombinant vaccinia viruses. Moreover, rabbits vaccinated with one of the recombinants produced antibodies that recognised EBV-containing lymphoblastoid cells and neutralised EBV.  相似文献   

6.
A cDNA clone representing the genome of structural proteins of Japanese encephalitis virus (JEV) was inserted into the thymidine kinase gene of vaccinia virus strains LC16mO and WR under the control of a strong early-late promoter for the vaccinia virus 7.5-kilodalton polypeptide. Indirect immunofluorescence and fluorescence-activated flow cytometric analysis revealed that the recombinant vaccinia viruses expressed JEV E protein on the membrane surface, as well as in the cytoplasm, of recombinant-infected cells. In addition, the E protein expressed from the JEV recombinants reacted to nine different characteristic monoclonal antibodies, some of which have hemagglutination-inhibiting and JEV-neutralizing activities. Radioimmunoprecipitation analysis demonstrated that two major proteins expressed in recombinant-infected cells were processed and glycosylated as the authentic PreM and E glycoproteins of JEV. Inoculation of rabbits with the infectious recombinant vaccinia virus resulted in rapid production of antiserum specific for the PreM and E glycoproteins of JEV. This antiserum had both hemagglutination-inhibiting and virus-neutralizing activities against JEV. Furthermore, mice vaccinated with the recombinant also produced JEV-neutralizing antibodies and were resistant to challenge with JEV.  相似文献   

7.
Antibody-dependent cell-mediated cytotoxicity (ADCC) specific for human immunodeficiency virus (HIV) has been described for HIV-infected individuals. To determine the antigenic specificity of this immune response and to define its relationship to the disease state, an ADCC assay was developed using Epstein-Barr virus-transformed lymphoblastoid cell line targets infected with vaccinia virus vectors expressing HIV proteins. The vaccinia virus vectors induced appropriate HIV proteins (envelope glycoproteins gp160, gp120, and gp41 or gag proteins p55, p40, p24, and p17) in infected lymphoblastoid cell lines as demonstrated by radioimmunoprecipitation and syncytia formation with c8166 cells. Killer cell-mediated, HIV-specific ADCC was found in sera from HIV-seropositive but not HIV-seronegative hemophiliacs. This HIV-specific response was directed against envelope glycoprotein but was completely absent against target cells expressing the HIV gag proteins. The ADCC directed against gp160 was present at serum dilutions up to 1/316,000. There was no correlation between serum ADCC titer and the stage of HIV-related illness as determined by T-helper-cell numbers. These experiments clearly implicated gp160 as the target antigen of HIV-specific ADCC activity following natural infection. Vaccines which stimulate antibodies directed against gp160, which are capable of mediating ADCC against infected cells, could be important for protection against infection by cell-associated virus.  相似文献   

8.
HCVisthemajorcauseofposttransfusionnonA,nonBhepatitis[1].About50%oftheinfectionswilldevelopintochronichepatitisandamongthemabout20%willresultinlivercirrhosisandhepatocellularcarcinoma[2].BecausethetiterofHCVparticleinpatient’sbloodisextremelylow,andthereisno…  相似文献   

9.
(B10.A x A/WySn)F1, H-2a/a, mice are genetic nonresponders to the envelope protein of Friend murine leukemia helper virus (F-MuLV) when immunized with a recombinant vaccinia virus expressing F-MuLV env gene. In contrast these mice can be protectively immunized against leukemogenic Friend virus complex using formalin-fixed F-MuLV virions in CFA. To determine which viral proteins were responsible for this immune protection, virion proteins prepared by SDS-PAGE and electroelution were used to immunize mice. Purified gp70 envelope protein in CFA was capable of inducing strong immune protection against the challenge with Friend virus complex in H-2a/a mice. Immunologic studies demonstrated that immunized mice developed a virus-specific T cell proliferative response and showed IgM to IgG Ig class switching of virus-neutralizing antibodies. These results indicated that genetically controlled immune nonresponsiveness to F-MuLV envelope Ag in H-2a/a mice could be overcome using denatured viral envelope protein together with a strong adjuvant.  相似文献   

10.
Cell surface expression of the human cytomegalovirus (HCMV) major envelope glycoprotein complex, gp55-116 (gB), was studied by using monoclonal antibodies and an HCMV gp55-116 (gB) recombinant vaccinia virus. HCMV-infected human fibroblasts and recombinant vaccinia virus-infected HeLa cells expresses three electrophoretically distinct proteins of Mr 170,000, 116,000, and 55,000 on their surface. These species have been previously identified within infected cells and purified virions. Two unique neutralizing epitopes were shown to be present on the cell surface gp55-116 (gB). Utilizing HeLa cells infected with the gp55-116 recombinant vaccinia virus as a specific immunosorbent, we have shown that approximately 40 to 70% of the total serum virus-neutralizing activity of a group of individuals with past HCMV infections was directed against this single envelope glycoprotein. The implications of this finding for vaccine development are discussed.  相似文献   

11.
The envelope glycoproteins, E1 and E2, of hepatitis C virus (HCV) assemble intracellularly to form a noncovalent heterodimer that is expected to be essential for viral assembly and entry. However, due to the lack of a cell culture system supporting efficient HCV replication, it is very difficult to obtain relevant information on the functions of this glycoprotein oligomer. To get better insights into its biological and biochemical properties, HCV envelope glycoprotein heterodimer expressed by a vaccinia virus recombinant was purified by immunoaffinity. Purified E1E2 heterodimer was recognized by conformation-dependent monoclonal antibodies, showing that the proteins were properly folded. In addition, it interacted with human CD81, a putative HCV receptor, as well as with human low and very low density lipoproteins, which have been shown to be associated with infectious HCV particles isolated from patients. Purified E1E2 heterodimer was also reconstituted into liposomes. E1E2-liposomes were recognized by a conformation-dependent monoclonal antibody as well as by human CD81. Together, these data indicate that E1E2-liposomes are a valuable tool to study the molecular requirements for HCV binding to target cells.  相似文献   

12.
A recombinant vaccinia virus containing cloned DNA sequences coding for the three structural proteins and nonstructural proteins NS1 and NS2a of dengue type 4 virus was constructed. Infection of CV-1 cells with this recombinant virus produced dengue virus structural proteins as well as the nonstructural protein NS1. These proteins were precipitated by specific antisera and exhibited the same molecular size and glycosylation patterns as authentic dengue virus proteins. Infection of cotton rats with the recombinant virus induced NS1 antibodies in 1 of 11 animals. However, an immune response to the PreM and E glycoproteins was not detected. A reduced level of gene expression was probably the reason for the limited serologic response to these dengue virus antigens.  相似文献   

13.
E Weiland  R Ahl  R Stark  F Weiland    H J Thiel 《Journal of virology》1992,66(6):3677-3682
Several monoclonal antibodies (MAbs) raised against hog cholera virus (HCV) reacted with the HCV structural glycoprotein gp44/48 and neutralized the virus. The presence of HCV gp44/48 on the viral surface was directly demonstrated by immunogold electron microscopy. Eight anti-HCV gp44/48 MAbs were tested by immunoperoxidase assay against a panel of pestivirus strains. Each MAb showed a distinct pattern of reactivity with HCV strains. It is suggested that the MAbs are well suited for epidemiological investigations of HCV outbreaks.  相似文献   

14.
魏滨  谷淑燕  李燕  郭斐  阮力 《病毒学报》2001,17(1):29-33
利用非复制痘苗病毒质粒载体pNEOCK11β75及pNEOCK,改造了表达EB病毒主要膜蛋白gp350/22的复制型重组痘苗病毒VMA,构建了非复制型重组痘苗病毒VMA△CK。该病毒能在鸡胚原代成纤维细胞(CEF)中正常繁殖,而在人源细胞中不能正常繁殖。在CEF中连续传代至第25代,经PCR证明,该病毒符合非复制型重组痘苗病毒的特征。经免疫荧光及免疫酶斑法证实,VMA△CK可稳定表达gp350/220,且表达水平与VAM无明显差异。VMA△CK经腹腔免疫Balb/C小鼠,4周后能诱生一定水平的抗gp350/220特异性抗体,加强免疫2周后该抗体水平明显升高。这一结果类似于VMA免疫Balb/C小鼠的结果,初免后,VMA△CK且抗痘苗抗体水平明显低于VMA免疫组;加强免疫2周后,两组小鼠的抗痘苗抗体水平趋于一致。上述结果证明,所构建的非复制痘苗病毒不影响目的抗原的表达,也不影响该抗原的免疫原性,但导致病毒毒力下降,而且用该病毒免疫小鼠后小鼠抗痘苗病毒载体的免疫反应明显下降。  相似文献   

15.
Neutralizing monoclonal antibodies directed against hog cholera virus (HCV) precipitated two HCV-encoded glycoproteins, HCV gp55 and HCV gp33. Immunoassay with bacterial fusion proteins and Western immunoblotting with extracts from infected cells revealed that the antibodies recognized only HCV gp55. Coprecipitation of HCV gp33 was shown to be due to intermolecular disulfide bridges. One of the antibodies also reacted with the major glycoprotein of another pestivirus, bovine viral diarrhea virus (BVDV). The analogous BVDV glycoproteins exhibited a distribution of cysteine residues which was almost identical to that of HCV gp55 and gp33. The two BVDV glycoproteins were also linked by disulfide bridges.  相似文献   

16.
Hepatitis A virus (HAV) contains a single-stranded, plus-sense RNA genome with a single long open reading frame encoding a polyprotein of approximately 250 kDa. Viral structural proteins are generated by posttranslational proteolytic processing of this polyprotein. We constructed recombinant vaccinia viruses which expressed the HAV polyprotein (rV-ORF) and the P1 structural region (rV-P1). rV-ORF-infected cell lysates demonstrated that the polyprotein was cleaved into immunoreactive 29- and 33-kDa proteins which comigrated with HAV capsid proteins VP0 and VP1. The rV-P1 construct produced a 90-kDa protein which showed no evidence of posttranslational processing. Solid-phase radioimmunoassays with human polyclonal anti-HAV sera and with murine or human neutralizing monoclonal anti-HAV antibodies recognized the rV-ORF-infected cell lysates. Sucrose density gradients of rV-ORF-infected cell lysates contained peaks of HAV antigen with sedimentation coefficients of approximately 70S and 15S, similar to those of HAV empty capsids and pentamers. Immune electron microscopy also demonstrated the presence of viruslike particles in rV-ORF-infected cell lysates. Thus, the HAV polyprotein expressed by a recombinant vaccinia virus demonstrated posttranslational processing into mature capsid proteins which assembled into antigenic viruslike particles.  相似文献   

17.
The equine herpesvirus 1 glycoprotein 14 (EHV-1 gp14) gene was cloned, sequenced, and expressed by vaccinia virus recombinants. Recombinant virus vP613 elicited the production of EHV-1-neutralizing antibodies in guinea pigs and was effective in protecting hamsters from subsequent lethal EHV-1 challenge. Coexpression of EHV-1 gp14 in vaccinia virus recombinant vP634 along with EHV-1 gp13 (P. Guo, S. Goebel, S. Davis, M. E. Perkus, B. Languet, P. Desmettre, G. Allen, and E. Paoletti, J. Virol. 63:4189-4198, 1989) greatly enhanced the protective efficacy in the hamster challenge model over that obtained with single recombinants. The inoculum doses (log10) required for protection of 50% of hamsters were 6.1 (EHV-1 gp13), 5.2 (EHV-1 gp14), and less than 3.6 (vaccinia virus recombinant expressing both EHV-1 glycoproteins [gp13 and gp14]).  相似文献   

18.
A Vafai  W N Yang 《Journal of virology》1991,65(10):5593-5596
Monoclonal antibodies generated against varicella-zoster virus (VZV) glycoprotein I (gpI) also recognize VZV gpIV (A. Vafai, Z. Wroblewska, R. Mahalingam, G. Cabirac, M. Wellish, M. Cisco, and D. Gilden, J. Virol. 62:2544-2551, 1988). To determine whether the virus-neutralizing activity of these antibodies belongs to gpI, gpIV, or both, the open reading frame encoding gpIV was inserted into the vaccinia virus genome. Immunoprecipitation of recombinant vaccinia virus-infected cells with anti-gpIV monoclonal antibody yielded synthesis and processing of gpIV similar to those expressed in VZV-infected cells. Antibodies raised against VVgpIV in a rabbit recognized both native gpI and gpIV and neutralized VZV infectivity. In addition, antibodies raised against recombinant vaccinia virus carrying VZV gpI neutralized VZV infection. These results indicate a structural relationship between VZV gpI and gpIV and show that gpI and gpIV each induce virus-neutralizing antibody.  相似文献   

19.
Hepatitis C virus (HCV) infection remains a serious public health problem worldwide. Treatments are limited, and no preventive vaccine is available. Toward developing an HCV vaccine, we engineered two recombinant measles viruses (MVs) expressing structural proteins from the prototypic HCV subtype 1a strain H77. One virus directs the synthesis of the HCV capsid (C) protein and envelope glycoproteins (E1 and E2), which fold properly and form a heterodimer. The other virus expresses the E1 and E2 glycoproteins separately, with each one fused to the cytoplasmic tail of the MV fusion protein. Although these hybrid glycoproteins were transported to the plasma membrane, they were not incorporated into MV particles. Immunization of MV-susceptible, genetically modified mice with either vector induced neutralizing antibodies to MV and HCV. A boost with soluble E2 protein enhanced titers of neutralizing antibody against the homologous HCV envelope. In animals primed with MV expressing properly folded HCV C-E1-E2, boosting also induced cross-neutralizating antibodies against two heterologous HCV strains. These results show that recombinant MVs retain the ability to induce MV-specific humoral immunity while also eliciting HCV neutralizing antibodies, and that anti-HCV immunity can be boosted with a single dose of purified E2 protein. The use of MV vectors could have advantages for pediatric HCV vaccination.  相似文献   

20.
The human T-lymphotropic virus type I (HTLV-I) is etiologically linked to adult T-cell leukemia (ATL). To develop a vaccine against ATL, we constructed recombinant vaccinia viruses containing the envelope gene of HTLV-I in the vaccinia virus hemagglutinin (HA) gene, a new site where foreign genes can be inserted. A single inoculation of the recombinant virus induced antibodies to the env proteins of HTLV-I in rabbits and had a protective effect against HTLV-I infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号