首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The Src homology 2 (SH2) and collagen domain protein Shc plays a pivotal role in signaling via tyrosine kinase receptors, including epidermal growth factor receptor (EGFR). Shc binding to phospho-tyrosine residues on activated receptors is mediated by the SH2 and phospho-tyrosine binding (PTB) domains. Subsequent phosphorylation on Tyr-317 within the Shc linker region induces Shc interactions with Grb2-Son of Sevenless that initiate Ras-mitogen-activated protein kinase signaling. We use molecular dynamics simulations of full-length Shc to examine how Tyr-317 phosphorylation controls Shc conformation and interactions with EGFR. Our simulations reveal that Shc tyrosine phosphorylation results in a significant rearrangement of the relative position of its domains, suggesting a key conformational change. Importantly, computational estimations of binding affinities show that EGFR-derived phosphotyrosyl peptides bind with significantly more strength to unphosphorylated than to phosphorylated Shc. Our results unveil what we believe is a novel structural phenomenon, i.e., tyrosine phosphorylation of Shc within its linker region regulates the binding affinity of SH2 and PTB domains for phosphorylated Shc partners, with important implications for signaling dynamics.  相似文献   

3.
Activated receptor tyrosine kinases bind the Shc adaptor protein through its N-terminal phosphotyrosine-binding (PTB) and C-terminal Src homology 2 (SH2) domains. After binding, Shc is phosphorylated within the central collagen-homology (CH) linker region on Tyr-317, a residue remote to both the PTB and SH2 domains. Shc phosphorylation plays a pivotal role in the initiation of mitogenic signaling through the Ras/Raf/MEK/ERK pathway, but it is unclear if Tyr-317 phosphorylation affects Shc-receptor interactions through the PTB and SH2 domains. To investigate the structural impact of Shc phosphorylation, molecular dynamics simulations were carried out using special-purpose Molecular Dynamics Machine-Grape computers. After a 1-nanosecond equilibration, atomic motions in the structures of unphosphorylated Shc and Shc phosphorylated on Tyr-317 were calculated during a 2-nanosecond period. The results reveal larger phosphotyrosine-binding domain fluctuations and more structural flexibility of unphosphorylated Shc compared with phosphorylated Shc. Collective motions between the PTB-SH2, PTB-CH, and CH-SH2 domains were highly correlated only in unphosphorylated Shc. Dramatic changes in domain coupling and structural rigidity, induced by Tyr-317 phosphorylation, may alter Shc function, bringing about marked differences in the association of unphosphorylated and phosphorylated Shc with its numerous partners, including activated membrane receptors.  相似文献   

4.
Three peptides were synthesized corresponding to potential autophosphorylation sites of the beta subunit of the human insulin receptor. These were peptide 1150 corresponding to amino acids 1142-1153 of the pro-receptor, peptide 960 corresponding to amino acids 952-961 of the proreceptor, and peptide 1316 corresponding to amino acids 1313-1329 of the proreceptor. Peptide 1150 served as a better substrate for the insulin receptor tyrosine protein kinase than either of the other peptides or than the Src peptide (corresponding to the sequence surrounding the autophosphorylation site at Tyr-416). Microsequencing of the phosphorylated peptide 1150 indicated that Tyr-1150 rather than Tyr-1146 or Tyr-1151 was phosphorylated in the in vitro reaction. The insulin receptor was then isolated from 32P-labeled IM-9 cells that had been exposed to insulin. Tryptic digestion of the beta subunit revealed one peptide whose phosphorylation was dependent upon insulin and occurred exclusively on Tyr. This peptide was selectively immunoprecipitated by an antipeptide antibody directed to the Tyr-1150-containing sequence. We conclude that Tyr-1150 is preferentially phosphorylated by the purified receptor kinase and that one of the autophosphorylation reactions elicited by insulin in intact cells occurs in a sequence that contains this residue.  相似文献   

5.
The active tetrameric glucose dehydrogenase from Bacillus megaterium is rapidly inactivated upon reaction with tetranitromethane. The inactivation is correlated with the nitration of a single tyrosine residue/subunit. The nitration does not influence the dissociation-reassociation process of the enzyme. The inactivation is prevented by the presence of NAD, AMP, ATP. The sequence around the nitrated tyrosine residue was determined and the residue was identified as Tyr-254 in the covalent structure of the enzyme. After dissociation of the enzyme into its monomers two tyrosine residues become susceptible to nitration. The nitrated subunits are unable to reassociate to the tetramer. Isolation and sequence analysis of the peptides containing nitrotyrosine indicated that two different tyrosine residues are predominantly modified. One residue is Tyr-254 which is essential for the catalytic activity and the other one is Tyr-160 which seems to be located in the subunit binding area.  相似文献   

6.
Repression of the tyrosine kinase activity of the cellular src protein (pp60c-src) depends on the phosphorylation of a tyrosine residue (Tyr-527) near the carboxy terminus. Tyr-527 is located 11 residues C terminal from the genetically defined end of the kinase domain (Leu-516) and is therefore in a negative regulatory region. Because the precise sequence of amino acids surrounding Tyr-527 appears to be unimportant for regulation, we hypothesized that the conformational constraints induced by phosphorylated Tyr-527 may require the correct spacing between the kinase domain (Leu-516) and Tyr-527. In this report, we show that deletions at residue 518 of two, four, or seven amino acids or insertions at this residue of two or four amino acids activated the kinase activity and thus the transforming potential of pp60c-src. As is the case for the prototype transforming variant, pp60527F, activation caused by these deletions or insertions was abolished when Tyr-416 (the autophosphorylation site) was changed to phenylalanine. In comparison with wild-type pp60c-src, the src proteins containing the alterations at residue 518 showed a lower phosphorylation state at Tyr-527 regardless of whether residue 416 was a tyrosine or a phenylalanine. Mechanisms dealing with the importance of spacing between the kinase domain and Tyr-527 are discussed.  相似文献   

7.
Ligation of the alpha(6)beta(4) integrin induces tyrosine phosphorylation of the beta(4) cytoplasmic domain, followed by recruitment of the adaptor protein Shc and activation of mitogen-activated protein kinase cascades. We have used Far Western analysis and phosphopeptide competition assays to map the sites in the cytoplasmic domain of beta(4) that are required for interaction with Shc. Our results indicate that, upon phosphorylation, Tyr(1440), or secondarily Tyr(1422), interacts with the SH2 domain of Shc, whereas Tyr(1526), or secondarily Tyr(1642), interacts with its phosphotyrosine binding (PTB) domain. An inactivating mutation in the PTB domain of Shc, but not one in its SH2 domain, suppresses the activation of Shc by alpha(6)beta(4). In addition, mutation of beta(4) Tyr(1526), which binds to the PTB domain of Shc, but not of Tyr(1422) and Tyr(1440), which interact with its SH2 domain, abolishes the activation of ERK by alpha(6)beta(4). Phenylalanine substitution of the beta(4) tyrosines able to interact with the SH2 or PTB domain of Shc does not affect incorporation of alpha(6)beta(4) in the hemidesmosomes of 804G cells. Exposure to the tyrosine phosphatase inhibitor orthovanadate increases tyrosine phosphorylation of beta4 and disrupts the hemidesmosomes of 804G cells expressing recombinant wild type beta(4). This treatment, however, exerts a decreasing degree of inhibition on the hemidesmosomes of cells expressing versions of beta(4) containing phenylalanine substitutions at Tyr(1422) and Tyr(1440), at Tyr(1526) and Tyr(1642), or at all four tyrosine phosphorylation sites. These results suggest that beta(4) Tyr(1526) interacts in a phosphorylation-dependent manner with the PTB domain of Shc. This event is required for subsequent tyrosine phosphorylation of Shc and signaling to ERK but not formation of hemidesmosomes.  相似文献   

8.
The recently identified transient receptor potential (TRP) channel family member, TRPV4 (formerly known as OTRPC4, VR-OAC, TRP12, and VRL-2) is activated by hypotonicity. It is highly expressed in the kidney as well as blood-brain barrier-deficient hypothalamic nuclei responsible for systemic osmosensing. Apart from its gating by hypotonicity, little is known about TRPV4 regulation. We observed that hypotonic stress resulted in rapid tyrosine phosphorylation of TRPV4 in a heterologous expression model and in native murine distal convoluted tubule cells in culture. This tyrosine phosphorylation was sensitive to the inhibitor of Src family tyrosine kinases, PP1, in a dose-dependent fashion. TRPV4 associated with Src family kinases by co-immunoprecipitation studies and confocal immunofluorescence microscopy, and this interaction required an intact Src family kinase SH2 domain. One of these kinases, Lyn, was activated by hypotonic stress and phosphorylated TRPV4 in an immune complex kinase assay and an in vitro kinase assay using recombinant Lyn and TRPV4. Transfection of wild-type Lyn dramatically potentiated hypotonicity-dependent TRPV4 tyrosine phosphorylation whereas dominant negative-acting Lyn modestly inhibited it. Through mutagenesis studies, the site of tonicity-dependent tyrosine phosphorylation was mapped to Tyr-253, which is conserved across all species from which TRPV4 has been cloned. Importantly, point mutation of Tyr-253 abolished hypotonicity-dependent channel activity. In aggregate, these data indicate that hypotonic stress results in Src family tyrosine kinase-dependent tyrosine phosphorylation of the tonicity sensor TRPV4 at residue Tyr-253 and that this residue is essential for channel function in this context. This is the first example of direct regulation of TRP channel function through tyrosine phosphorylation.  相似文献   

9.
Receptor tyrosine kinases transmit and process extracellular cues by recruiting intracellular signaling proteins to sites of tyrosine phosphorylation. Using protein microarrays comprising virtually every human SH2 and PTB domain, we generated quantitative protein interaction maps for three well-studied receptors--EGFR, FGFR1 and IGF1R--using phosphopeptides derived from every intracellular tyrosine residue on each receptor, regardless of whether or not they are phosphorylated in vivo. We found that, in general, peptides derived from physiological sites of tyrosine phosphorylation bind to substantially more SH2 or PTB domains than do peptides derived from nonphysiological sites, supporting the idea that kinases and interaction domains co-evolve and suggesting that new sites arise predominantly through selection favoring advantageous interactions, rather than through selection disfavoring unwanted interactions. We also found substantial qualitative overlap in the recruitment profiles of these three receptors, suggesting that their different biological effects arise, at least in part, from quantitative differences in their affinities for the proteins they recruit.  相似文献   

10.
Molecular determinants of syntaxin 1 modulation of N-type calcium channels   总被引:6,自引:0,他引:6  
We have previously reported that syntaxin 1A, a component of the presynaptic SNARE complex, directly modulates N-type calcium channel gating in addition to promoting tonic G-protein inhibition of the channels, whereas syntaxin 1B affects channel gating but does not support G-protein modulation (Jarvis, S. E., and Zamponi, G. W. (2001) J. Neurosci. 21, 2939-2948). Here, we have investigated the molecular determinants that govern the action of syntaxin 1 isoforms on N-type calcium channel function. In vitro evidence shows that both syntaxin 1 isoforms physically interact with the G-protein beta subunit and the synaptic protein interaction (synprint) site contained within the N-type calcium channel domain II-III linker region. Moreover, in vitro evidence suggests that distinct domains of syntaxin participate in each interaction, with the COOH-terminal SNARE domain (residues 183-230) binding to Gbeta and the N-terminal (residues 1-69) binding to the synprint motif of the channel. Electrophysiological analysis of chimeric syntaxin 1A/1B constructs reveals that the variable NH(2)-terminal domains of syntaxin 1 are responsible for the differential effects of syntaxin 1A and 1B on N-type calcium channel function. Because syntaxin 1 exists in both "open" and "closed" conformations during exocytosis, we produced a constitutively open form of syntaxin 1A and found that it still promoted G-protein inhibition of the channels, but it did not affect N-type channel availability. This state dependence of the ability of syntaxin 1 to mediate N-type calcium channel availability suggests that syntaxin 1 dynamically regulates N-type channel function during various steps of exocytosis. Finally, syntaxin 1A appeared to compete with Ggamma for the Gbeta subunit both in vitro and under physiological conditions, suggesting that syntaxin 1A may contain a G-protein gamma subunit-like domain.  相似文献   

11.
N- and P/Q-type calcium channels are localized in high density in presynaptic nerve terminals and are crucial elements in neuronal excitation–secretion coupling. In addition to mediating Ca2+ entry to initiate transmitter release, they are thought to interact directly with proteins of the synaptic vesicle docking/fusion machinery. As outlined in the preceding article, these calcium channels can be purified from brain as a complex with SNARE proteins which are involved in exocytosis. In addition, N-type and P/Q-type calcium channels are co-localized with syntaxin in high-density clusters in nerve terminals. Here we review the role of the synaptic protein interaction (synprint) sites in the intracellular loop II–III (LII–III) of both 1B and 1A subunits of N-type and P/Q-type calcium channels, which bind to syntaxin, SNAP-25, and synaptotagmin. Calcium has a biphasic effect on the interactions of N-type calcium channels with SNARE complexes, stimulating optimal binding in the range of 10–20 M. PKC or CaM KII phosphorylation of the N-type synprint peptide inhibits interactions with native brain SNARE complexes containing syntaxin and SNAP-25. Introduction of the synprint peptides into presynaptic superior cervical ganglion neurons reversibly inhibits EPSPs from synchronous transmitter release by 42%. At physiological Ca2+ concentrations, synprint peptides cause an approximate 25% reduction in transmitter release of injected frog neuromuscular junction in cultures, consistent with detachment of 70% of the docked vesicles from calcium channels based on a theoretical model. Together, these studies suggest that presynaptic calcium channels not only provide the calcium signal required by the exocytotic machinery, but also contain structural elements that are integral to vesicle docking, priming, and fusion processes.  相似文献   

12.
The peripheral nicotinic acetylcholine receptor (nAChR) is phosphorylated on tyrosine residues in vivo and in vitro at a high stoichiometry. We have previously reported that this tyrosine phosphorylation occurs on the beta, gamma, and delta subunits of the receptor and is implicated in both the modulation of the function of the receptor and localization of the receptor at the synapse. The specific tyrosine residue of each subunit which is phosphorylated is now identified. The endogenously phosphorylated nAChR from the electric organ of Torpedo californica was phosphorylated to maximal stoichiometry in vitro exclusively on tyrosine residues as indicated by phosphoamino acid analysis. Two-dimensional phosphopeptide maps of thermolysin limit digests of the isolated phosphorylated subunits indicated that each subunit is phosphorylated at a single site. To determine the site of tyrosine phosphorylation of the beta, gamma, and delta subunits, phosphorylated subunits were isolated and digested with trypsin. A single phosphotyrosine containing peptide from each subunit was purified by antiphosphotyrosine antibody affinity chromatography and reverse phase high performance liquid chromatography. The purified phosphopeptides were subjected to sequential Edman degradation and sequence analysis. Comparison of the phosphopeptide sequence data with the deduced amino acid sequence of each subunit indicated that Tyr-355 of beta, Tyr-364 of gamma, and Tyr-372 of delta are the sites of in vitro and in vivo tyrosine phosphorylation of the nAChR. Identification of these sites should facilitate further studies of the role of tyrosine phosphorylation in the regulation of receptor function.  相似文献   

13.
Insulin-like growth factor 1 (IGF-1) rapidly potentiates N and L calcium channel currents in cerebellar granule neurons by an unknown mechanism. Here, we show that the L channel alpha1C subunit is tyrosine phosphorylated in response to IGF-1. Moreover, expression of kinase-dead c-Src in neurons or acute block of Src family kinases with a cell-permeable inhibitor specifically blocks L channel potentiation. Purified Src kinase phosphorylates tyrosine residue Y2122 of the C terminus of neuronal alpha1C in vitro, and c- and v-Src directly bind the C terminus. When expressed in neuroblastoma cells, point mutation of Y2122 prevents both tyrosine phosphorylation of alpha1C and IGF-1 potentiation. Our data provide a biochemical mechanism whereby phosphorylation of a single specific tyrosine residue rapidly modifies ion channel physiology.  相似文献   

14.
The N-methyl-d-aspartate (NMDA) receptors play critical roles in synaptic plasticity, neuronal development, and excitotoxicity. Tyrosine phosphorylation of NMDA receptors by Src-family tyrosine kinases such as Fyn is implicated in synaptic plasticity. To precisely address the roles of NMDA receptor tyrosine phosphorylation, we identified Fyn-mediated phosphorylation sites on the GluR epsilon 2 (NR2B) subunit of NMDA receptors. Seven out of 25 tyrosine residues in the C-terminal cytoplasmic region of GluR epsilon 2 were phosphorylated by Fyn in vitro. Of these 7 residues, Tyr-1252, Tyr-1336, and Tyr-1472 in GluR epsilon 2 were phosphorylated in human embryonic kidney fibroblasts when co-expressed with active Fyn, and Tyr-1472 was the major phosphorylation site in this system. We then generated rabbit polyclonal antibodies specific to Tyr-1472-phosphorylated GluR epsilon 2 and showed that Tyr-1472 of GluR epsilon 2 was indeed phosphorylated in murine brain using the antibodies. Importantly, Tyr-1472 phosphorylation was greatly reduced in fyn mutant mice. Moreover, Tyr-1472 phosphorylation became evident when hippocampal long term potentiation started to be observed, and its magnitude became larger in murine brain. Finally, Tyr-1472 phosphorylation was significantly enhanced after induction of long term potentiation in the hippocampal CA1 region. These data suggest that Tyr-1472 phosphorylation of GluR epsilon 2 is important for synaptic plasticity.  相似文献   

15.
Mutation of the major site of in vivo tyrosine phosphorylation of p56lck (tyrosine 505) to a phenylalanine constitutively enhances the p56lck-associated tyrosine-specific protein kinase activity. The mutant polypeptide is extensively phosphorylated in vivo at the site of in vitro Lck autophosphorylation (tyrosine 394) and is capable of oncogenic transformation of rodent fibroblasts. These observations have suggested that phosphorylation at Tyr-505 down regulates the tyrosine protein kinase activity of p56lck. Herein we have attempted to examine whether other posttranslational modifications may be involved in regulation of the enzymatic function of p56lck. The results indicated that activation of p56lck by mutation of Tyr-505 was prevented by a tyrosine-to-phenylalanine substitution at position 394. Furthermore, activation of p56lck by mutation of the carboxy-terminal tyrosine residue was rendered less efficient by substituting an alanine residue for the amino-terminal glycine. This second mutation prevented p56lck myristylation and stable membrane association and was associated with decreased in vivo phosphorylation at Tyr-394. Taken together, these findings imply that lack of phosphorylation at Tyr-505 may be insufficient for enhancement of the p56lck-associated tyrosine protein kinase activity. Our data suggest that activation of p56lck may be dependent on phosphorylation at Tyr-394 and that this process may be facilitated by myristylation, membrane association, or both.  相似文献   

16.
High voltage-activated calcium channels (HVACCs) are essential for synaptic and nociceptive transmission. Although blocking HVACCs can effectively reduce pain, this treatment strategy is associated with intolerable adverse effects. Neuronal HVACCs are typically composed of α(1), β (Cavβ), and α(2)δ subunits. The Cavβ subunit plays a crucial role in the membrane expression and gating properties of the pore-forming α(1) subunit. However, little is known about how nerve injury affects the expression and function of Cavβ subunits in primary sensory neurons. In this study, we found that Cavβ(3) and Cavβ(4) are the most prominent subtypes expressed in the rat dorsal root ganglion (DRG) and dorsal spinal cord. Spinal nerve ligation (SNL) in rats significantly increased mRNA and protein levels of the Cavβ(3), but not Cavβ(4), subunit in the DRG. SNL also significantly increased HVACC currents in small DRG neurons and monosynaptic excitatory postsynaptic currents of spinal dorsal horn neurons evoked from the dorsal root. Intrathecal injection of Cavβ(3)-specific siRNA significantly reduced HVACC currents in small DRG neurons and the amplitude of monosynaptic excitatory postsynaptic currents of dorsal horn neurons in SNL rats. Furthermore, intrathecal treatment with Cavβ(3)-specific siRNA normalized mechanical hyperalgesia and tactile allodynia caused by SNL but had no significant effect on the normal nociceptive threshold. Our findings provide novel evidence that increased expression of the Cavβ(3) subunit augments HVACC activity in primary sensory neurons and nociceptive input to dorsal horn neurons in neuropathic pain. Targeting the Cavβ(3) subunit at the spinal level represents an effective strategy for treating neuropathic pain.  相似文献   

17.
G protein-activated inwardly rectifying potassium channels (Kir3) are widely expressed throughout the brain, and regulation of their activity modifies neuronal excitability and synaptic transmission. In this study, we show that the neurotrophin brain-derived neurotrophic factor (BDNF), through activation of TrkB receptors, strongly inhibited the basal activity of Kir3. This inhibition was subunit dependent as functional homomeric channels of either Kir3.1 or Kir3.4 were significantly inhibited, whereas homomeric channels composed of Kir3.2 were insensitive. The general tyrosine kinase inhibitors genistein, G? 6976, and K252a but not the serine/threonine kinase inhibitor staurosporine blocked the BDNF-induced inhibition of the channel. BDNF was also found to directly stimulate channel phosphorylation because Kir3.1 immunoprecipitated from BDNF-stimulated cells showed enhanced labeling by anti-phosphotyrosine-specific antibodies. The BDNF effect required specific tyrosine residues in the amino terminus of Kir3.1 and Kir3.4 channels. Mutations of either Tyr-12, Tyr-67, or both in Kir3.1 or mutation of either Tyr-32, Tyr-53, or both of Kir3. 4 channels to phenylalanine significantly blocked the BDNF-induced inhibition. The insensitive Kir3.2 was made sensitive to BDNF by adding a tyrosine (D41Y) and a lysine (P32K) upstream to generate a phosphorylation site motif analogous to that present in Kir3.4. These results suggest that neurotrophin activation of TrkB receptors may physiologically control neuronal excitability by direct tyrosine phosphorylation of the Kir3.1 and Kir3.4 subunits of G protein-gated inwardly rectifying potassium channels.  相似文献   

18.
Phosphorylation of the major autophosphorylation site (Tyr-1073) within Fujinami sarcoma virus P130gag-fps activates both the intrinsic protein-tyrosine kinase activity and transforming potential of the protein. In this report, a second site of autophosphorylation Tyr-836 was identified. This tyrosine residue is found within a noncatalytic domain (SH2) of P130gag-fps that is required for full protein-kinase activity in both rat and chicken cells. Autophosphorylation of this tyrosine residue implies that the SH2 region lies near the active site in the catalytic domain in the native protein and thus possibly regulates its enzymatic activity. Four mutations have occurred within the SH2 domain between the c-fps and v-fps proteins. Tyr-836 is one of these changes, being a Cys in c-fps. Site-directed mutagenesis was used to investigate the function of this autophosphorylation site. Substitution of Tyr-836 with a Phe had no apparent effect on the transforming ability or protein-tyrosine kinase activity of P130gag-fps in rat-2 cells. Mutagenesis of both autophosphorylation sites (Tyr-1073 and Tyr-836) did not reveal any cooperation between these two phosphorylation sites. The implications of the changes within the SH2 region for v-fps function and activation of the c-fps oncogenic potential are discussed.  相似文献   

19.
The cytoskeletal protein talin binds to a short C-terminal sequence in phosphatidylinositol phosphate kinase type Igamma (PIPKIgamma), activating the enzyme and promoting the local production of phosphatidylinositol 4,5 bisphosphate, which regulates focal adhesion dynamics as well as clathrin-mediated endocytosis in neuronal cells. Here we show by crystallographic, NMR, and calorimetric analysis that the phosphotyrosine binding (PTB)-like domain of talin engages the PIPKIgamma C terminus in a mode very similar to that of integrin binding. However, PIPKIgamma binds in the canonical PTB-peptide mode with an SPLH motif replacing the classic NPXY motif. The tighter packing of the SPLH motif against the hydrophobic core of talin may explain the stronger binding of PIPKIgamma. Two tyrosine residues flanking the SPLH motif (Tyr-644 and Tyr-649) have been implicated in the regulation of talin binding. We show that phosphorylation at Tyr-644, a Src phosphorylation site in vivo, has little effect on the binding mode or strength, which is consistent with modeling studies in which the phosphotyrosine makes surface-exposed salt bridges, and we suggest that its strong activating effect arises from the release of autoinhibitory restraints in the full-length PIPKIgamma. Modeling studies suggest that phosphorylation of Tyr-649 will likewise have little effect on talin binding, whereas phosphorylation of the SPLH serine is predicted to be strongly disruptive. Our data are consistent with the proposal that Src activity promotes a switch from integrin binding to PIPKIgamma binding that regulates focal adhesion turnover.  相似文献   

20.
MAPkinase signalling is essential for cell growth, differentiation and cell physiology. G proteins and tyrosine kinase receptors each modulate MAPkinase signalling through distinct pathways. We report here that RGS14 is an integrator of G protein and MAPKinase signalling pathways. RGS14 contains a GPR/GoLoco (GL) domain that forms a stable complex with inactive Giα1/3–GDP, and a tandem (R1, R2) Ras binding domain (RBD). We find that RGS14 binds and regulates the subcellular localization and activities of H-Ras and Raf kinases in cells. Activated H-Ras binds RGS14 at the R1 RBD to form a stable complex at cell membranes. RGS14 also co-localizes with and forms a complex with Raf kinases in cells. The regulatory region of Raf-1 binds the RBD region of RGS14, and H-Ras and Raf each facilitate one another's binding to RGS14. RGS14 selectively inhibits PDGF-, but not EGF- or serum-stimulated Erk phosphorylation. This inhibition is dependent on H-Ras binding to RGS14 and is reversed by co-expression of Giα1, which binds and recruits RGS14 to the plasma membrane. Giα1 binding to RGS14 inhibits Raf binding, indicating that Giα1 and Raf binding to RGS14 are mutually exclusive. Taken together, these findings indicate that RGS14 is a newly appreciated integrator of G protein and Ras/Raf signalling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号