首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C3/C5 convertase is a serine protease that cleaves C3 and C5. In the present study we examined the C5 cleaving properties of classical pathway C3/C5 convertase either bound to the surface of sheep erythrocytes or in its free soluble form. Kinetic parameters revealed that the soluble form of the enzyme (C4b,C2a) cleaved C5 at a catalytic rate similar to that of the surface-bound form (EAC1,C4b,C2a). However, both forms of the enzyme exhibited a poor affinity for the substrate, C5, as indicated by a high Km (6-9 microM). Increasing the density of C4b on the cell surface from 8,000 to 172,000 C4b/cell did not influence the Km. Very high affinity C5 convertases were generated only when the low affinity C3/C5 convertases (EAC1,C4b,C2a) were allowed to deposit C3b by cleaving native C3. These C3b-containing C3/C5 convertases exhibited Km (0.0051 microM) well below the normal concentration of C5 in blood (0.37 microM). The data suggest that C3/C5 convertase assembled with either monomeric C4b or C4b-C4b complexes are inefficient in capturing C5 but cleave C3 opsonizing the cell surface with C3b for phagocytosis. Deposition of C3b converts the enzymes to high affinity C5 convertases, which cleave C5 in blood at catalytic rates approaching Vmax, thereby switching from C3 to C5 cleavage. Comparison of the kinetic parameters with those of the alternative pathway convertase indicates that the 6-9-fold greater catalytic rate of the classical pathway C5 convertase may compensate for the fewer numbers of C5 convertase sites generated upon activation of this pathway.  相似文献   

2.
Cleavage of C5 by C5 convertase is the last enzymatic step in the complement activation cascade leading to the formation of the cytolytic proteolytically activated form of C5 (C5b)-9 complex. In the present study, we examined the effect of the density of C3b (the proteolytically activated form of C3) on the function of the noncatalytic subunit of natural surface-bound forms of the enzyme. A comparison of the kinetic parameters of C5 convertases assembled on three surfaces (zymosan, rabbit erythrocytes, and sheep erythrocytes) were similar and revealed that the average K:(m) decreased approximately 28-fold (5.2-0.18 microM) when the density of C3b was increased from approximately 18,000 to 400,000 C3b/cell. Very-high-affinity C5 convertases were generated when preformed C3 convertases were allowed to self amplify by giving them excess C3. These convertases exhibited K(m) from 0.016 to 0.074 microM, well below the normal plasma concentration of C5 in blood (0.37 microM). The results suggest that in serum convertases formed with monomeric C3b will be relatively inefficient in capturing C5 but will continue to cleave C3 opsonizing the cell surface for phagocytosis, whereas convertases formed with C3b-C3b complexes in areas of high C3b density will primarily cleave C5. The catalytic rate of these convertases approaches maximum velocity, thereby switching the enzyme from cleavage of C3 to cleavage of C5, and production of the cytolytic C5b-9 complex.  相似文献   

3.
C5 convertase of the alternative C pathway is a complex enzyme consisting of three C fragments--one molecule of a major fragment of factor B (Bb) and two molecules of a major fragment of C3 (C3b). Within this C3bBbC3b complex, the first C3b binds covalently to the target surface, and Bb, which bears a catalytic site, binds noncovalently to the first C3b. In the present investigation, we studied the nature of the convertase that is assembled on E surfaces and obtained evidence that the second C3b binds directly to the alpha'-chain of the first through an ester bond rather than to the target surface. Thus, the alternative pathway C5 convertase could be described as a trimolecular complex in which Bb binds noncovalently to a covalently linked C3b dimer. We also obtained evidence that not only the second C3b but also the first C3b participates in binding C5, that is, covalently-linked C3b dimer acts as a substrate-binding site. Because of this two-site binding, the convertase has a much higher affinity for C5 than the surrounding monomeric C3b molecules. Based on this evidence, a new model of the alternative pathway C5 convertase is proposed. Covalent association of two subunits and the bivalent binding of the substrate are then common properties of the alternative and classical pathway C5 convertases.  相似文献   

4.
The multi-domain serine protease C2 provides the catalytic activity for the C3 and C5- convertases of the classical and lectin pathways of complement activation. Formation of these convertases requires the Mg(2+)-dependent binding of C2 to C4b, and the subsequent cleavage of C2 by C1s or MASP2, respectively. The C-terminal fragment C2a consisting of a serine protease (SP) and a von Willebrand factor type A (vWFA) domain, remains attached to C4b, forming the C3 convertase, C4b2a. Here, we present the crystal structure of Mg(2+)-bound C2a to 1.9 A resolution in comparison to its homolog Bb, the catalytic subunit of the alternative pathway C3 convertase, C3bBb. Although the overall domain arrangement of C2a is similar to Bb, there are certain structural differences. Unexpectedly, the conformation of the metal ion-dependent adhesion site and the position of the alpha7 helix of the vWFA domain indicate a co-factor-bound or open conformation. The active site of the SP domain is in a zymogen-like inactive conformation. On the basis of these structural features, we suggest a model for the initial steps of C3 convertase assembly.  相似文献   

5.
Complement is a powerful host defense system that contributes to both innate and acquired immunity. There are three pathways of complement activation, the classical pathway, lectin pathway, and alternative pathway. Each generates a C3 convertase, a serine protease that cleaves the central complement protein, C3. Nearly all the biological consequences of complement are dependent on the resulting cleavage products. Properdin is a positive regulator of complement activation that stabilizes the alternative pathway convertases (C3bBb). Properdin is composed of multiple identical protein subunits, with each subunit carrying a separate ligand-binding site. Previous reports suggest that properdin function depends on multiple interactions between its subunits with its ligands. In this study I used surface plasmon resonance assays to examine properdin interactions with C3b and factor B. I demonstrated that properdin promotes the association of C3b with factor B and provides a focal point for the assembly of C3bBb on a surface. I also found that properdin binds to preformed alternative pathway C3 convertases. These findings support a model in which properdin, bound to a target surface via C3b, iC3b, or other ligands, can use its unoccupied C3b-binding sites as receptors for nascent C3b, bystander C3b, or pre-formed C3bB and C3bBb complexes. New C3bP and C3bBP intermediates can lead to in situ assembly of C3bBbP. The full stabilizing effect of properdin on C3bBb would be attained as properdin binds more than one ligand at a time, forming a lattice of properdin: ligand interactions bound to a surface scaffold.  相似文献   

6.
The cleavage of human complement component C5 to fragment C5b by the alternative pathway C5 convertase was studied. The alternative-pathway C5 convertase on zymosan can be represented by the empirical formula zymosan--C3b2BbP. Both properdin-stabilized C3 and C5 convertase activities decay with a half life of 34 min correlating with the loss of the Bb subunit. The C5 convertase functions in a stepwise fashion: first, C5 binds to C3b and this is followed by cleavage of C5 to C5b. The capacity to bind C3b is a stable feature of component C5, as C5b also has this binding capacity. Component C5, unlike component C3, does not form covalent bonds with zymosan after activation, and C5 is not inhibited by amines. Therefore C5, although similar in structure to C3, does not appear to contain the internal thioester group reported for C3 and C4.  相似文献   

7.
Vaccinia virus encodes a homolog of the human complement regulators named vaccinia virus complement control protein (VCP). It is composed of four contiguous complement control protein (CCP) domains. Previously, VCP has been shown to bind to C3b and C4b and to inactivate the classical and alternative pathway C3 convertases by accelerating the decay of the classical pathway C3 convertase and (to a limited extent) the alternative pathway C3 convertase, as well as by supporting the factor I-mediated inactivation of C3b and C4b (the subunits of C3 convertases). In this study, we have mapped the CCP domains of VCP important for its cofactor activities, decay-accelerating activities, and binding to the target proteins by utilizing a series of deletion mutants. Our data indicate the following. (i) CCPs 1 to 3 are essential for cofactor activity for C3b and C4b; however, CCP 4 also contributes to the optimal activity. (ii) CCPs 1 to 2 are enough to mediate the classical pathway decay-accelerating activity but show very minimal activity, and all the four CCPs are necessary for its efficient activity. (iii) CCPs 2 to 4 mediate the alternative pathway decay-accelerating activity. (iv) CCPs 1 to 3 are required for binding to C3b and C4b, but the presence of CCP 4 enhances the affinity for both the target proteins. These results together demonstrate that the entire length of the protein is required for VCP's various functional activities and suggests why the four-domain structure of viral CCP is conserved in poxviruses.  相似文献   

8.
C5 convertase of the classical complement pathway is a protein complex consisting of C4b, C2a, and C3b. Within this complex C3b binds to C4b via an ester linkage. We now present evidence that the covalent C3b-binding site on human C4b is Ser at position 1217 of C4. We also show that formation of the covalently linked C4b.C3b complex occurs in the mouse complement system and that the C3b-binding site on mouse C4b is Ser at position 1213 which is homologous to Ser-1217 of human C4. Therefore, covalent binding of C3b to a single specific site on C4b within the classical pathway C5 convertase is likely a common phenomenon in the mammalian complement system. Specific noncovalent association of metastable C3b with C4b would occur first, leading to reaction of the thioester with a specific hydroxy group. This is supported by two lines of experimental evidence, one which shows that a mutant C4 that does not make a covalent linkage with C3b is still capable of forming C5 convertase and a second in which the C4b.C3b complex has been demonstrated by cross-linking erythrocytes bearing this C5 convertase.  相似文献   

9.
The covalent binding of complement fragment C3b to zymosan by the action of the alternative-pathway C3 convertase and the reversible binding of several complement proteins (component C5, factor B, beta 1H and properdin) to C3b on zymosan have been investigated. When C3b is deposited on zymosan after activation by a surface-bound C3 convertase, the C3b molecules are deposited in foci around the C3 convertase site, with an average of 30 C3b molecules per site. The association constants of C5, factor B, beta 1H, and properdin for C3b bound to zymosan have been determined. The association constants ranged from 6.5 x 10(-5) M-1 for factor B to 2.9 x 10(7) M-1 for properdin. An approximate stoichiometry of 1 : 1 for C5, factor B, and properdin binding to C3b has been observed. Curvilinear Scatchard plots were observed for beta 1H binding to C3b, with the maximal extrapolated ratio of beta 1H to C3b of 0.32. Physiological amounts of properdin increase by 7-fold the affinity constant for factor B binding to C3b with no alteration in the stoichiometry. Similarly, physiological amounts of factor B increase the affinity constant of properdin to C3b about 4-fold with only a small measured difference in stoichiometry. Competition binding studies and protein modification suggest that C5, factor B, beta 1H, and properdin each bind to a distinct region on C3b.  相似文献   

10.
Regulation by H of formation of the C3 and C5 alternative pathway convertases of complement on cells is dependent on such chemical characteristics of the cell surfaces as their membrane content in sialic acid. Properdin-stabilized C5 convertase sites were assembled on the non-activating cells of the alternative pathway, sheep erythrocytes (Es), and on the activating cells, desialated Es and rabbit erythrocytes (Er). C5 hemolytic sites were revealed by incubation of the convertase-bearing cells with limiting C5 and excess C6-C9. H inhibited generation of C5 hemolytic sites in a dose-related fashion on Es, Er, and desialated Es at molar ratios of H/C5 of 0.03 to 0.5. H similarly inhibited C5 utilization by the cell-bound C5 convertase on Es and desialated Es regardless of the cell membrane sialic acid content; however, H was three to five times less effective on Er. Kinetic experiments also suggested that C5 hemolytic sites are generated more rapidly on Er than on Es and desialated Es. The inhibition effect of H was independent of the number of C5 convertase sites per cell on all cell types; two to three times more residual hemolytic sites were found on convertase-bearing Es that had been incubated with C5 and H as compared with cells that had been decayed by H before incubation with C5. Furthermore, H also inhibited C5 interaction with a preformed classical pathway C5 convertase. These results suggest that H interacts with C5 so as to alter C5 binding and/or cleavage by the cell-bound C5 alternative pathway convertase. Sialic acid-independent modulation by H of C5 cleavage by the C5 convertase represents an additional regulatory step in the activation of the human alternative complement pathway.  相似文献   

11.
The C5 convertase is a serine protease that consists of two subunits: a catalytic subunit which is bound in a Mg2+-dependent complex to a noncatalytic subunit. To understand the functional role of the noncatalytic subunit, we have determined the C5-cleaving properties of the cobra venom factor-dependent C5 convertase (CVF, Bb) made with CVF purified from the venom of Naja naja (CVFn) and Naja haje (CVFh) and compared them to those for two C3b-dependent C5 convertases (ZymC3b,Bb and C3b,Bb). A comparison of the kinetic parameters indicated that although the four C5 convertases (CVFn,Bb, ZymC3b,Bb, CVFh,Bb, and C3b,Bb) had similar catalytic rate constants (kcat = 0.004-0.012 s-1) they differed 700-fold in their affinity for the substrate as indicated by the Km values (CVFn,Bb = 0.036 microM, ZymC3b,Bb = 1.24 microM, CVFh,Bb = 14.0 microM, and C3b,Bb = 24 microM). Analysis of binding interactions between C5 and the noncatalytic subunits (CVFh or C3b, or CVFn) using the BIAcore, revealed dissociation binding constants (Kd) that were similar to the Km values of the respective enzymes. The kinetic and binding data demonstrate that the binding site for C5 resides in the noncatalytic subunit of the enzyme, the affinity for the substrate is solely determined by the noncatalytic subunit and the catalytic efficiency of the enzyme appears not to be influenced by the nature of this subunit.  相似文献   

12.
Activation of component C3 is central to the pathways of complement and leads directly to neutralization of pathogens and stimulation of adaptive immune responses. The convertases that catalyze this reaction assemble from fragments of complement components via multistep reactions. In the lectin pathway, mannose-binding lectin (MBL) and ficolins bind to pathogens and activate MBL-associated serine protease-2 (MASP-2). MASP-2 cleaves C4 releasing C4a and generating C4b, which attaches covalently to the pathogen surface upon exposure of its reactive thioester. C2 binds to C4b and is also cleaved by MASP-2 to form the C3 convertase (C4b2a). To understand how this complex process is coordinated, we have analyzed the interactions between MASP-2, C4, C2, and their activation fragments and have compared MASP-2-catalyzed cleavage of C4b2 and C2. The data show that C2 binds tightly to C4b but not to C4, implying that C4 and C2 do not circulate as preformed complexes but that C2 is recruited only after prior activation of C4. Following cleavage of C4, C4b still binds to MASP-2 (KD approximately 0.6 microM) and dissociates relatively slowly (koff approximately 0.06 s-1) compared with the half-life of the thioester (相似文献   

13.
Properdin (FP) is an essential positive regulator of the complement alternative pathway (AP) providing stabilization of the C3 and C5 convertases, but its oligomeric nature challenges structural analysis. We describe here a novel FP deficiency (E244K) caused by a single point mutation which results in a very low level of AP activity. Recombinant FP E244K is monomeric, fails to support bacteriolysis, and binds weakly to C3 products. We compare this to a monomeric unit excised from oligomeric FP, which is also dysfunctional in bacteriolysis but binds the AP proconvertase, C3 convertase, C3 products and partially stabilizes the convertase. The crystal structure of such a FP-convertase complex suggests that the major contact between FP and the AP convertase is mediated by a single FP thrombospondin repeat and a small region in C3b. Small angle X-ray scattering indicates that FP E244K is trapped in a compact conformation preventing its oligomerization. Our studies demonstrate an essential role of FP oligomerization in vivo while our monomers enable detailed structural insight paving the way for novel modulators of complement.  相似文献   

14.
A decay-accelerating factor of the classical complement pathway C3 convertase, C4b,2a, has been purified to homogeneity from guinea pig plasma by a 5-step procedure that includes 5% polyethyleneglycol-4000 (PEG-4000) precipitation, Sepharose 6B gel filtration, heparin-Sepharose chromatography, DE-52 anion exchange chromatography, and Sepharose-C4gp affinity chromatography. The protein elicited a monospecific antiserum in a rabbit and was found with the Mancini technique in both normal and C4-deficient guinea pig plasma at a concentration of 60 microgram/ml. The purified protein gave a single stained band of 550,000 m.w. on SDS-PAGE under nonreducing conditions and a single band of 72,000 m.w. with reduction and alkylation. On the basis of its m.w. and subunit structure, ability to bind to a C4 affinity column, and ability to regulate the classical C system by accelerating the decay of the classical C3 convertase this protein represents the guinea pig analog of the human C4-binding protein.  相似文献   

15.
Cerebral malaria (CM) is the most severe manifestation of clinical malaria syndromes and has a high fatality rate especially in the developing world. Recent studies demonstrated that C5(-/-) mice are resistant to experimental CM (ECM) and that protection was due to the inability to form the membrane attack complex. Unexpectedly, we observed that C4(-/-) and factor B(-/-) mice were fully susceptible to disease, indicating that activation of the classical or alternative pathways is not required for ECM. C3(-/-) mice were also susceptible to ECM, indicating that the canonical C5 convertases are not required for ECM development and progression. Abrogation of ECM by treatment with anti-C9 antibody and detection of C5a in serum of C3(-/-) mice confirmed that C5 activation occurs in ECM independent of C5 convertases. Our data indicate that activation of C5 in ECM likely occurs via coagulation enzymes of the extrinsic protease pathway.  相似文献   

16.
The extracellular domain of the complement receptor type 1 (CR1; CD35) consists entirely of 30 complement control protein repeats (CCPs). CR1 has two distinct functional sites, site 1 (CCPs 1-3) and two copies of site 2 (CCPs 8-10 and CCPs 15-17). In this report we further define the structural requirements for decay-accelerating activity (DAA) for the classical pathway (CP) C3 and C5 convertases and, using these results, generate more potent decay accelerators. Previously, we demonstrated that both sites 1 and 2, tandemly arranged, are required for efficient DAA for C5 convertases. We show that site 1 dissociates the CP C5 convertase, whereas the role of site 2 is to bind the C3b subunit. The intervening CCPs between two functional sites are required for optimal DAA, suggesting that a spatial orientation of the two sites is important. DAA for the CP C3 convertase is increased synergistically if two copies of site 1, particularly those carrying DAA-increasing mutations, are contained within one protein. DAA in such constructs may exceed that of long homologous repeat A (CCPs 1-7) by up to 58-fold. To explain this synergy, we propose a dimeric structure for the CP C3 convertase on cell surfaces. We also extended our previous studies of the amino acid requirements for DAA of site 1 and found that the CCP 1/CCP 2 junction is critical and that Phe82 may contact the C3 convertases. These observations increase our understanding of the mechanism of DAA. In addition, a more potent decay-accelerating form of CR1 was generated.  相似文献   

17.
C4 fulfills a vital role in the propagation of the classical and lectin pathways of the complement system. Although there are no reports to date of a C4 functional activity that is mediated solely by the C4d region, evidence clearly points to it having a vital role in a number of the properties of native C4 and its major activation fragment, C4b. Contained within the C4d region are the thioester-forming residues, the four isotype-specific residues controlling the C4A/C4B transacylation preferences, a binding site for nascent C3b important in assembling the classical pathway C5 convertase and determinants for the Chido/Rodgers (Ch/Rg) blood group antigens. In view of its functional importance, we undertook to determine the three-dimensional structure of C4d by X-ray crystallography. Here we report the 2.3A resolution structure of C4Ad, the C4d fragment derived from the human C4A isotype. Although the approximately 30% sequence identity between C4Ad and the corresponding fragment of C3 might be expected to establish a general fold similarity between the two molecules, C4Ad in fact displays a fold that is essentially superimposable on the structure of C3d. By contrast, the electrostatic characteristics of the various faces of the C4Ad molecule show marked differences from the corresponding faces of C3d, likely reflecting the differences in function between C3 and C4. Residues previously predicted to form the major Ch/Rg epitopes were proximately located and accessible on the concave surface of C4Ad. In addition to providing further insights on the current models for the covalent binding reaction, the C4Ad structure allows one to rationalize why C4d is not a ligand for complement receptor 2. Finally the structure allows for the visualization of the face of the molecule containing the binding site for C3b utilized in the assembly of classical pathway C5 convertase.  相似文献   

18.
Four CR1 variants have been found in the normal population and are designated CR1-A (190,000 daltons), CR1-B (220,000 daltons), CR1-C (160,000 daltons), and CR1-D (250,000 daltons). In the present study, we first developed an improved chromatographic purification scheme for CR1 that does not employ a C3b affinity step. CR1 variants (A, B, and C) were then isolated, and their individual functional activity was assessed. Each possessed similar co-factor activity for I-mediated cleavage of C3(H2O), as well as for the inhibitory activity for fluid phase C3 convertases. These results indicate that, despite relatively large Mr differences, in the purified state these three CR1 variants have similar functional activities. The functional activity of CR1 was also compared with C4bp, H, and decay accelerating factor (DAF) in fluid phase assays designed to assess the inhibition of the C3 convertases and co-factor activity. On a molar basis, CR1 had approximately the same inhibitory activity as C4bp for the classical pathway convertase, and had the same as H for the alternative pathway convertase. These results indicate that CR1 encompasses the functional capabilities of both proteins. They also raise a number of interesting genetic and structural questions in regard to these complement regulatory proteins, because C4bp is thought to have multiple C4b binding domains, whereas H is reported to bind one C3b. DAF was an approximately fourfold better inhibitor of the alternative pathway convertase than CR1 or H, but was a fourfold less efficient inhibitor of the classical pathway convertase than CR1 or C4bp. The effective inhibitory capacity of DAF in these fluid phase assay systems suggests that the DAF substrate specificity is for the convertases. Fluid phase CR1 was twofold less efficient than H in serving as a co-factor for the first cleavage of fluid phase C3b, and hardly mediated the second cleavage. These data are in contrast to the co-factor activity of CR1 on a cell membrane, and provide additional evidence for the local environment being a critical modulator of the function of proteins that regulate the activation of C3.  相似文献   

19.
Human complement factor H-related protein (CFHR) 4 belongs to the factor H family of plasma glycoproteins that are composed of short consensus repeat (SCR) domains. Although factor H is a well known inhibitor of the alternative complement pathway, the functions of the CFHR proteins are poorly understood. CFHR4 lacks SCRs homologous to the complement inhibitory domains of factor H and, accordingly, has no significant complement regulatory activities. We have previously shown that CFHR4 binds C-reactive protein via its most N-terminal SCR, which leads to classical complement pathway activation. CFHR4 binds C3b via its C terminus, but the significance of this interaction is unclear. Therefore, we set out to clarify the functional relevance of C3b binding by CFHR4. Here, we report a novel role for CFHR4 in the complement system. CFHR4 serves as a platform for the assembly of an alternative pathway C3 convertase by binding C3b. This is based on the sustained ability of CFHR4-bound C3b to bind factor B and properdin, leading to an active convertase that generates C3a and C3b from C3. The CFHR4-C3bBb convertase is less sensitive to the factor H-mediated decay compared with the C3bBb convertase. CFHR4 mutants containing exchanges of conserved residues within the C-terminal C3b-binding site showed significantly reduced C3b binding and alternative pathway complement activation. In conclusion, our results suggest that, in contrast to the complement inhibitor factor H, CFHR4 acts as an enhancer of opsonization by promoting complement activation.  相似文献   

20.
C5 convertase of the alternative complement pathway is a trimolecular complex consisting of two molecules of C3b and one molecule of Bb. We previously proposed a model of the alternative pathway C5 convertase in which the second C3b molecule binds covalently to the first C3b molecule bearing Bb, and the C5 molecule binds to each C3b molecule of the covalently linked C3b dimer, resulting in its appropriate presentation to the catalytic site on Bb. In the present study, we purified the covalently linked C3b dimer and reconstituted the C5 convertase with the C3b dimer and factors B and D to obtain evidence in support of this model. An insoluble glucan, OMZ-176, was incubated with human serum to activate the alternative pathway and to allow formation of the alternative C5 convertase on the surface of the glucan, and the glucan bearing the C5 convertase was then solubilized by incubation with glucosidases. In this way, the covalently linked C3b dimer was obtained in solution without using a detergent. The C3b dimer was then separated from enzymes, C3b monomer, C3b oligomer, and other materials by chromatographies. SDS-PAGE analysis demonstrated that the purified C3b dimer had intact alpha'-chains. Alternative pathway C5 convertase was reconstituted when the isolated C3b dimer was incubated with factors B and D. The presence of P enhanced C5 convertase formation threefold. These results support the notions that the formation of the covalently linked C3b dimer is a general phenomenon associated with activation of the alternative pathway and that the C3b dimer acts as a part of the C5 convertase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号