首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exposure to paraquat (PQ; N,N'-dimethyl-4-4'-bipyridium), a potent herbicide, can lead to neuronal cell death and increased risk of Parkinson's disease because of oxidative stress. In this study, we investigated the effect of (-)schisandrin B [(-)Sch B, a potent enantiomer of schisandrin B] on PQ-induced cell injury in differentiated pheochromocytoma cells (PC12). PQ treatment caused cell injury in PC12 cells, as indicated by the significant increase in lactate dehydrogenase (LDH) leakage. Pretreatment with (-)Sch B (5 μM) protected against PQ-induced toxicity in PC12 cells, as evidenced by the significant decrease in LDH leakage. (-)Sch B induced the cytochrome P-450-mediated reactive oxygen species generation in differentiated PC12 cells. The cytoprotection afforded by (-)Sch B pretreatment was associated with an increase in cellular reduced glutathione (GSH) level as well as the enhancement of γ-glutamylcysteine ligase (GCL) and glutathione reductase (GR) activity in PQ-challenged cells. Both GCL and GR inhibitors abrogated the cytoprotective effect of (-)Sch B in PQ-challenged cells. The biochemical mechanism underlying the GSH-enhancing effect of (-)Sch B was further investigated in PC12 cells subjected to an acute peroxide challenge. Although the initial GSH depletion induced by peroxide was reduced through GR-catalyzed regeneration of GSH in (-)Sch B-pretreated cells, the later enhanced GSH recovery was mainly mediated by GCL-catalyzed GSH synthesis. The results suggest that (-)Sch B treatment may increase the resistance of dopaminergic cells against PQ-induced oxidative stress through reducing the extent of oxidant-induced GSH depletion and enhancing the subsequent GSH recovery.  相似文献   

2.
Kim TW  Kim H  Sun W 《Molecules and cells》2011,31(4):379-383
Astrocytes play critical roles in many aspects of brain functions via modulation of neurotransmission, metabolism, and structural remodeling in response to physiological or pathological stimuli. Activation of astrocytes is a common phenomenon in many brain pathologies such as stroke, trauma, and neurodegenerative diseases. In this study, we found that gene deletion of the pro-apoptotic gene Bax (Bax-knockout) resulted in a spontaneous reactive astrogliosis in the dentate gyrus, as evidenced by the increased number/volume of astrocytes and cytoplasmic localization of the Olig2 protein. On the other hand, there was no evidence for microglial activation in the dentate gyrus of Bax-knockout mice. Previously, we reported that Bax-knockout mice failed to execute programmed cell death of adult-produced neurons, but the surplus neurons eventually impaired normal synaptic connections and dendritic arborization of dentate gyrus neurons. Therefore, we propose that the reactive astrocytes in the Baxknockout mice may play a role in tissue remodeling of the dentate gyrus following a failure in the programmed cell death of adult-produced neurons.  相似文献   

3.
4.
Oxidative stress resulting from mitochondrially derived reactive oxygen species (ROS) has been hypothesized to damage mitochondrial oxidative phosphorylation (OXPHOS) and to be a factor in aging and degenerative disease. If this hypothesis is correct, then genetically inactivating potential mitochondrial antioxidant enzymes such as glutathione peroxidase-1 (Gpx1; EC 1.11.1.9) should increase mitochondrial ROS production and decrease OXPHOS function. To determine the expression pattern of Gpx1, isoform-specific antibodies were generated and mutant mice were prepared in which the Gpx1 protein was substituted for by beta-galactosidase, driven by the Gpx1 promoter. These experiments revealed that Gpx1 is highly expressed in both the mitochondria and the cytosol of the liver and kidney, but poorly expressed in heart and muscle. To determine the physiological importance of Gpx1, mice lacking Gpx1 were generated by targeted mutagenesis in mouse ES cells. Homozygous mutant Gpx1(tm1Mgr) mice have 20% less body weight than normal animals and increased levels of lipid peroxides in the liver. Moreover, the liver mitochondria were found to release markedly increased hydrogen peroxide, a Gpx1 substrate, and have decreased mitochondrial respiratory control ratio and power output index. Hence, genetic inactivation of Gpx1 resulted in growth retardation, presumably due in part to reduced mitochondrial energy production as a product of increased oxidative stress.  相似文献   

5.
Previous studies have reported that visfatin can regulate macrophage polarisation, which has been demonstrated to participate in cardiac remodelling. The aims of this study were to investigate whether visfatin participates in transverse aortic constriction (TAC)-induced cardiac remodelling by regulating macrophage polarisation. First, TAC surgery and angiotensin II (Ang II) infusion were used to establish a mouse cardiac remodelling model, visfatin expression was measured, and the results showed that TAC surgery or Ang II infusion increased visfatin expression in the serum and heart in mice, and phenylephrine or hydrogen peroxide promoted the release of visfatin from macrophages in vitro. All these effects were dose-dependently reduced by superoxide dismutase. Second, visfatin was administered to TAC mice to observe the effects of visfatin on cardiac remodelling. We found that visfatin increased the cross-sectional area of cardiomyocytes, aggravated cardiac fibrosis, exacerbated cardiac dysfunction, further regulated macrophage polarisation and aggravated oxidative stress in TAC mice. Finally, macrophages were depleted in TAC mice to investigate whether macrophages mediate the regulatory effect of visfatin on cardiac remodelling, and the results showed that the aggravating effects of visfatin on oxidative stress and cardiac remodelling were abrogated. Our study suggests that visfatin enhances cardiac remodelling by promoting macrophage polarisation and enhancing oxidative stress. Visfatin may be a potential target for the prevention and treatment of clinical cardiac remodelling.  相似文献   

6.
The effect of cadmium (Cd), a significant environmental contaminant, on the expression of glucose-6-phosphate dehydrogenase (G6PDH), has been investigated. G6PDH is the key rate-limiting enzyme in the pentose pathway and the expression of its gene has been shown to be redox-sensitive. We show that incubation of primary rat hepatocytes with Cd induces oxidative stress in a time- and concentration-dependent manner as measured by increases in the cytotoxic parameters, lactate dehydrogenase (LDH) and lipid peroxidation (LPO). Significant increases in LDH leakage and LPO can be measured after 12 and 24 h, respectively, in the presence of 4 microM cadmium chloride. However, prior to significant increases in cytotoxic parameters, and within only 6 h of Cd treatment, significant decreases in reduced glutathione and increases in the expression of G6PDH as measured by mRNA levels and enzyme activity are observed. The signal protein MAP kinase (MAPK) is also induced by Cd within 6 h. Blocking the Cd induction of MAPK using the antioxidant N-acetyl cysteine (10 mM) or Trolox (0.5 mM) or the MEK specific inhibitor PD098059 (20 microM) also blocks the Cd induction of G6PDH suggesting that MAPK is a signal protein involved in the redox regulation of this gene.  相似文献   

7.
Adult dentate neurogenesis is important for certain types of hippocampal-dependent learning and also appears to be important for the maintenance of normal mood and the behavioural effects of antidepressants. Neuropeptide Y (NPY), a peptide neurotransmitter released by interneurons in the dentate gyrus, has important effects on mood, anxiety-related behaviour and learning and memory. We report that adult NPY receptor knock-out mice have significantly reduced cell proliferation and significantly fewer immature doublecortin-positive neurons in the dentate gyrus. We also show that the neuroproliferative effect of NPY is dentate specific, is Y1-receptor mediated and involves extracellular signal-regulated kinase (ERK)1/2 activation. NPY did not exhibit any effect on cell survival in vitro but constitutive loss of the Y1 receptor in vivo resulted in greater survival of newly generated neurons and an unchanged total number of dentate granule cells. These results show that NPY stimulates neuronal precursor proliferation in the dentate gyrus and suggest that NPY-releasing interneurons may modulate dentate neurogenesis.  相似文献   

8.
Oxidative stress in the liver is sometimes accompanied by cholestasis. We investigated the localization and role of multidrug-resistance-associated protein (Mrp) 2, a biliary transporter involved in bile-salt-independent bile flow, under ethacrynic acid (EA)-induced acute oxidative stress. Normal Sprague-Dawley rat (SDR) and Mrp2-deficient Eisai hyperbilirubinemic rat (EHBR) livers were perfused with 500 microM EA. The release of glutamic pyruvic transaminase (GPT) and thiobarbituric-acid-reactive substances (TBARS) from EHBR liver was markedly delayed compared with that from SDR liver. This is mainly due to the higher basal level of glutathione (GSH) in EHBR liver (59.1 +/- 0.3 nmol/mg protein) compared with SDR liver (39.7 +/- 1.5 nmol/mg protein). EA similarly induced a rapid reduction in GSH followed by mitochondrial permeability transition in the isolated mitochondria from both SDR and EHBR. Internalization of Mrp2 was detected before nonspecific disruption of the canalicular membrane and GPT release in SDR liver perfused with 100 microM EA. SDR liver preperfused with hyperosmolar buffer (405 mosmol/L) for 30 min induced internalization of Mrp2 without changing the basal GSH level, while elimination of hepatic GSH by 300 microM EA perfusion was significantly delayed thereafter. Concomitantly, hepatotoxicity assessed by the release of GPT and TBARS was also significantly attenuated under hyperosmolar conditions. In conclusion, preserved cytosolic and intramitochondrial GSH is the key factor involved in the acute hepatotoxicity induced by EA and its susceptibility could be altered by the presence of Mrp2.  相似文献   

9.
Human immunodeficiency virus (HIV)-infected patients have a higher incidence of oxidative stress, endothelial dysfunction, and cardiovascular disease than uninfected individuals. Recent reports have demonstrated that viral proteins upregulate reactive oxygen species, which may contribute to elevated cardiovascular risk in HIV-1 patients. In this study we employed an HIV-1 transgenic rat model to investigate the physiological effects of viral protein expression on the vasculature. Markers of oxidative stress in wild-type and HIV-1 transgenic rats were measured using electron spin resonance, fluorescence microscopy, and various molecular techniques. Relaxation studies were completed on isolated aortic rings, and mRNA and protein were collected to measure changes in expression of nitric oxide (NO) and superoxide sources. HIV-1 transgenic rats displayed significantly less NO-hemoglobin, serum nitrite, serum S-nitrosothiols, aortic tissue NO, and impaired endothelium-dependent vasorelaxation than wild-type rats. NO reduction was not attributed to differences in endothelial NO synthase (eNOS) protein expression, eNOS-Ser1177 phosphorylation, or tetrahydrobiopterin availability. Aortas from HIV-1 transgenic rats had higher levels of superoxide and 3-nitrotyrosine but did not differ in expression of superoxide-generating sources NADPH oxidase or xanthine oxidase. However, transgenic aortas displayed decreased superoxide dismutase and glutathione. Administering the glutathione precursor procysteine decreased superoxide, restored aortic NO levels and NO-hemoglobin, and improved endothelium-dependent relaxation in HIV-1 transgenic rats. These results show that HIV-1 protein expression decreases NO and causes endothelial dysfunction. Diminished antioxidant capacity increases vascular superoxide levels, which reduce NO bioavailability and promote peroxynitrite generation. Restoring glutathione levels reverses HIV-1 protein-mediated effects on superoxide, NO, and vasorelaxation.  相似文献   

10.
The aim of this study was to show the direct effect of selenium on glutathione peroxidase (GSH-Px) activity and GSH/GSSG concentrations in 3- and 6-month-old mice. An ozone-oxygen mixture was used to provoke an oxygen stress. To measure the Se-effect mice were gavaged with sodium selenite. GSH-Px activity and total glutathione concentrations were determined in serum and in the postnuclear fraction of liver and lungs. Additionally glutathione concentrations were determined in whole blood. Both ozone and selenium, administered separately, reduced GSH-Px activity in lungs of 6-month-old animals, while in young mice an opposite effect of Se was observed. Ozone administered jointly with Se did not influence GSH-Px activity in 6-month-old mice, while in young, 3-month-old mice, a stimulatory effect in lungs was observed. There were no significant changes in GSH-Px activity in the liver of 6-month-old mice, but the stimulatory effect occurred in young mice treated with Se and Se & ozone jointly. In young mice, ozone (also ozone with Se) augmented glutathione concentrations. The response to ozone and selenium strictly depended on age and the antagonism between selenium and ozone was observed only in a few cases.  相似文献   

11.
We investigated the toxicity of hemoglobin/myoglobin on endothelial cells under oxidative stress conditions that include cellular hypoxia and reduced antioxidant capacity. Bovine aorta endothelial cells (BAECs), grown on microcarrier beads, were subjected to cycles of hypoxia and reoxygenation in a small volume of medium, and endothelial cell monolayers were depleted of their intracellular glutathione (GSH) by treatment with buthionine sulfoximine. Incubation of diaspirin cross-linked hemoglobin (DBBF-Hb) or horse skeletal myoglobin (Mb) with BAECs subjected to 3 h of hypoxia caused transient oxidation of the hemoproteins to the ferryl form (Fe(4+)). Formation of the ferryl intermediate was decreased in a concentration-dependent manner by the addition of L-arginine, a substrate of NO synthase, after 3 h of hypoxia. Optimal inhibition of ferryl formation, possibly due to the antioxidant action of NO, was achieved with 900 microM L-arginine. Addition of hydrogen peroxide to GSH-depleted cells in the presence of DBBF-Hb or Mb significantly decreased cell viability. Ferryl Mb, but not ferryl DBBF-Hb, was observed in samples analyzed at the end of treatment, which may explain the greater toxicity observed with Mb as opposed to DBBF-Hb. This model may be utilized to identify causative agent(s) associated with hemoprotein cytotoxicity and in designing strategies to suppress or control heme-mediated injury under physiologically relevant conditions.  相似文献   

12.
Liu N  He S  Yu X 《PloS one》2012,7(1):e30803
The dentate gyrus is the primary afferent into the hippocampal formation, with important functions in learning and memory. Granule cells, the principle neuronal type in the dentate gyrus, are mostly formed postnatally, in a process that continues into adulthood. External stimuli, including environmental enrichment, voluntary exercise and learning, have been shown to significantly accelerate the generation and maturation of dentate granule cells in adult rodents. Whether, and to what extent, such environmental stimuli regulate the development and maturation of dentate granule cells during early postnatal development is largely unknown. Furthermore, whether natural stimuli affect the synaptic properties of granule cells had been investigated neither in newborn neurons of the adult nor during early development. To examine the effect of natural sensory stimulation on the dentate gyrus, we reared newborn mice in an enriched environment (EE). Using immunohistochemistry, we showed that dentate granule cells from EE-reared mice exhibited earlier morphological maturation, manifested as faster peaking of doublecortin expression and elevated expression of mature neuronal markers (including NeuN, calbindin and MAP2) at the end of the second postnatal week. Also at the end of the second postnatal week, we found increased density of dendritic spines across the entire dentate gyrus, together with elevated levels of postsynaptic scaffold (post-synaptic density 95) and receptor proteins (GluR2 and GABA(A)Rγ2) of excitatory and inhibitory synapses. Furthermore, dentate granule cells of P14 EE-reared mice had lower input resistances and increased glutamatergic and GABAergic synaptic inputs. Together, our results demonstrate that EE-rearing promotes morphological and electrophysiological maturation of dentate granule cells, underscoring the importance of natural environmental stimulation on development of the dentate gyrus.  相似文献   

13.
The role of selenium, a trace element in the human diet, has been extensively studied against cancer, immunity and infectious/inflammatory diseases. The purpose of the present study was to investigate the beneficial effect of ebselen, an organo-selenium compound, against cyclophosphamide-induced oxidative stress and DNA damage in mice. Malondialdehyde and total glutathione were estimated in the liver to detect the oxidative stress induced by cyclophosphamide. Standard and modified comet assays (the latter incorporated lesion-specific enzymes, formamidopyrimidine-DNA glycosylase and endonuclease-III) were used to detect the normal and oxidative stress-induced DNA damage by cyclophosphamide in the mouse bone marrow and the peripheral blood lymphocytes. In addition, a micronucleus assay capable of detecting DNA damage was also carried out in the mouse bone marrow and the peripheral blood reticulocytes induced by cyclophosphamide. The results confirm that pre-treatment with ebselen (2.5, 5 and 10 mg/kg) for 5 consecutive days decreased the oxidative stress induced by cyclophosphamide (100 mg/kg) based on the restoration in concentration of malondialdehyde and glutathione in the liver and decreased DNA damage and micronuclei count in the bone marrow and the peripheral blood. It is concluded that pre-treatment with ebselen attenuates cyclophosphamide-induced oxidative stress and the resultant DNA damage in mice.  相似文献   

14.
Tributyltin (TBT) has been used as a heat stabilizer, agricultural pesticide and antifouling agents on ships, boats and fish-farming nets; however, the neurotoxicity of TBT has recently become a concern. TBT is suggested to stimulate the generation of reactive oxygen species (ROS) inside cells. The aim of this study was to determine the mechanism of neuronal oxidative injury induced by TBT using rat organotypic hippocampal slice cultures. The treatment of rat hippocampal slices with TBT induced ROS production, lipid peroxidation and cell death. Pretreatment with antioxidants such as superoxide dismutase, catalase or trolox, suppressed the above phenomena induced by TBT, indicating that TBT elicits oxidative stress in hippocampal slices, which causes neuronal cell death. TBT dose-dependently inhibited glutathione S-transferase (GST), but not glutathione peroxidase or glutathione reductase in the cytosol of rat hippocampus. The treatment of hippocampal slices with TBT decreased the GST activity. Pretreatment with reduced glutathione attenuated the reduction of GST activity and cell death induced by TBT, indicating that the decrease in GST activity by TBT is involved in hippocampal cell death. When hippocampal slices were treated with sulforaphane, the expression and activity of GST were increased. Notably, TBT-induced oxidative stress and cell death were significantly suppressed by pretreatment with sulforaphane. These results indicate that GST inhibition could contribute, at least in part, to the neuronal cell death induced by TBT in hippocampal slices. This study is the first report to show the link between neuronal oxidative injury and the GST inhibition elicited by TBT.  相似文献   

15.
Hippocampus dentate gyrus (DG) is characterized by neuronal plasticity processes in adulthood, and polysialylation of NCAM promotes neuronal plasticity. In previous investigations we found that alpha-tocopherol increased the PSA-NCAM-positive granule cell number in adult rat DG, suggesting that alpha-tocopherol may enhance neuronal plasticity. To verify this hypothesis, in the present study, structural remodeling in adult rat DG was investigated under alpha-tocopherol supplementation conditions. PSA-NCAM expression was evaluated by Western blotting, evaluation of PSA-NCAM-positive granule cell density, and morphometric analysis of PSA-NCAM-positive processes. In addition, the optical density of synaptophysin immunoreactivity and the synaptic profile density, examined by electron microscopy, were evaluated. Moreover, considering that PSA-NCAM expression has been found to be related to PKCdelta activity and alpha-tocopherol has been shown to inhibit PKC activity in vitro, Western blotting and immunohistochemistry followed by densitometry were used to analyze PKC. Our results demonstrated that an increase in PSA-NCAM expression and optical density of DG molecular layer synaptophysin immunoreactivity occurred in alpha-tocopherol-treated rats. Electron microscopy analysis showed that the increase in synaptophysin expression was related to an increase in synaptic profile density. In addition, Western blotting revealed a decrease in phospho-PKC Pan and phospho-PKCdelta, demonstrating that alpha-tocopherol is also able to inhibit PKC activity in vivo. Likewise, immunoreactivity for the active form of PKCdelta was lower in alpha-tocopherol-treated rats than in controls, while no changes were found in PKCdelta expression. These results demonstrate that alpha-tocopherol is an exogenous factor affecting neuronal plasticity in adult rat DG, possibly through PKCdelta inhibition.  相似文献   

16.
Cellular redox status is an important factor during neuronal apoptosis. In primary cultures of chick embryonic neurons, serum deprivation and treatment with staurosporine (200 nM) for 24 h increased the percentage of apoptotic neurons from 13% in controls to 28%, and 68%, respectively. Both exposure to staurosporine and serum deprivation resulted in a four-fold increase in the mitochondrial reactive oxygen species production 4 h after the onset of the injury. Whereas the intracellular glutathione content remained unchanged by serum deprivation, it was markedly reduced by staurosporine suggesting that an increased reactive oxygen species production was more deleterious at a low intracellular glutathione content. Treatment with L-buthionine-(S,R)-sulfoximine, an inhibitor of the glutathione synthesis, decreased the intracellular glutathione content, but did not significantly alter the percentage of apoptotic neurons. Tocopherol (10 microM) and retinoic acid (0.1 microM) inhibited staurosporine-induced glutathione depletion as well as the increase in the percentage of apoptotic neurons. We conclude that under conditions of an increased reactive oxygen species production a high intracellular glutathione content could protect neurons from apoptotic injury and that drugs inhibiting the glutathione depletion could prevent neurons from oxidative damage.  相似文献   

17.
When BHK or HTC cells are cultured for 20 min with [U-14C]glucose in the presence of agents that deplete reduced glutathione, DNA banded from the cells in cesium salt gradients containing guanidium HCl is radioactively labeled. This depletion-dependent labeling required live cells. It was not caused by reactive contaminants in the radioactive glucose preparations, by carbohydrate or protein comigration into the DNA band, or by metabolism of glucose into deoxyribose. Labeling levels are similar whether depletion is achieved by oxidation (with the drug diamide) or by inhibition of synthesis (with methionine sulfoximine). A temporal association between GSH repletion and the appearance of D-lactate, the putative unique product of GSH-dependent glyoxylase action on pyruvaldehyde, suggests possible involvement of 3-carbon dicarbonyls.  相似文献   

18.
Oxidative stress is commonly induced when plants are grown under high temperature (HT) stress conditions. Selenium often acts as an antioxidant in plants; however, its role under HT-induced oxidative stress is not definite. We hypothesize that selenium application can partly alleviate HT-induced oxidative stress and negative impacts of HT on physiology, growth and yield of grain sorghum [Sorghum bicolor (L.) Moench]. Objectives of this study were to investigate the effects of selenium on (a) leaf photosynthesis, membrane stability and antioxidant enzymes activity and (b) grain yield and yield components of grain sorghum plants grown under HT stress in controlled environments. Plants were grown under optimal temperature (OT; 32/22 °C daytime maximum/nighttime minimum) from sowing to 63 days after sowing (DAS). All plants were foliar sprayed with sodium selenate (75 mg L?1) at 63 DAS, and HT stress (40/30 °C) was imposed from 65 DAS through maturity. Data on physiological, biochemical and yield traits were measured. High temperature stress decreased chlorophyll content, chlorophyll a fluorescence, photosynthetic rate and antioxidant enzyme activities and increased oxidant production and membrane damage. Decreased antioxidant defense under HT stress resulted in lower grain yield compared with OT. Application of selenium decreased membrane damage by enhancing antioxidant defense resulting in higher grain yield. The increase in antioxidant enzyme activities and decrease in reactive oxygen species (ROS) content by selenium was greater in HT than in OT. The present study suggests that selenium can play a protective role during HT stress by enhancing the antioxidant defense system.  相似文献   

19.
This study was to determine if cellular glutathione peroxidase (GPX1) protects against acute oxidative stress induced by diquat. Lethality and hepatic biochemical indicators in GPX1 knockout mice [GPX1(-/-)] were compared with those of wild-type mice (WT) after an intraperitoneal injection of diquat at 6, 12, 24, or 48 mg/kg of body weight. Although the WT survived all the doses, the GPX1(-/-) survived only 6 mg diquat/kg and were killed by 12, 24, and 48 mg diquat/kg at 52, 4.4 and 3.9 hr, respectively. Compared with those of surviving mice that were sacrificed on Day 7, the dead GPX1(-/-) had diquat dose-dependent increases (P < 0.05) in plasma alanine aminotransferase (ALT) activities. The GPX1(-/-) also had higher (P < 0.05) liver carbonyl contents than those of the WT, but the differences were irrespective of diquat doses. Whereas hepatic total GPX and phospholipid hydroperoxide glutathione peroxidase activities or hepatic GPX1 protein was not significantly affected by the diquat treatment, liver thioredoxin reductase and catalase activities were lower (P < 0.05) in the GPX1(-/-) injected with 12 mg diquat/kg than those of other groups. In conclusion, normal GPX1 expression is necessary to protect mice against the lethality, hepatic protein oxidation, and elevation of plasma ALT activity induced by 12-48 mg diquat/kg.  相似文献   

20.
This study was undertaken to evaluate oxidative stress in the kidney of diabetic mice by electron spin resonance (ESR) imaging technique. Oxidative stress in the kidney was evaluated as organ-specific reducing activity with the signal decay rates of carbamoyl-PROXYL probe using ESR imaging. The signal decay rates were significantly faster in corresponding image pixels of the kidneys of streptozotocin-induced diabetic mice than in those of controls. This technique further demonstrated that administration of angiotensin II type 1 receptor blocker (ARB), olmesartan (5 mg/kg), completely restored the signal decay rates in the diabetic kidneys to control values. In conclusion, this study provided for the first time the in vivo evidence for increased oxidative stress in the kidneys of diabetic mice and its normalization by ARB as evaluated by ESR imaging. This technique would be useful as a means of further elucidating the role of oxidative stress in diabetic nephropathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号