首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Four Arabidopsis thaliana ecotypes were grown at 14 degrees C and 22 degrees C under two light conditions (300 microE m-2 s-1 or 150 microE m-2 s-1) and the effect of temperature on their growth and flowering time was studied. Flowering occurred within 31 days (experimental period) at 22 degrees C, whereas a decrease in growth temperature resulted in a delay in flowering (63 days) under both light conditions. At 14 degrees C, membrane-bound APX (tAPX) activity decreased and total chlorophyll (Chl) content increased with growth under both light conditions. However, at 22 degrees C, the tAPX activity increased and total Chl content decreased with growth under both light conditions. These results suggest that at 22 degrees C oxidative stress was high under both light conditions and consequently Chl content decreased under stressful conditions or vice versa for all the four A. thaliana ecotypes studied. Under both the temperature and light conditions, soluble APX activity showed an irregular pattern of growth. The increase in tAPX activity, with growth only at 22 degrees C but not at 14 degrees C, suggests increased H2O2 formation in flowering plants at 22 degrees C for all the four A. thaliana ecotypes studied. Before flowering, the tAPX activity showed a significantly negative correlation with flowering time. Higher oxidative stress in the lower-latitude ecotypes might induce earlier flowering than the higher-latitude ecotypes. From these results, we propose a hypothesis that H2O2 is one of the possible factors in flower induction.  相似文献   

3.
Plant growth-promoting rhizobacteria (PGPR) colonize plant roots and exert beneficial effects on plant health and development. We are investigating the mechanisms by which PGPR elicit plant growth promotion from the viewpoint of signal transduction pathways within plants. We report here our first study to determine if well-characterized PGPR strains, which previously demonstrated growth promotion of various other plants, also enhance plant growth in Arabidopsis thaliana. Eight different PGPR strains, including Bacillus subtilis GB03, B. amyloliquefaciens IN937a, B. pumilus SE-34, B. pumilus T4, B. pasteurii C9, Paenibacillus polymyxa E681, Pseudomonas fluorescens 89B-61, and Serratia marcescens 90-166, were evaluated for elicitation of growth promotion of wild-type and mutant Arabidopsis in vitro and in vivo. In vitro testing on MS medium indicated that all eight PGPR strains increased foliar fresh weight of Arabidopsis at distances of 2, 4, and 6 cm from the site of bacterial inoculation. Among the eight strains, IN937a and GB03 inhibited growth of Arabidopsis plants when the bacteria were inoculated 2 cm from the plants, while they significantly increased plant growth when inoculated 6 cm from the plants, suggesting that a bacterial metabolite that diffused into the agar accounted for growth promotion with this strain. In vivo, eight PGPR strains promoted foliar fresh weight under greenhouse conditions 4 weeks after sowing. To define signal transduction pathways associated with growth promotion elicited by PGPR, various plant-hormone mutants of Arabidopsis were evaluated in vitro and in vivo. Elicitation of growth promotion by PGPR strains in vitro involved signaling of brassinosteroid, IAA, salicylic acid, and gibberellins. In vivo testing indicated that ethylene signaling was involved in growth promotion. Results suggest that elicitation of growth promotion by PGPR in Arabidopsis is associated with several different signal transduction pathways and that such signaling may be different for plants grown in vitro vs. in vivo.  相似文献   

4.
The iron-sulfur protein is an essential component of mitochondrial complex II (succinate dehydrogenase, SDH), which is a functional enzyme of both the citric acid cycle and the respiratory electron transport chain. This protein is encoded by a single-copy nuclear gene in mammals and fungi and by a mitochondrial gene in Rhodophyta and the protist Reclinomonas americana. In Arabidopsis thaliana, the homologous protein is now found to be encoded by three nuclear genes. Two genes (sdh2-1 andsdh2-2) likely arose from a relatively recent duplication event since they have similar structures, encode nearly identical proteins and show similar expression patterns. Both genes are interrupted by a single intron located at a conserved position. Expression was detected in all tissues analysed, with the highest steady-state mRNA levels found in flowers and inflorescences. In contrast, the third gene (sdh2-3) is interrupted by 4 introns, is expressed at a low level, and encodes a SDH2-3 protein which is only 67% similar to SDH2-1 and SDH2-2 and has a different N-terminal presequence. Interestingly, the proteins encoded by these three genes are probably functional because they are highly conserved compared with their homologues in other organisms. These proteins contain the cysteine motifs involved in binding the three iron-sulfur clusters essential for electron transport. Furthermore, the three polypeptides are found to be imported into isolated plant mitochondria.  相似文献   

5.
Chloroplasts are a significant site for reactive oxygen species production under illumination and, thus, possess a well-organized antioxidant system involving ascorbate. Ascorbate recycling occurs in different manners in this system, including a dehydroascorbate reductase (DHAR) reaction. We herein investigated the physiological significance of DHAR3 in photo-oxidative stress tolerance in Arabidopsis. GFP-fused DHAR3 protein was targeted to chloroplasts in Arabidopsis leaves. A DHAR3 knockout mutant exhibited sensitivity to high light (HL). Under HL, the ascorbate redox states were similar in mutant and wild-type plants, while total ascorbate content was significantly lower in the mutant, suggesting that DHAR3 contributes, at least to some extent, to ascorbate recycling. Activation of monodehydroascorbate reductase occurred in dhar3 mutant, which might compensate for the lack of DHAR3. Interestingly, glutathione oxidation was consistently inhibited in dhar3 mutant. These findings indicate that DHAR3 regulates both ascorbate and glutathione redox states to acclimate to HL.  相似文献   

6.
The SERRATE gene (SE) was shown to determine leaf organogenesis and morphogenesis patterning in Arabidopsis thaliana. The se-1 mutant was used here to investigate the role of SE in leaf development in response to incident light. Virtual plants were modelled to analyse the phenotypes induced by this mutation. Plants were grown under various levels of incident light. The amount of light absorbed by the plant was estimated by combining detailed characterizations of the radiative environment and virtual plant simulations. Four major changes in leaf development were induced by the se-1 mutation. Two constitutive leaf growth variables were modified, with a lower initial expansion rate and a higher duration of expansion. Two original responses to a reduced incident light were identified, concerning the leaf-initiation rate and the duration of leaf expansion. The se-1 mutation dramatically affects both changes in the leaf development pattern and the response to reduced incident light. Virtual plants helped to reveal the combined effects of the multiple changes induced by this mutation.  相似文献   

7.
We have previously demonstrated that RNA interference-mediated suppression of xanthine dehydrogenase (XDH), the rate-limiting enzyme in purine degradation, causes defects in the normal growth and development of Arabidopsis thaliana. Here, we investigated a possible role for XDH in drought tolerance, since this enzyme is also implicated in plant stress responses and acclimatization. When XDH-suppressed lines were subjected to drought stress, plant growth was markedly reduced in conjunction with significantly enhanced cell death and H2O2 accumulation. This drought-hypersensitive phenotype was reversed by pretreatment with exogenous uric acid, the catalytic product of XDH. These results suggest that fully functional purine metabolism plays a role in the Arabidopsis drought acclimatization.  相似文献   

8.
9.
Oil bodies in seeds of higher plants are surrounded with oleosins. Here we demonstrate a novel role for oleosins in protecting oilseeds against freeze/thaw-induced damage of their cells. We detected four oleosins in oil bodies isolated from seeds of Arabidopsis thaliana , and designated them OLE1, OLE2, OLE3 and OLE4 in decreasing order of abundance in the seeds. For reverse genetics, we isolated oleosin-deficient mutants ( ole1 , ole2 , ole3 and ole4 ) and generated three double mutants ( ole1 ole2 , ole1 ole3 and ole2 ole3 ). Electron microscopy showed an inverse relationship between oil body sizes and total oleosin levels. The double mutant ole1 ole2 , which had the lowest levels of oleosins, had irregular enlarged oil-containing structures throughout the seed cells. Germination rates were positively associated with oleosin levels, suggesting that defects in germination are related to the expansion of oil bodies due to oleosin deficiency. We found that freezing followed by imbibition at 4°C abolished seed germination of single mutants ( ole1 , ole2 and ole3 ), which germinated normally without freezing treatment. The treatment accelerated the fusion of oil bodies and the abnormal-positioning and deformation of nuclei in ole1 seeds, which caused seed mortality. In contrast, ole1 seeds that had undergone freezing treatment germinated normally when incubated at 22°C instead of 4°C, because degradation of oils abolished the acceleration of fusion of oil bodies during imbibition. Taken together, our findings suggest that oleosins increase the viability of over-wintering oilseeds by preventing abnormal fusion of oil bodies during imbibition in the spring.  相似文献   

10.
Intraspecific competitive interactions can profoundly influence phenotypic evolution. However, prior studies have rarely evaluated the evolutionary potential of the two components of competitive ability, tolerance of competition and suppression of neighbours. Here, we grow a set of 20 Arabidopsis thaliana recombinant inbred lines in three competitive treatments (noncompetitive, intra‐genotypic competition and inter‐genotypic competition) to examine if there is genetic variation for the components of competitive ability and whether neighbour relatedness has an effect on fitness. We find evidence for genetic variation in tolerance of competition and neighbour suppression and that these two competitive strategies are correlated, such that genotypes that tolerate competition will also strongly suppress neighbours. We further observe that the effect of neighbour relatedness on fitness of target individuals depends on neighbour identity, i.e. whether target individuals perform better when competing against self vs. nonself individuals depends on the genotypic identity of the nonself neighbour. The results are particularly relevant to evolutionary responses under multi‐level selection.  相似文献   

11.
Hybrids often differ in fitness from their parents. They may be superior, translating into hybrid vigour or heterosis, but they may also be markedly inferior, because of hybrid weakness or incompatibility. The underlying genetic causes for the latter can often be traced back to genes that evolve rapidly because of sexual or host–pathogen conflicts. Hybrid weakness may manifest itself only in later generations, in a phenomenon called hybrid breakdown. We have characterized a case of hybrid breakdown among two Arabidopsis thaliana accessions, Shahdara (Sha, Tajikistan) and Lövvik‐5 (Lov‐5, Northern Sweden). In addition to chlorosis, a fraction of the F2 plants have defects in leaf and embryo development, and reduced photosynthetic efficiency. Hybrid chlorosis is due to two major‐effect loci, of which one, originating from Lov‐5, appears to encode an RNA helicase (AtRH18). To examine the role of the chlorosis allele in the Lövvik area, in addition to eight accessions collected in 2009, we collected another 240 accessions from 15 collections sites, including Lövvik, from Northern Sweden in 2015. Genotyping revealed that Lövvik collection site is separated from the rest. Crosses between 109 accessions from this area and Sha revealed 85 cases of hybrid chlorosis, indicating that the chlorosis‐causing allele is common in this area. These results suggest that hybrid breakdown alleles not only occur at rapidly evolving loci, but also at genes that code for conserved processes.  相似文献   

12.
Kim DS  Cho DS  Park WM  Na HJ  Nam HG 《Proteomics》2006,6(10):3040-3049
Light critically affects the physiology of plants. Using two-dimensional gel electrophoresis, we used a proteomics approach to analyze the responses of Arabidopsis thaliana to red (660 nm), far-red (730 nm) and blue (450 nm) light, which are utilized by type II and type I phytochromes, and blue light receptors, respectively. Under specific light treatments, the proteomic profiles of 49 protein spots exhibited over 1.8-fold difference in protein abundance, significant at p <0.05. Most of these proteins were metabolic enzymes, indicating metabolic changes induced by light of specific wavelengths. The differentially-expressed proteins formed seven clusters, reflecting co-regulation. We used the 49 differentially-regulated proteins as molecular markers for plant responses to light, and by developing a procedure that calculates the Pearson correlation distance of cluster-to-cluster similarity in expression changes, we assessed the proteome-based relatedness of light responses for wild-type and phytochrome mutant plants. Overall, this assessment was consistent with the known physiological responses of plants to light. However, we also observed a number of novel responses at the proteomic level, which were not predicted from known physiological changes.  相似文献   

13.
14.
15.
表观等位基因一般是指仅由DNA甲基化差异引起的表达量不同的等位基因,对植物形态结构和各种生理过程具有重要影响。但自然条件下环境因素对植物表观等位基因的影响还不清楚,同时表观等位基因在植物环境适应性进化中的作用和机制还亟待探究。为了在全基组水平鉴定拟南芥(Arabidopsis thaliana)中与特定环境因素相关的表观等位基因,并分析它们参与拟南芥环境适应性进化的可能机制,本研究利用623株拟南芥生态型的转录组、甲基化组和种源地气候数据进行多组学关联分析,并同时进行了蛋白互作网络和基因富集分析。以春季和夏季降水量为例,本研究最终鉴定到5个基因(AGL36、AT2G34100、AT4G09360、LSU4和AT5G56910)可能具有相应的表观等位基因,基因内部或附近特定区域不同甲基化水平对它们的表达可能具有调控作用。其中与种子发育有关的印记基因AGL36首次被发现可能作为表观等位基因参与拟南芥环境适应性进化,其他4个基因均与生物胁迫响应有关。自然条件下降水量能影响当地病虫害的严重程度,而DNA甲基化能通过影响这4个免疫基因的表达来影响拟南芥免疫能力。在长期演化过程中有利于个体适应当地降水模式的表观等位基因受到正向选择,这可能是这些表观等位基因参与拟南芥降水适应性进化的潜在机制。通过蛋白互作网络、GO功能分析和KEGG通路分析,本研究还首次发现LSU4可能与LSU基因家族其他成员一样参与硫代谢网络,并通过影响硫代葡萄糖苷代谢参与拟南芥生物胁迫响应。  相似文献   

16.
以拟南芥为材料,利用PCR技术分离pyk10启动子序列,构建了该启动子GUS植物表达载体,农杆菌介导转化烟草,分析该基因在烟草中的表达,以明确拟南芥根特异表达基因pyk10启动子在烟草中的表达特性.结果表明:克隆的pyk10启动子与已报道的pyk10启动子一致性为100%,GUS基因在烟草的根部特异表达,表明该启动子为根部特异表达启动子,为揭示植物根的发生、分化和发育机制,以及培育抗根部病虫害和营养高效利用型转基因烟草奠定了基础.  相似文献   

17.
Light plays an important role in plant growth, development, and response to environmental stresses. To investigate the effects of light on the plant responses to cadmium (Cd) stress, we performed a comparative physiological and proteomic analysis of light‐ and dark‐grown Arabidopsis cells after exposure to Cd. Treatment with different concentrations of Cd resulted in stress‐related phenotypes such as cell growth inhibition and decline of cell viability. Notably, light‐grown cells were more sensitive to heavy metal toxicity than dark‐grown cells, and the basis for this appears to be the elevated Cd accumulation, which is twice as much under light than dark growth conditions. Protein profiles analyzed by 2D DIGE revealed a total of 162 protein spots significantly changing in abundance in response to Cd under at least one of these two growing conditions. One hundred and ten of these differentially expressed protein spots were positively identified by MS/MS and they are involved in multiple cellular responses and metabolic pathways. Sulfur metabolism‐related proteins increased in relative abundance both in light‐ and dark‐grown cells after exposure to Cd. Proteins involved in carbohydrate metabolism, redox homeostasis, and anti‐oxidative processes were decreased both in light‐ and dark‐grown cells, with the decrease being lower in the latter case. Remarkably, proteins associated with cell wall biosynthesis, protein folding, and degradation showed a light‐dependent response to Cd stress, with the expression level increased in darkness but suppressed in light. The possible biological importance of these changes is discussed.  相似文献   

18.
Genome colinearity has been studied for two closely related diploid species of the Brassicaceae family, Arabidopsis thaliana and Capsella rubella. Markers mapping to chromosome 4 of A. thaliana were found on two linkage groups in Capsella and colinear segments spanning more than 10 cM were revealed. Detailed analysis of a 60 kbp region in A. thaliana and its counterpart in C. rubella showed virtually complete conservation of gene repertoire, order and orientation. The comparison of orthologous genes revealed very similar exon-intron structures and sequence identities of 90% or more were found for exon sequences. This extensive genome colinearity at the genetic and molecular level allows the efficient transfer of data from the well-studied A. thaliana genome to other species in the Brassicaceae family, substantially facilitating genome analysis studies for species of this family.  相似文献   

19.
20.
天山山脉是世界拟南芥(Arabidopsis thaliana)及其近缘种的分布中心之一,资源优势明显.在北天山中段浅山地带选择拟南芥分布的典型样地50m×50m,分析了样地物种的结构、组成和土壤理化性质,用Ripley's K(d)函数分析了拟南芥与相邻物种的空间特征和相互关系.发现样地由7科23个物种组成,以新疆绢蒿(Seriphidium kaschgaricum)为建群种,短命植物物种占近70%.拟南芥仅分布于北坡,在3m内聚集强度高于所有分析物种,在5m范围内与新疆绢蒿中株呈显著正关联,与十字花科的涩芥(Malcolmia africana)、藜科的散枝猪毛菜(Salsola brachiata)、木碱蓬(Suaeda dendroides)、角果藜(Ceratocarpus arenarius)呈一定尺度显著负关联.分析认为拟南芥空间分布依赖于新疆绢蒿大株、中株生长塑造的遮阴、保湿和丰富土壤有机质,生态位与藜科物种差异极大,生境特异性高于同属近缘种小鼠耳芥(Arabidopsis pumila),以及涩芥(M. africana)、庭芥(Alyssum desertorum)、四齿芥(Tetracme quadricornis)、丝叶芥(Leptaleum filifolium)、狭果鹤虱(Lappula semiglabra)等短命植物.在干旱胁迫下,拟南芥环境选择强度大于种内作用,密度依赖的种子扩散表现不明显.扩散对策是通过大量生产种子,依靠果实不易开裂控制种子短距离扩散,充分利用原适宜生境来维持种群繁衍.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号