首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
We have developed immortalized epithelial cystic fibrosis (CF) cell lines by infecting cultured nasal polyp cells with a SV40/Adenol2 hybrid virus. The cell lines obtained are epithelial in nature as shown by cytokeratin production and morphology, although cytokeratins 4 and 13 typical of primary nasal polyp cells are produced at a much reduced rate. Ussing chamber experiments showed that the precrisis CF cell line NCF3 was able to perform trans-cellular chloride transport when activated by agents which elevate intracellular calcium. cAMP agonists had no effect on chloride flux in NCF3 as expected for CF cells. The apical chloride channels found with the patch clamp technique in NCF3 and in the postcrisis cell line NCF3A have a conductance similar to that of chloride channels found earlier in normal and CF epithelial cells. The channels show a delay in the onset of activity in off-cell patches and are not activated by increased cAMP levels in the cell. This indicates that immortalized CF epithelial cells will provide a useful model for the study of cystic fibrosis.  相似文献   

4.
The invitation to present the 2010 Hans Ussing lecture for the Epithelial Transport Group of the American Physiological Society offered me a unique, special, and very surprising opportunity to join in saluting a man whom I met only once, but whose work was the basis, not only for my career, but also for finding the molecular defect in the inherited disease cystic fibrosis (CF). In this context, I will venture to make the tribute with a new explanation of why a mutation in a single gene that codes for an anion channel can cause devastation of multiple epithelial systems with pathogenic mucus. In so doing, I hope to raise awareness of a new role for that peculiar anion around which so much physiology revolves, HCO(3)(-). I begin by introducing CF pathology as I question the name of the disease as well as the prevalent view of the basis of its pathology by considering: 1) mucus, 2) salt, and 3) HCO(3)(-). I then present recent data showing that HCO(3)(-) is required for normal mucus discharge, and I will close with conjecture as to how HCO(3)(-) may support mucus discharge and why the failure to transport this electrolyte is pathogenic in CF.  相似文献   

5.
The fetal lung actively transports chloride across the airway epithelium. ClC-2, a pH-activated chloride channel, is highly expressed in the fetal lung and is located on the apical surface of the developing respiratory epithelium. Our goal was to determine whether acidic pH could stimulate chloride secretion in fetal rat distal lung epithelial cells mounted in Ussing chambers. A series of acidic solutions stimulated equivalent short-circuit current (I(eq)) from a baseline of 28 +/- 4.8 (pH 7.4) to 70 +/- 5 (pH 6.2), 114 +/- 12.8 (pH 5.0), and 164 +/- 19.2 (pH 3.8) microA/cm(2). These changes in I(eq) were inhibited by 1 mM cadmium chloride and did not result in large changes in [(3)H]mannitol paracellular flux. Immunofluorescent detection by confocal microscopy revealed that ClC-2 is expressed along the luminal surface of polarized fetal distal lung epithelial cells. These data suggest that the acidic environment of the fetal lung fluid could activate chloride channels contributing to fetal lung fluid production and that the changes in I(eq) seen in these Ussing studies may be due to stimulation of ClC-2.  相似文献   

6.
Electrolyte transport across the adult alveolar epithelium plays an important role in maintaining a thin fluid layer along the apical surface of the alveolus that facilitates gas exchange across the epithelium. Most of the work published on the transport properties of alveolar epithelial cells has focused on the mechanisms and regulation of Na(+) transport and, in particular, the role of amiloride-sensitive Na(+) channels in the apical membrane and the Na(+)-K(+)-ATPase located in the basolateral membrane. Less is known about the identity and role of Cl(-) and K(+) channels in alveolar epithelial cells, but studies are revealing important functions for these channels in regulation of alveolar fluid volume and ionic composition. The purpose of this review is to examine previous work published on Cl(-) and K(+) channels in alveolar epithelial cells and to discuss the conclusions and speculations regarding their role in alveolar cell transport function.  相似文献   

7.
Large conductance, Ca(2+)-activated, and voltage-dependent K(+) (BK) channels control a variety of physiological processes in nervous, muscular, and renal epithelial tissues. In bronchial airway epithelia, extracellular ATP-mediated, apical increases in intracellular Ca(2+) are important signals for ion movement through the apical membrane and regulation of water secretion. Although other, mainly basolaterally expressed K(+) channels are recognized as modulators of ion transport in airway epithelial cells, the role of BK in this process, especially as a regulator of airway surface liquid volume, has not been examined. Using patch clamp and Ussing chamber approaches, this study reveals that BK channels are present and functional at the apical membrane of airway epithelial cells. BK channels open in response to ATP stimulation at the apical membrane and allow K(+) flux to the airway surface liquid, whereas no functional BK channels were found basolaterally. Ion transport modeling supports the notion that apically expressed BK channels are part of an apical loop current, favoring apical Cl(-) efflux. Importantly, apical BK channels were found to be critical for the maintenance of adequate airway surface liquid volume because continuous inhibition of BK channels or knockdown of KCNMA1, the gene coding for the BK α subunit (KCNMA1), lead to airway surface dehydration and thus periciliary fluid height collapse revealed by low ciliary beat frequency that could be fully rescued by addition of apical fluid. Thus, apical BK channels play an important, previously unrecognized role in maintaining adequate airway surface hydration.  相似文献   

8.
The goal of this study was to develop a primary culture model of differentiated murine tracheal epithelium. When grown on semipermeable membranes at an air interface, dissociated murine tracheal epithelial cells formed confluent polarized epithelia with high transepithelial resistances ( approximately 12 kOmega. cm(2)) that remained viable for up to 80 days. Immunohistochemistry and light and electron microscopy demonstrated that the cells were epithelial in nature (cytokeratin positive, vimentin and alpha-smooth muscle actin negative) and differentiated to form ciliated and secretory cells from day 8 after seeding onward. With RT-PCR, expression of the cystic fibrosis transmembrane conductance regulator (Cftr) and murine beta-defensin (Defb) genes was detected (Defb-1 was constitutively expressed, whereas Defb-2 expression was induced by exposure to lipopolysaccharide). Finally, Ussing chamber experiments demonstrated an electrophysiological profile compatible with functional amiloride-sensitive sodium channels and cAMP-stimulated CFTR chloride channels. These data indicate that primary cultures of murine tracheal epithelium have many characteristics similar to those of murine tracheal epithelium in vivo. This method will facilitate the establishment of primary cultures of airway epithelium from transgenic mouse models of human diseases.  相似文献   

9.
External Na(+) self-inhibition is an intrinsic feature of epithelial sodium channels (ENaC). Cpt-cAMP regulates heterologous guinea pig but not rat αβγ ENaC in a ligand-gated manner. We hypothesized that cpt-cAMP may eliminate the self-inhibition of human ENaC thereby open channels. Regulation of self-inhibition by this compound in oocytes was analyzed using the two-electrode voltage clamp and Ussing chamber setups. External cpt-cAMP stimulated human but not rat and murine αβγ ENaC in a dose- and external Na(+) concentration-dependent fashion. Intriguingly, cpt-cAMP activated human δβγ more potently than αβγ channels, suggesting that structural diversity in ectoloop between human α, δ, and those ENaC of other species determines the stimulating effects of cpt-cAMP. Cpt-cAMP increased the ratio of stationary and maximal currents. Mutants having abolished self-inhibition (β(ΔV348) and γ(H233R)) almost completely eliminated cpt-cAMP mediated activation of ENaC. On the other hand, mutants both enhancing self-inhibition and elevating cpt-cAMP sensitivity increased the stimulating effects of the compound. This compound, however, could not activate already fully opened channels, e.g., degenerin mutation (αβ(S520C)γ) and the proteolytically cleaved ENaC by plasmin. Cpt-cAMP activated native ENaC to the same extent as that for heterologous ENaC in human lung epithelial cells. Our data demonstrate that cpt-cAMP, a broadly used PKA activator, stimulates human αβγ and δβγ ENaC channels by relieving self-inhibition.  相似文献   

10.
Chloride channels play an important role in the physiology and pathophysiology of epithelia, but their pharmacology is still poorly developed. We have chemically synthesized a series of substituted benzo[c]quinolizinium (MPB) compounds. Among them, 6-hydroxy-7-chlorobenzo[c]quinolizinium (MPB-27) and 6-hydroxy-10-chlorobenzo[c]quinolizinium (MPB-07), which we show to be potent and selective activators of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. We examined the effect of MPB compounds on the activity of CFTR channels in a variety of established epithelial and nonepithelial cell systems. Using the iodide efflux technique, we show that MPB compounds activate CFTR chloride channels in Chinese hamster ovary (CHO) cells stably expressing CFTR but not in CHO cells lacking CFTR. Single and whole cell patch clamp recordings from CHO cells confirm that CFTR is the only channel activated by the drugs. Ussing chamber experiments reveal that the apical addition of MPB to human nasal epithelial cells produces a large increase of the short circuit current. This current can be totally inhibited by glibenclamide. Whole cell experiments performed on native respiratory cells isolated from wild type and CF null mice also show that MPB compounds specifically activate CFTR channels. The activation of CFTR by MPB compounds was glibenclamide-sensitive and 4, 4'-diisothiocyanostilbene-2,2'-disulfonic acid-insensitive. In the human tracheal gland cell line MM39, MPB drugs activate CFTR channels and stimulate the secretion of the antibacterial secretory leukoproteinase inhibitor. In submandibular acinar cells, MPB compounds slightly stimulate CFTR-mediated submandibular mucin secretion without changing intracellular cAMP and ATP levels. Similarly, in CHO cells MPB compounds have no effect on the intracellular levels of cAMP and ATP or on the activity of various protein phosphatases (PP1, PP2A, PP2C, or alkaline phosphatase). Our results provide evidence that substituted benzo[c]quinolizinium compounds are a novel family of activators of CFTR and of CFTR-mediated protein secretion and therefore represent a new tool to study CFTR-mediated chloride and secretory functions in epithelial tissues.  相似文献   

11.
12.
For ruminants, marked differences to monogastric species have been described concerning the localisation and vitamin D sensitivity of gastrointestinal calcium absorption, particularly with respect to the forestomach compartment. Therefore, we investigated gastrointestinal calcium transport of sheep as influenced by a dietary calcium restriction and/or a supraphysiological dosage of exogenous calcitriol. Using the Ussing chamber technique, we determined calcium and mannitol flux rates to differentiate between para- and transcellular calcium transport in rumen, duodenum, jejunum and colon. Expression of epithelial calcium channels, calbindin-D(9K), and basolateral extrusion mechanisms was determined by quantitative RT-PCR and Western blot analysis. Active calcium transport could be demonstrated in jejunum and rumen. A significant stimulation of jejunal calcium absorption was only observed in animals treated with calcitriol. The alimentary calcium restriction alone did not result in significant effects indicating a less effective intestinal adaptation to alimentary calcium restriction than observed in monogastric animals. The observed ruminal calcium transport was not affected at all, neither by the diet nor the calcitriol treatment. Furthermore, no significant expression of epithelial calcium channels or calbindin-D(9K) could be detected in the rumen; therefore it is concluded that calcium transport in the forestomachs is probably mediated by a different, so far unknown mechanism.  相似文献   

13.
Amiloride-sensitive sodium channels in the lung play an important role in lung fluid balance. Particularly in the alveoli, sodium transport is closely regulated to maintain an appropriate fluid layer on the surface of the alveoli. Alveolar type II cells appear to play an important role in this sodium transport, with the role of alveolar type I cells being less clear. In alveolar type II cells, there are a variety of different amiloride-sensitive, sodium-permeable channels. This significant diversity appears to play a role in both normal lung physiology and in pathological states. In many epithelial tissues, amiloride-sensitive epithelial sodium channels (ENaC) are formed from three subunit proteins, designated alpha-, beta-, and gamma-ENaC. At least part of the diversity of sodium-permeable channels in lung arises from the assembling of different combinations of these subunits to form channels with different biophysical properties and different mechanisms for regulation. This leads to epithelial tissue in the lung, which has enormous flexibility to alter the magnitude and regulation of salt and water transport. In this review, we discuss the biophysical properties and occurrence of these various channels and some of the mechanisms for their regulation.  相似文献   

14.
Summary The understanding of pathways associated with differentiated function in human epithelial cells has been enhanced by the development of methods for the short-term culture of human epithelial cells. In general these methods involve the use of serum. The subculture and maintenance of epithelial cells in long-term culture has been more problematic. A serum-free medium developed for human bronchial epithelial cells was slightly modified and found to be useful for the subculture and long-term maintenance of not only bronchial epithelial cells, but also tracheal, nasal polyp, and sweat gland epithelial cells from either normal or cystic fibrosis individuals. The cells maintained epithelial-specific characteristics after multiple subcultures. Monolayers of epithelial cells showed junctional complex formation, the presence of keratin, and micro villi. Functional studies with Ussing chambers showed short circuit current (Isc) responses to isoproterenol, bradykinin, or calcium ionophore (A23187) in subcultured tracheal and bronchial cells. This work is supported by grants HL41928 and DK39619 (DCG), HL24136 (CBB), and HL42368 (JHW and DCG) from the National Institutes of Health, Bethesda, MD.  相似文献   

15.
It is now apparent that many of the subtleties of cellular metabolism are intrinsically associated with cell structure and that their physiological study requires techniques that respect the integrity of cells and organs. We have used 15N-substrates to examine urea synthesis in the intact perfused rat liver. This work permits us to determine the extent to which different amino acids donate nitrogen atoms to the two nitrogens of urea. It is apparent that alanine and the amino group of glutamine provide nitrogen for urea synthesis primarily via cytoplasmic aspartate, whereas mitochondrial ammonia is the preferred route of entry for nitrogen from pre-formed ammonia or from the amide nitrogen of glutamine. Most importantly, this methodology permits us to explore for the occurrence of metabolic channels in such a highly organised, physiological system. Our studies indicate that a metabolic channel does not exist between glutaminase and carbamoylphosphate synthetase 1.  相似文献   

16.
Aldosterone at normal physiological levels induces rapid increases in intracellular calcium and pH in human distal colon. The end target of these rapid signaling responses are basolateral K+ channels. Using spectrofluorescence microscopy and Ussing chamber techniques, we have shown that aldosterone activates basolateral Na/H exchange via a protein kinase C and calcium-dependent signaling pathway. The resultant intracellular alkalinization up-regulates an adenosine triphosphate (ATP)-dependent K+ channel (K(ATP)) and inhibits a Ca2+ -dependent K+ channel (K(Ca)). In Ussing chamber experiments, we have shown that the K(ATP) channel is required to drive sodium absorption, whereas the K(Ca) channel is necessary for both cyclic adenosine monophosphate and calcium-dependent chloride secretion. The rapid effects of aldosterone on intracellular calcium, pH, protein kinase C and K(ATP), K(Ca) channels are insensitive to cycloheximide, actinomycin D, and spironalactone, indicating a nongenomic mechanism of action. We propose that the physiological role for the rapid nongenomic effect of aldosterone is to prime pluripotential epithelia for absorption by simultaneously up-regulating K(ATP) channels to drive absorption through surface cells and down-regulating the secretory capacity by inhibiting K(Ca) channels involved in secretion through crypt cells.  相似文献   

17.
Summary Human sweat duct cells from the coiled reabsorptive segment have been cultured successfully, free from fibroblasts, in a low serum, hormone-supplemented medium. Ham's F12. The cultured cells exhibited a typical epithelial cobblestone pattern and microvilli-covered luminal cells were seen joined together with typical junctional complexes. In cultures derived from normals and patients with cystic fibrosis (CF), growth and morphologic characteristics were indistinguishable. When grown on a membranous support, and mounted in an Ussing chamber, vectorial electroconductive ion-transport could be identified. The epithelial preparations produced active mucosa to serosa-directed sodium flux via amiloride-sensitive, apical sodium channels and ouabain-sensitive sodium pumps located in the basolateral membrane, which also contained a potassium shunt. These findings are consistent with a polarized epithelium with properties similar to the intact organ. High transepithelial resistance and increased amiloride sensitivity were typical for cells derived from CF, indicating that principal normal as well as pathologic properties of the sweat duct are preserved in culture. Financial support was provided by CF Foundation USA (G1397-01), SLF, Ville Heyse, Haensch, Nationalforeningen, Winthertur, Novo, and Egmont Foundation.  相似文献   

18.
19.
20.
Recent advances in the characterization of epithelial ionic channels   总被引:3,自引:0,他引:3  
Physiologists have long recognized the importance of channels in the functioning of neurons and excitable membranes. This brief review has been an attempt to illustrate how channel properties are also essential to an understanding of epithelial transport physiology. Among their more important functions, channels influence membrane potentials and serve as conduits for ion movements. As the need to understand the molecular basis for ion transport continues to develop, it is crucial to be able to distinguish between different channel properties. For example, apparent voltage-dependent properties can arise because of a voltage-dependent gating process, or alternatively, because of a rectification of channel conductance. Voltage-dependent effects can also be only indirect, mediated by changes in cell volume, intracellular ion levels, the levels of secondary intracellular messengers such as Ca2+ (perhaps through voltage-dependent membrane Ca2+ channels), or possibly even by morphological changes. An important area for future research is to differentiate mechanisms which modulate the activity of open channels. For example, a decrease in channel number, a reduction in open-channel conductance or a decline in the probability of channel opening can all underlie changes in macroscopic permeability. The factors which mediate hormonal activation of epithelial channels particularly need to be understood. Specifically, the mechanisms of aldosterone and anti-diuretic hormone activation of apical membrane Na+ channels need to be identified. In conclusion, we are witnessing a new era in epithelial electrophysiology which promises to resolve many issues concerning the cellular regulation of ion transport and open new, unanticipated avenues of inquiry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号