首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Four species of red marine algae (Rhodophyceae), five species of brown marine algae (Pheophyceae) and two species of green marine algae (Chlorophyceae) were examined for the fatty acid composition of the three lipid groups separated by silica gel column chromatography (neutral lipids, glycolipids, phospholipids). The four red algae had high contents of 16:0 and C20-polyunsaturated fatty acids (PUFA), 20:5n-3 ranging from 18 to 49% of the total fatty acid content and 20:4n-6 from 1.4 to 22.5%, these fatty acids were evenly distributed in all lipid groups. The five brown algae had high contents of 18:1n-9, 18:2n-6 and 18:3n-3 but low content of 20:5n-3. No precise trend was detected for the distribution of these fatty acids in the three lipid groups. The two green algae had high contents of 16:0, 18:1n-7 and 18:3n-3 and a very low content of PUFA. They contained also large amounts of 16:4n-3 together with 16:2n-6 and 16:3n-3. While 16:2n-6 was mainly found in phospholipids, 16:4n-3 was mainly distributed in neutral lipids and glycolipids.Porphyra umbilicalis represents the richest source of 20:5n-3 whileUndaria pinnatifida can be selected when a balanced mixture of (n-6) and (n-3) PUFA is required.Author for correspondence  相似文献   

2.
The presence of long-chain polyunsaturated fatty acids (PUFA; ca. 9% of total fatty acids) in marine sediments near Dover, southern Tasmania, Australia prompted a search for their likely source. Analysis of a number of different species of benthic fauna isolated from these sediments revealed that the brittle star Amphiura elandiformis contained abundant PUFA including high contents of the uncommon long-chain fatty acid 24:6(n-3), but much smaller amounts of the more common animal PUFA 22:6(n-3). This is the first report of the lipid composition of this animal. Identifications of the unsaturated fatty acids were confirmed by formation of DMOX derivatives which gave characteristic and easily interpreted mass spectra. The 24:6(n-3) PUFA has been identified in some genera of brittle stars, but not others. It is rarely found in significant amounts in other marine animals. DMDS adducts were used to identify the positions of double bonds in the monounsaturated fatty acids. The major 20:1 isomer was identified as the rarely reported 20:1(n-13) fatty acid. The two fatty acids 20:1(n-13) and 24:6(n-3) may be useful biomarkers in food-web studies for identifying a brittle star diet and for recognising contributions of organic detritus from this benthic animal to marine sediments.  相似文献   

3.
The fatty acid compositions of 22 species of marine macrophytes, belonging to the Ceramiales, Cryptonemiales, Nemalionales, Laminariales, Chordariales, Scytosiphonales, Desmarestiales, Dictyosiphonales, Fucales, Dictyotales and Ulvales and collected from the Bohai Sea, were determined by capillary gas chromatography. The contents of polyunsaturated fatty acids (FAs) in the Bohai Sea algae, in comparison with the same species from the Yellow Sea were found to be lower. Red algae had relatively high levels of the acids 16:0, 18:1(n-7), 18:1(n-9), 20:5(n-3) and 20:4(n-6), and those examined were rich in C(20) PUFAs, these chiefly being arachidonic and eicosapentaenoic acids. The major FAs encountered in the Phaeophyta were 14:0, 16:0, 18:1(n-9), 18:2(n-6), 18:3(n-3), 18:4(n-3), 20:4(n-6) and 20:5(n-3). C(18)PUFAs are of greater abundance in the brown algae than in the red algae examined. All three green algae from the Ulvales had similar fatty acid patterns with major components, 16:0, 16:4(n-3), 18:1(n-7), 18:2(n-6), 18:3(n-3), and 18:4(n-3). They contained 16:3(n-3) and more 16:4(n-3), were rich in C(18)PUFAs, chiefly 18:3(n-3) and 18:4(n-3) and had 18:1(n-7)/18:1(n-9) ratios higher than 1.  相似文献   

4.
Cryptophyceae and rhodophyceae; chemotaxonomy, phylogeny, and application   总被引:3,自引:0,他引:3  
Dunstan GA  Brown MR  Volkman JK 《Phytochemistry》2005,66(21):2557-2570
The biochemical compositions of seven strains of marine cryptomonad and a rhodophyte were determined in logarithmic phase batch (1.4 L flask) and semi-continuous (10 L carboy) culture. Lipid ranged from 13% to 28%, protein ranged from 53% to 68%, and carbohydrate ranged from 9% to 24% of the organic weight. The major lipid classes in the species examined were polar lipids (78-88% of total lipid). The major sterol in the Cryptophyceae and the Rhodophyceae was 24-methylcholesta-5,22E-dien-3beta-ol (62-99% of total sterols); which is also the major sterol in some diatoms and haptophytes. Smaller proportions of cholest-5-en-3beta-ol (1-17.7%) were also found in the Cryptophyceae. Most cryptomonads contained high proportions of the n-3 polyunsaturated fatty acids (PUFA), 18:3n-3 (20.7-29.9% of the total fatty acids), 18:4n-3 (12.5-30.2%), 20:5n-3 (7.6-13.2%) and 22:6n-3 (6.4-10.8%). However, the blue-green cryptomonad Chroomonas placoidea was characterized by a low proportion of 22:6n-3 (0.2% of total fatty acids), and a significant proportion of 22:5n-6 (4.5%), and the presence of 24-ethylcholesta-5,22E-dien-3beta-ol (35.5% of total sterols). The fatty acid composition of the rhodophyte Rhodosorus sp. was similar to those of the Cryptophyceae except for lower proportions of 18:4n-3 and lack of C21 and C22 PUFA. It is postulated that the primary endosymbiosis of a photosynthetic n-3 C18 PUFA-producing prokaryote and a eukaryotic host capable of chain elongation and desaturation of exogenous PUFA, resulted in the Rhodophyceae capable of producing n-3 C20 PUFA. The secondary endosymbiosis of a photosynthetic n-3 C20 PUFA-producing eukaryote (such as a Rhodosorus sp. like-rhodophyte) and a eukaryotic host capable of further chain elongation and desaturation, resulted in the Cryptophyceae being capable of producing n-3 C20 and C22 PUFA de novo. Selected isolates were examined further in feeding trials with juvenile Pacific oysters (Crassostrea gigas). Rhodomonas salina CS-24(containing elevated 22:6n-3) produced high growth rates in oysters; equivalent to the microalga commonly used in aquaculture, Isochrysis sp. (T.ISO).  相似文献   

5.
The synthesis of long chain polyunsaturated fatty acids (LCPUFA), such as eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3), involves fatty acyl desaturase and elongase enzymes. The marine fish species southern bluefin tuna (SBT) can accumulate large quantities of omega-3 (n-3) LCPUFA in its flesh but their capacity to synthesize EPA and DHA is uncertain. A cDNA, sbtElovl5, encoding a putative fatty acyl elongase was amplified from SBT liver tissue. The cDNA included an open reading frame (ORF) encoding 294 amino acids. Sequence comparisons and phylogenetic analyses revealed a high level of sequence conservation between sbtElovl5 and fatty acyl elongase sequences from other fish species. Heterologous expression of the sbtElovl5 ORF in Saccharomyces cerevisiae confirmed that it encoded a fatty acyl elongase capable of elongating C18/20 polyunsaturated fatty acid (PUFA) substrates, but not C22 PUFA substrates. For the first time in an Elovl5, the substrate competition occurring in nature was investigated. Higher activity towards n-3 PUFA substrates than omega-6 (n-6) PUFA substrates was exhibited, regardless of substrate chain length. The sbtElovl5 preferentially elongated 18:4n-3 and 18:3n-6 rather than 20:5n-3 and 20:4n-6. The sbtElovl5 enzyme also elongated saturated and monounsaturated fatty acids.  相似文献   

6.
In glass eels (54 mm TL; 0.018 g) of the Australian shortfin eel Anguilla australis the fatty acid composition was typical of marine species, with a n-3 to n-6 ratio of 5.3, a low level of mono saturated fatty acids (monoenes) and a high level of polyunsaturated fatty acids (PUFA). In elvers (pigmented: 56 mm TL; 0.028 g), the n-3 to n-6 ratio was 2.6. In elvers monoenes, as per cent of all identifiable fatty acids, increased to 30.9% from that of 19.8% in glass eels. The fatty acid composition of juvenile eels, reared from the original stock of glass eels and elvers, in outdoor, fertilized ponds, with (115 mmTL; 2.2 g) and without feeding (110 mmTL; 1.9 g), had a fatty acid composition typical of freshwater species, with a n-3 to n-6 ratio 1.9 and 1.3, and 37.7 and 46.5% of monoenes in unfed and fed groups respectively. A principal component analysis summarized efficiently the progressive changes in fatty acid composition from the glass eel to juvenile eel stage. The observed changes in the fatty acid of the different developmental stages in Australian shortfin eel are discussed in relation to physiological changes associated with the diadromous habit.  相似文献   

7.
The purpose of this investigation was to determine whether diets supplemented with oils from three different marine sources, all of which contain high proportions of long-chain n-3 polyunsaturated fatty acids (PUFA), result in qualitatively distinct lipid and fatty acid profiles in guinea pig heart. Albino guinea pigs (14 days old) were fed standard, nonpurified guinea pig diets (NP) or NP supplemented with menhaden fish oil (MO), harp seal oil (SLO) or porbeagle shark liver oil (PLO) (10%, w/w) for 4-5 weeks. An n-6 PUFA control group was fed NP supplemented with corn oil (CO). All animals appeared healthy, with weight gains marginally lower in animals fed the marine oils. Comparison of relative organ weights indicated that only the livers responded to the diets, and that they were heavier only in the marine-oil fed guinea pigs. Heart total cholesterol levels were unaffected by supplementing NP with any of the oils, whereas all increased the triacylglycerol (TAG) content. The fatty-acid profiles of totalphospholipid (TPL), TAG and free fatty acid (FFA) fractions of heart lipids showed that feeding n-3 PUFA significantly altered the proportions of specific fatty-acid classes. For example, all marine-oil-rich diets were associated with increases in total monounsaturated fatty acids in TPL (p < 0.05), and with decreases in total saturates in TAG (p < 0.05). Predictably, the n-3 PUFA enriched regimens significantly increased the cardiac content of n-3 PUFA and decreased that of n-6 PUFA, although the extent varied among the diets. As a result, n-6/n-3 ratios were significantly lower in all myocardial lipid classes of marine-oil-fed guinea pigs. Analyses of the profiles of individual PUFA indicated that quantitatively, the fatty acids of the three marine oils were metabolized and/or incorporated into TPL, TAG and FFA in a diet-specific manner. In animals fed MO-enriched diets in which eicosapentaenoic acid (EPA) > docosahexacnoic acid (DHA), ratios of DHA /EPA in the hearts were 1.2, 2.2 and 1.5 in TPL, TAG and FFA, respectively. In SLO-fed guinea pigs in which dietary EPA DHA, ratios of DHA/EPA were 0.9, 3.4 and 2.1 in TPL, TAG and FFA, respectively. Feeding NP + PLO (DHA/EPA = 4.8), resulted in values for DHA/EPA in cardiac tissue of 2.1, 10.6 and 2.9 in TPL, TAG and FFA, respectively. In the TAG and FFA, proportions of n-3 docosapentaenoic acid (n-3 DPA) were equal to or higher than EPA in the SLO- and PLO-fed animals. The latter group exhibited the greatest difference between the DHA/n-3 DPA ratio in the diet and in cardiac TAG and FFA fractions (7, 3.4 and 3.1, respectively). Quantitative analysis indicated that 85% of the n-3 PUFA were in TPL, 7-11% were in TAG, and 2-6% were FFA. Specific patterns of distribution of EPA, DPA and DHA depended on the dietary oil. Both the qualitative and quantitative results of this study demonstrated that in guinea pigs, n-3 PUFA in different marine oils are metabolized and/or incorporated into cardiac lipids in distinct manners. In support of the concept that the diet-induced alterations reflect changes specifically in cardiomyocytes, we observed that direct supplementation of cultured guinea pig myocytes for 2-3 weeks with EPA or DHA produced changes in the PUFA profiles of their TPL that were qualitatively similar to those observed in tissue from the dietary study. The factors that regulate specific deposition of n-3 PUFA from either dietary oils or individual PUFA are not yet known, however the differences that we observed could in some manner be related to cardiac function and thus their relative potentials as health-promoting dietary fats.  相似文献   

8.
Matured females of two Lake Baikal endemic fish species, Comephorus baicalensis and Comephorus dybowski, have been investigated for lipid of the whole body and specific tissues (liver, muscles, ovaries), phospholipid classes and fatty acids of neutral and polar lipids. Total lipid in the body (38.9% fresh weight), liver (23.5%) and muscles (14.5%) of C. baicalensis were greater than those of C. dybowski (4.7, 8.7 and 2.6%, respectively); only their ovaries were similar (5.3 and 5.6% lipid, respectively). In both species, phosphatidylcholine and phosphatidylethanolamine were the major phospholipids, ranging from 60.7 to 75.1% of total phospholipid and 14.5–25.7%, respectively. In most cases, monounsaturated fatty acids (MUFA) were the major fatty acid group in C. baicalensis, whereas polyunsaturated fatty acids (PUFA) were the major group in C. dybowski. The MUFA 18:1(n-9) prevailed over other fatty acids in C. baicalensis and varied from 19% in polar lipids of muscles to 56.1% in neutral lipids of muscles. In polar lipid of C. dybowski, the PUFA 22:6(n-3) prevailed over other fatty acids in muscles and ovaries, while 16:0 dominated polar liver lipids and neutral lipids of all tissues. Other major fatty acids included 16:1(n-7), 18:1(n-7), and 20:5(n-3). Values of the (n-3)/(n-6) fatty acid ratio for neutral lipids of C. baicalensis (0.5–0.9) are well below the range of values characteristic either for marine or freshwater fish, while these values for polar lipids (1.6–1.8) are in the range typical of freshwater fish. Neutral lipid fatty acid ratios in C. dybowski (2.5–3.1) allow it to be assigned to freshwater fish, but polar lipids (2.8–3.7) leave it intermediary between freshwater and marine fish.  相似文献   

9.
The lipid composition of two species of Serrasalmid fish with different natural feeding habits were compared in relation to the polyunsaturated fatty acids (PUFA) supplied in their diets. Mylossoma aureum , a herbivorous piranha, was maintained on oatmeal flakes in which : 2(n-6) and : 3(n-3) were the only PUFA and accounted for 40–8 and 1.2%, respectively of dietary fatty acids. Serrasalmus nattereri , the carnivorous red piranha, was fed mosquito larvae containing .0-33.4% of their total fatty acids as : 2(n-6)+18 : 3(n-3) and 4.9-8.5% as 20 : 4(n-6)+20 : 5(n-3). The two species had similar lipid class compositions in liver, brain, viscera and carcass, except that lipids from M. aureum were generally richer in triacylglycerols. In both species, visceral and carcass lipid contained high levels of triacylglycerols whose principal PUFA was : 2(n-6). In M. aureum the major PUFA in liver total lipid and triacylglycerols was : 2(n-6) whilst the major PUFA in liver phospholipids were : 4(n-6) and : 5(n-6), with : 6(n-3) being a minor component. The level of : 6(n-3) in ethanolamine glycerophospholipids was significantly greater in brain than liver of M. aureum. Although absent from dietary lipid, : 6(n-3) was the major PUFA in phosphatidylcholine and ethanolamine glycerophospholipids from both the liver and brain of S, nattereri . In both species, the ratio of (n-6)/(n-3)PUFA was consistently lower in tissue lipids than in dietary lipids. The results are consistent with (i) the herbivorous M. aureum converting dietary C18 PUFA to their C20 and C22 homologues, (ii) the carnivorous S, nattereri forming : 6(n-3) from either 18:3(n-3) or 20: 5(n-3) and (iii) both species selectively desaturating and elongating (n-3) rather than (n-6) PUFA.  相似文献   

10.
Conjugated linoleic acid (CLA) isomers have unique effects on tissue lipids. Here we investigated the influence of individual CLA isomers on the lipid weight and fatty acid composition of lipid metabolizing (i.e. liver and retroperitoneal adipose) and lipid sensitive (i.e. spleen and heart) tissues. Female mice (8 week old; n=6/group) were fed either a control or one of the two CLA isomer supplemented (0.5%) diets for 8 weeks. The cis-9, trans-11-CLA diet reduced the 18:1n-9 wt% by 20-50% in liver, adipose tissue, and spleen, reduced the spleen n-3 polyunsaturated fatty acid (PUFA) by 90%, and increased the n-6 PUFA wt% by 20-50% in all tissues except heart. The trans-10, cis-12-CLA reduced both the n-6 and n-3 PUFA wt% in liver (>50%), reduced the heart n-3 PUFA wt% by 25%, and increased the wt% of spleen n-3 PUFA by 700%. The functional consequences of such changes in tissue fatty acid composition need to be investigated.  相似文献   

11.
The preparation of fish oil concentrates containing only ( n -3) polyunsaturated fatty acids (PUFA) with different ratios of 20:5 ( n -3)/22:6 ( n -3) is described. Three groups of turbot were maintained on different diets containing: 1, 10% of the dry weight of the diet as natural fish oil, equivalent to 2.5% ( n -3) PUFA and 0–23% ( n -6) PUFA; 2, 10% of the dry weight of the diet as palmitic acid, i.e. no PUFA; 3, 8–7% palmitic acid and 1–3% of the dry weight as ( n -3 PUFA and negligible ( n -6) PUFA. Only the fish on the diet containing natural fish oil showed significant growth over a 15-week period. In addition there were high mortalities on the two experimental diets (2 and 3). Changing the ratio of 20:5 ( n -3)/22:6 ( n -3) from 13–8 to 2–2 in the diet containing 1 3% (n-3) PUFA and negligible ( n -6) PUFA markedly decreased the mortalities. Fish fed the two experimental diets (2 and 3) developed gross changes in gill structure involving the disappearance of chloride cells, a 'sloughing off' of the epithelium along the primary and secondary filaments and an accumulation of cellular material in the inter-lamellar spaces. The tissue ultimately disintegrated to leave a skeleton of connective tissue and a mass of cellular material in the inter-lamellar spaces. It is concluded that 22:6 (n-3) is an essential fatty acid for turbot and that the gill epithelium is a sensitive indicator of this deficiency in this species.  相似文献   

12.
Polyunsaturated fatty acid (PUFA) levels are altered in adults with cognitive decline and also depression. Depression facilitates progression from mild cognitive impairment (MCI) to dementia. We investigated associations between omega-3 (n-3) and omega-6 (n-6) PUFAs and cognition, memory and depression in 50 adults ≥65 years with MCI and 29 controls. Memory, depressive symptoms and erythrocyte PUFAs (% total fatty acids) were assessed. Eicosapentaenoic acid (EPA) was lower in MCI vs controls (.94% vs 1.26%, p<.01); n-6 PUFAs were higher: dihomo-gamma-linolenic acid (1.51% vs 1.32%, p<.01), arachidonic acid (11.54% vs 10.70%, p<.01), n-6 docosapentaenoic acid (DPA:.46% vs.34%, p<.01), and total n-6 PUFA (24.14% vs 23.37%, p<.05). Higher n-6 DPA predicted poorer mental health. Lower n-3 DPA was associated with higher self-reported bodily pain. Adults with MCI had higher depression scores (3.05±.39 vs 1.33±.24, p<.01). Depressive symptoms associated with elevated n-6 PUFA may contribute to cognitive decline in this population.  相似文献   

13.
We report here the finding that normal, young cartilages, in distinction from all other tissues examined, have unusually high levels of n-9 eicosatrienoic (20:3 cis-delta 5,8,11) acid and low levels of n-6 polyunsaturated fatty acids (n-6 PUFA). This pattern is identical to that found in tissues of animals subjected to prolonged depletion of nutritionally essential n-6 polyunsaturated fatty acids (EFA). This apparent deficiency is consistently observed in cartilage of all species so far studied (young chicken, fetal calf, newborn pig, rabbit, and human), even though levels of n-6 PUFA in blood and all other tissues is normal. The n-9 20:3 acid is particularly abundant in phosphatidylethanolamine, phosphatidylinositol, and the free fatty acid fractions from the young cartilage. Several factors appear to contribute to the reduction in n-6 PUFA and the appearance of high levels of the n-9 20:3 acid in cartilage: 1) limited access to nutritional sources of EFA due to the impermeability and avascularity of cartilage, 2) rapid metabolism of n-6 PUFA to prostanoids by chondrocytes, and 3) a unique fatty acid metabolism by cartilage. Evidence is presented that each of these factors contributes. Previously, EFA deficiency has been shown to greatly suppress the inflammatory response of leukocytes and rejection of tissues transplanted into allogeneic recipients. Because eicosanoids, which are derived from EFA, have been implicated in the inflammatory responses associated with arthritic disease, reduction of n-6 PUFA and accumulation of the n-9 20:3 acid in cartilage may be important for maintaining normal cartilage structure.  相似文献   

14.
Young turbot (1-20 g) were maintained for not less than 14 weeks on three diets: (1) a control diet containing normal amounts of polyunsaturated fatty acids (PUFA); (2) a diet totally deficient in PUFA; (3) a diet deficient in the (n-6) series of PUFA but containing (n-3) PUFA. At 14 weeks the fatty acid compositions of the phospholipids from liver, gut, gills and muscle were analysed. Large changes in the amounts of PUFA in the phospholipids were found. Fish maintained on the totally PUFA deficient diet 2 had retained arachidonic acid, 20:4(n-6), and docosahexaenoic acid, 22:6(n-3), at the expense of eicosapentaenoic acid, 20:5(n-3). Fish maintained on the (n-6) PUFA-deficient diet (3) contained decreased amounts of 20:4(n-6) and 22:6(n-3) while retaining 20:5(n-3). In all cases phosphatidylinositol had the lowest n-3/n-6 ratios. These results are discussed in terms of PUFA function.  相似文献   

15.
Abstract

The fatty acid composition, moisture, and total lipid of the eggs from the swimming crab, Portunus pelagicus, at three different embryonic stages (within 24 h, during the eye placode stage and the final heart beat stage), were measured. Results showed that the moisture and lipid content significantly increased and decreased (p < 0.05), respectively, as the stages progressed. The most prevalent fatty acids that were initially deposited included C16:0, C18:1n-9, and C18:0, while the most consumed fatty acids were C22:5n-6, C22:5n-3, and C20:1n-7. Among the major fatty acid groups, polyunsaturated fatty acids (PUFA) and long-chain PUFA (LC-PUFA) were consumed more than saturated fatty acids and significantly more (p < 0.05) than monounsaturated fatty acids (p < 0.05). Meanwhile, n-3 PUFA was deposited in significantly higher amounts (p < 0.05) than n-6 PUFA, but both were consumed at similar amounts at 43.4% and 41.3%, respectively. The relatively low amount of C20:5n-3 and C22:6n-3 consumption may indicate these fatty acids were conserved, while the essential fatty acids C18:3n-3 and C18:3n-6 were consumed at high amounts. These findings may have implications for broodstock nutrition in order to formulate a well-balanced diet.  相似文献   

16.
Seven strains of marine microbes producing a significant amount of docosahexaenoic acid (DHA; C22:6, n-3) were screened from seawater collected in coastal areas of Japan and Fiji. They accumulate their respective intermediate fatty acids in addition to DHA. There are 5 kinds of polyunsaturated fatty acid (PUFA) profiles which can be described as (1) DHA/docosapentaenoic acid (DPA; C22:5, n-6), (2) DHA/DPA/eicosapentaenoic acid (EPA; C20:5, n-3), (3) DHA/EPA, (4) DHA/DPA/EPA/arachidonic acid (AA; C20:4, n-6), and (5) DHA/DPA/EPA/AA/docosatetraenoic acid (C22:4, n-6). These isolates are proved to be new thraustochytrids by their specific insertion sequences in the 18S rRNA genes. The phylogenetic tree constructed by molecular analysis of 18S rRNA genes from the isolates and typical thraustochytrids shows that strains with the same PUFA profile form each monophyletic cluster. These results suggest that the C20-22 PUFA profile may be applicable as an effective characteristic for grouping thraustochytrids.  相似文献   

17.
Investigated were the changes in fatty acid composition, oxidation and enzymatic deterioration of lipids in frozen (−30°C) fish fillets from the Persian Gulf. The narrow barred Spanish mackerel ( Scomberomorus commersoni ) and white cheek shark ( Carcharhinus dussumieri ) were tested with storage times of 0, 1, 2, 3, 4, 5 and 6 months at −18°C. Statistical results showed that the major fatty acids among the saturated and monounsaturated fatty acids of each fish species were palmitic (C16:0) and oleic (C18:1n-9) acids, respectively. Both linoleic acid (C18:2n-6) and arachidonic acid (AA) (C20:4n-6) were predominant in total n-6 polyunsaturated fatty acids in both mackerel and shark. The EPA (eicosapentaenoic acid; C20:5 n-3) and DHA (docosahexaenoic acid; C22:6 n-3) acids were the major fatty acids among total n-3 acids in both fishes. During frozen storage, the PUFA (40.1 and 23.94%), n-3 (48 and 42.83%), ω 3/ ω 6 (41.36 and 50%), PUFA/SFA (56 and 42.23%) and EPA + DHA/C16 (55.55 and 46.66%) contents decreased in S. commersoni and C. dussumieri , respectively. Also peroxide, thiobarbituric acid (TBA) and free fatty acid (FFA) values significantly increased (P < 0.01) with the time of storage.  相似文献   

18.
The TF cell line, derived from a top predatory, carnivorous marine teleost, the turbot (Scophthalmus maximus), is known to have a limited conversion of C18 to C20 polyunsaturated fatty acids (PUFA). To illuminate the underlying processes, we studied the conversions of stearidonic acid, 18:4(n-3), and its elongation product, 20:4(n-3), in TF cells and also in a cell line, AS, derived from Atlantic salmon (Salmo salar), by adding unlabelled (25 microM), U-14C (1 microM) or deuterated (d5; 25 microM) fatty acids. Stearidonic acid, 18:4(n-3), was metabolised to 20:5(n-3) in both cells lines, but more so in AS than in TF cells. Delta5 desaturation was more active in TF cells than in AS cells, whereas C18 to C20 elongation was much reduced in TF as compared to AS cells. Only small amounts of docosahexaenoic acid (22:6(n-3)) were produced by both cell lines, although there was significant production of 22:5(n-3) in both cultures, especially when 20:4(n-3) was supplemented. We conclude that limited elongation of C18 to C20 fatty acids rather than limited fatty acyl Delta5 desaturation accounts for the limited rate of conversion of 18:3(n-3) to 20:5(n-3) in the turbot cell line, as compared to the Atlantic salmon cell line. The results can account for the known differences in conversions of C18 to C20 PUFA by the turbot and the Atlantic salmon in vivo.  相似文献   

19.
Feeding adult rats a 17% corn-oil diet for 8 weeks did not change brain polyunsaturated fatty acids (PUFA) compared to rats fed 2.2% corn oil (with 2.2% lard added). When the corn-oil diet was supplemented with 14.5% cod liver oil or 12.5% salmon oil, the fatty acid composition of brain PUFA was significantly altered, even if alpha-tocopherol was added to the salmon-oil diet. Comparing salmon-oil- and cod-liver-oil-fed animals with corn-oil-fed animals, arachidonic acid 22:4(n-6) and 22:5(n-6) were reduced, and 20:5(n-3), 22:5(n-3) and 22:6(n-3) were increased. Liver fatty acids were also significantly altered. Thus, the brain is not protected against a large excess of very-long-chain n-3 PUFA, which increase n-3/n-6 ratio and could lead to abnormal function, and which might be difficult to reverse.  相似文献   

20.
Few studies have examined effects of feeding animals a diet deficient in n-6 polyunsaturated fatty acids (PUFAs) but with an adequate amount of n-3 PUFAs. To do this, we fed post-weaning male rats a control n-6 and n-3 PUFA adequate diet and an n-6 deficient diet for 15 weeks, and measured stable lipid and fatty acid concentrations in different organs. The deficient diet contained nutritionally essential linoleic acid (LA,18:2n-6) as 2.3% of total fatty acids (10% of the recommended minimum LA requirement for rodents) but no arachidonic acid (AA, 20:4n-6), and an adequate amount (4.8% of total fatty acids) of α-linolenic acid (18:3n-3). The deficient compared with adequate diet did not significantly affect body weight, but decreased testis weight by 10%. AA concentration was decreased significantly in serum (− 86%), brain (− 27%), liver (− 68%), heart (− 39%), testis (− 25%), and epididymal adipose tissue (− 77%). Eicosapentaenoic (20:5n-3) and docosahexaenoic acid (22:6n-3) concentrations were increased in all but adipose tissue, and the total monounsaturated fatty acid concentration was increased in all organs. The concentration of 20:3n-9, a marker of LA deficiency, was increased by the deficient diet, and serum concentrations of triacylglycerol, total cholesterol and total phospholipid were reduced. In summary, 15 weeks of dietary n-6 PUFA deficiency with n-3 PUFA adequacy significantly reduced n-6 PUFA concentrations in different organs of male rats, while increasing n-3 PUFA and monounsaturated fatty acid concentrations. This rat model could be used to study metabolic, functional and behavioral effects of dietary n-6 PUFA deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号