首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The myodystrophy (myd) mutation arose spontaneously and has an autosomal recessive mode of inheritance. Homozygous mutant mice display a severe, progressive muscular dystrophy. Using a positional cloning approach, we identified the causative mutation in myd as a deletion within the Large gene, which encodes a putative glycosyltransferase with two predicted catalytic domains. By immunoblotting, the alpha-subunit of dystroglycan, a key muscle membrane protein, is abnormal in myd mice. This aberrant protein might represent altered glycosylation of the protein and contribute to the muscular dystrophy phenotype. Our results are discussed in the light of recent reports describing mutations in other glycosyltransferase genes in several forms of human muscular dystrophy.  相似文献   

2.
Quantitative nuclear magnetic resonance imaging (MRI) has been considered a promising non-invasive tool for monitoring therapeutic essays in small size mouse models of muscular dystrophies. Here, we combined MRI (anatomical images and transverse relaxation time constant—T2—measurements) to texture analyses in the study of four mouse strains covering a wide range of dystrophic phenotypes. Two still unexplored mouse models of muscular dystrophies were analyzed: The severely affected Largemyd mouse and the recently generated and worst double mutant mdx/Largemyd mouse, as compared to the mildly affected mdx and normal mice. The results were compared to histopathological findings. MRI showed increased intermuscular fat and higher muscle T2 in the three dystrophic mouse models when compared to the wild-type mice (T2: mdx/Largemyd: 37.6±2.8 ms; mdx: 35.2±4.5 ms; Largemyd: 36.6±4.0 ms; wild-type: 29.1±1.8 ms, p<0.05), in addition to higher muscle T2 in the mdx/Largemyd mice when compared to mdx (p<0.05). The areas with increased muscle T2 in the MRI correlated spatially with the identified histopathological alterations such as necrosis, inflammation, degeneration and regeneration foci. Nevertheless, muscle T2 values were not correlated with the severity of the phenotype in the 3 dystrophic mouse strains, since the severely affected Largemyd showed similar values than both the mild mdx and worst mdx/Largemyd lineages. On the other hand, all studied mouse strains could be unambiguously identified with texture analysis, which reflected the observed differences in the distribution of signals in muscle MRI. Thus, combined T2 intensity maps and texture analysis is a powerful approach for the characterization and differentiation of dystrophic muscles with diverse genotypes and phenotypes. These new findings provide important noninvasive tools in the evaluation of the efficacy of new therapies, and most importantly, can be directly applied in human translational research.  相似文献   

3.
Myodystrophy (myd), an autosomal recessive mutation of the mouse characterized by progressive weakness and dystrophic muscle histology, maps to the central portion of Chromosome (Chr) 8 (Lane et al. J. Hered 67, 135, 1976). This portion of Chr 8 contains the genes for a mitochondrial uncoupling protein (Ucp) and kallikrein (Kal3), which map to distal 4q in the human, providing evidence for a segment of homology. Characteristics of the myd phenotype coupled with this homology suggest that myd may be a mouse homolog of facioscapulohumeral muscular dystrophy (FSHD), which maps to human 4q35. We have confirmed and expanded the region of mouse 8-human 4 homology by generating a map of Chr 8 in an interspecific backcross of C57BL/6J and a partially inbred strain derived from M. spretus. The map is comprised of the genes for Ucp, coagulation factor XI (Cf11), and chloride channel 5 (Clc5), all of which have homologs on distal human 4q, 15 microsatellite loci, and the membrane cofactor protein pseudogene (Mcp-ps). To place myd in the genetic map, 75 affected progeny from an intersubspecific backcross of animals heterozygous for myd with Mus musculus castaneus were genotyped with Chr 8 microsatellite loci. The mutation maps between D8Mit30 and D8Mit75, an interval that is flanked by genes with human homologs at distal 4q. These results are consistent with the possibility that myd is the mouse homolog of FSHD.  相似文献   

4.
The human autosomal dominant neuromuscular disorder facioscapulohumeral muscular dystrophy (FSHD) is associated with deletions within a complex tandem DNA repeat (D4Z4) on Chromosome (Chr) 4q35. The molecular mechanism underlying this association of FSHD with DNA rearrangements is unknown, and, thus far, no gene has been identified within the repeat. We isolated a gene mapping 100 kb proximal to D4Z4 (FSHD Region Gene 1:FRG1), but were unable to detect any alterations in total or allele-specific mRNA levels of FRG1 in FSHD patients. Human Chr 4q35 exhibits synteny homology with the region of mouse Chr 8 containing the gene for the myodystrophy mutation (myd), a possible mouse homolog of FSHD. We report the cloning of the mouse gene (Frg1) and show that it maps to mouse Chr 8. Using a cross segregating the myd mutation and the European Collaborative Interspecific Backcross, we showed that Frg1 maps proximal to the myd locus and to the Clc3 and Ant1 genes. Received: 24 September 1996 / Accepted: 7 February 1997  相似文献   

5.
Mutations in the fukutin-related protein (FKRP) gene cause limb-girdle muscular dystrophy type 2I (LGMD2I) as well as other severe muscle disorders, including Walker–Warburg syndrome, muscle–eye–brain disease, and congenital muscular dystrophy type 1C. The FKRP gene encodes a putative glycosyltransferase, but its precise localization and functions have yet to be determined. In the present study, we demonstrated that normal FKRP is secreted into culture medium and mutations alter the pattern of secretion in CHO cells. L276I mutation associated with mild disease phenotype was shown to reduce the level of secretion whereas P448L and C318Y mutations associated with severe disease phenotype almost abolished the secretion. However, a truncated FKRP mutant protein lacking the entire C-terminal 185 amino acids due to the E310X nonsense mutation was able to secrete as efficiently as the normal FKRP. The N-terminal signal peptide sequence is apparently cleaved from the secreted FKRP proteins. Alteration of the secretion pathway by different mutations and spontaneous read-through of nonsense mutation may contribute to wide variations in phenotypes associated with FKRP-related diseases.  相似文献   

6.
The dystrophin glycoprotein complex (DGC) is an assembly of proteins spanning the sarcolemma of skeletal muscle cells. Defects in the DGC appear to play critical roles in several muscular dystrophies due to disruption of basement membrane organization. O-mannosyl oligosaccharides on α-dystroglycan, a major extracellular component of the DGC, are essential for normal binding of α-dystroglycan to ligands (such as laminin) in the extracellular matrix and subsequent signal transmission to actin in the cytoskeleton of the muscle cell. Muscle-Eye-Brain disease (MEB) and Walker-Warburg Syndrome (WWS) have mutations in genes encoding glycosyltransferases needed for O-mannosyl oligosaccharide synthesis. Myodystrophic myd mice and humans with Fukuyama Congenital Muscular Dystrophy (FCMD), congenital muscular dystrophy due to defective fukutin-related protein (FKRP) and MDC1D have mutations in putative glycosyltransferases. These human congenital muscular dystrophies and the myd mouse are associated with defective glycosylation of α-dystroglycan. It is expected other congenital muscular dystrophies will prove to have mutations in genes involved in glycosylation. Published in 2004. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Latent TGFβ binding proteins (LTBPs) regulate the extracellular availability of latent TGFβ. LTBP4 was identified as a genetic modifier of muscular dystrophy in mice and humans. An in-frame insertion polymorphism in the murine Ltbp4 gene associates with partial protection against muscular dystrophy. In humans, nonsynonymous single nucleotide polymorphisms in LTBP4 associate with prolonged ambulation in Duchenne muscular dystrophy. To better understand LTBP4 and its role in modifying muscular dystrophy, we created transgenic mice overexpressing the protective murine allele of LTBP4 specifically in mature myofibers using the human skeletal actin promoter. Overexpression of LTBP4 protein was associated with increased muscle mass and proportionally increased strength compared to age-matched controls. In order to assess the effects of LTBP4 in muscular dystrophy, LTBP4 overexpressing mice were bred to mdx mice, a model of Duchenne muscular dystrophy. In this model, increased LTBP4 led to greater muscle mass with proportionally increased strength, and decreased fibrosis. The increase in muscle mass and reduction in fibrosis were similar to what occurs when myostatin, a related TGFβ family member and negative regulator of muscle mass, was deleted in mdx mice. Supporting this, we found that myostatin forms a complex with LTBP4 and that overexpression of LTBP4 led to a decrease in myostatin levels. LTBP4 also interacted with TGFβ and GDF11, a protein highly related to myostatin. These data identify LTBP4 as a multi-TGFβ family ligand binding protein with the capacity to modify muscle disease through overexpression.  相似文献   

8.
Genetic defects in a number of components of the dystrophin–glycoprotein complex (DGC) lead to distinct forms of muscular dystrophy. However, little is known about how alterations in the DGC are manifested in the pathophysiology present in dystrophic muscle tissue. One hypothesis is that the DGC protects the sarcolemma from contraction-induced damage. Using tracer molecules, we compared sarcolemmal integrity in animal models for muscular dystrophy and in muscular dystrophy patient samples. Evans blue, a low molecular weight diazo dye, does not cross into skeletal muscle fibers in normal mice. In contrast, mdx mice, a dystrophin-deficient animal model for Duchenne muscular dystrophy, showed significant Evans blue accumulation in skeletal muscle fibers. We also studied Evans blue dispersion in transgenic mice bearing different dystrophin mutations, and we demonstrated that cytoskeletal and sarcolemmal attachment of dystrophin might be a necessary requirement to prevent serious fiber damage. The extent of dye incorporation in transgenic mice correlated with the phenotypic severity of similar dystrophin mutations in humans. We furthermore assessed Evans blue incorporation in skeletal muscle of the dystrophia muscularis (dy/dy) mouse and its milder allelic variant, the dy2J/dy2J mouse, animal models for congenital muscular dystrophy. Surprisingly, these mice, which have defects in the laminin α2-chain, an extracellular ligand of the DGC, showed little Evans blue accumulation in their skeletal muscles. Taken together, these results suggest that the pathogenic mechanisms in congenital muscular dystrophy are different from those in Duchenne muscular dystrophy, although the primary defects originate in two components associated with the same protein complex.  相似文献   

9.
Intragenic homozygous deletions in the Large gene are associated with a severe neuromuscular phenotype in the myodystrophy (myd) mouse. These mutations result in a virtual lack of glycosylation of α-dystroglycan. Compound heterozygous LARGE mutations have been reported in a single human patient, manifesting with mild congenital muscular dystrophy (CMD) and severe mental retardation. These mutations are likely to retain some residual LARGE glycosyltransferase activity as indicated by residual α-dystroglycan glycosylation in patient cells. We hypothesized that more severe LARGE mutations are associated with a more severe CMD phenotype in humans. Here we report a 63-kb intragenic LARGE deletion in a family with Walker-Warburg syndrome (WWS), which is characterized by CMD, and severe structural brain and eye malformations. This finding demonstrates that LARGE gene mutations can give rise to a wide clinical spectrum, similar as for other genes that have a role in the post-translational modification of the α-dystroglycan protein. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Defects in dystroglycan glycosylation are associated with a group of muscular dystrophies, termed dystroglycanopathies, that include Fukuyama congenital muscular dystrophy (FCMD). It is widely believed that abnormal glycosylation of dystroglycan leads to disease-causing membrane fragility. We previously generated knock-in mice carrying a founder retrotransposal insertion in fukutin, the gene responsible for FCMD, but these mice did not develop muscular dystrophy, which hindered exploring therapeutic strategies. We hypothesized that dysferlin functions may contribute to muscle cell viability in the knock-in mice; however, pathological interactions between glycosylation abnormalities and dysferlin defects remain unexplored. To investigate contributions of dysferlin deficiency to the pathology of dystroglycanopathy, we have crossed dysferlin-deficient dysferlin sjl/sjl mice to the fukutin-knock-in fukutin Hp/− and Large-deficient Large myd/myd mice, which are phenotypically distinct models of dystroglycanopathy. The fukutin Hp/− mice do not show a dystrophic phenotype; however, (dysferlin sjl/sjl: fukutin Hp/−) mice showed a deteriorated phenotype compared with (dysferlin sjl/sjl: fukutin Hp/+) mice. These data indicate that the absence of functional dysferlin in the asymptomatic fukutin Hp/− mice triggers disease manifestation and aggravates the dystrophic phenotype. A series of pathological analyses using double mutant mice for Large and dysferlin indicate that the protective effects of dysferlin appear diminished when the dystrophic pathology is severe and also may depend on the amount of dysferlin proteins. Together, our results show that dysferlin exerts protective effects on the fukutin Hp/− FCMD mouse model, and the (dysferlin sjl/sjl: fukutin Hp/−) mice will be useful as a novel model for a recently proposed antisense oligonucleotide therapy for FCMD.  相似文献   

11.
Pikachurin, the most recently identified ligand of dystroglycan, plays a crucial role in the formation of the photoreceptor ribbon synapse. It is known that glycosylation of dystroglycan is necessary for its ligand binding activity, and hypoglycosylation is associated with a group of muscular dystrophies that often involve eye abnormalities. Because little is known about the interaction between pikachurin and dystroglycan and its impact on molecular pathogenesis, here we characterize the interaction using deletion constructs and mouse models of muscular dystrophies with glycosylation defects (Largemyd and POMGnT1-deficient mice). Pikachurin-dystroglycan binding is calcium-dependent and relatively less sensitive to inhibition by heparin and high NaCl concentration, as compared with other dystroglycan ligand proteins. Using deletion constructs of the laminin globular domains in the pikachurin C terminus, we show that a certain steric structure formed by the second and the third laminin globular domains is necessary for the pikachurin-dystroglycan interaction. Binding assays using dystroglycan deletion constructs and tissue samples from Large-deficient (Largemyd) mice show that Large-dependent modification of dystroglycan is necessary for pikachurin binding. In addition, the ability of pikachurin to bind to dystroglycan prepared from POMGnT1-deficient mice is severely reduced, suggesting that modification of the GlcNAc-β1,2-branch on O-mannose is also necessary for the interaction. Immunofluorescence analysis reveals a disruption of pikachurin localization in the photoreceptor ribbon synapse of these model animals. Together, our data demonstrate that post-translational modification on O-mannose, which is mediated by Large and POMGnT1, is essential for pikachurin binding and proper localization, and suggest that their disruption underlies the molecular pathogenesis of eye abnormalities in a group of muscular dystrophies.  相似文献   

12.
The central region of mouse Chromosome (Chr) 8, containing the myodystrophy (myd) locus, is syntenic with human Chr 4q28-qter. The human neuromuscular disorder facioscapulohumeral muscular dystrophy (FSHD) maps to Chr 4q35, and myd has been proposed as a mouse homolog of FSHD. We have employed a comparative mapping approach to investigate this relationship further by extending the mouse genetic map of this region. We have ordered 12 genes in a single cross, 8 of which have human homologs on 4q28-qter. The results confirm a general relationship between the most distal genes on human 4q and the most proximal genes in the mouse 8 syntenic region. Despite chromosomal rearrangements of syntenic groups in this region, conservation of gene order is maintained between the group of genes in the human telomeric region of 4q35 and MMU8. Furthermore, this conserved telomeric HSA4q35 syntenic group maps proximal to the myd mutation and is flanked by genes with homologs on HSA8p22. At the proximal boundary of the MMU8 linkage group we have identified a single 300-kb YAC containing the genes Frgl and Pcml, which have human homologs on 4q35 and 8p22, respectively. Thus, this YAC spans an evolutionary chromosomal breakpoint. As well as providing clues about chromosomal evolution, this map of the FSHD syntenic mouse region should prove invaluable in the isolation of candidate genes for this disease. Received: 20 January 1998 / Accepted: 10 April 1998  相似文献   

13.
Previous studies have reported abnormalities of thymic histology and cell numbers in 129/ ReJ-dy homozygous dystrophic mice, suggesting an association between murine muscular dystrophy and disorders of the immune system. The present study of C57BL/6J-dy2J and 129/ReJ-dy homozygous dystrophic mice included a thorough analysis of thymic development and histology, of T-cell function demonstrated by mitogen stimulation, mixed-leukocyte culture, and graft-vs-host assays, and of surface antigen expression as measured by flow microfluorometry. Although sporadic differences can be seen in some dystrophic mice, we find no evidence of consistent abnormalities of the immune system in murine muscular dystrophy. It does not seem possible, therefore, to study either the dy or the dy2J defect through analysis of lymphocytes. The feasibility of elucidating metabolic or membrane defects by utilizing cell populations other than those most conspicuously affected by a mutation with multisystem effects is discussed and our coincidental finding of a subpopulation of T cells with unusual antigenic properties is described.  相似文献   

14.
Choline kinase in mice is encoded by two genes, Chka and Chkb. Disruption of murine Chka leads to embryonic lethality, whereas a spontaneously occurring genomic deletion in murine Chkb results in neonatal bone deformity and hindlimb muscular dystrophy. We have investigated the mechanism by which a lack of choline kinase β, encoded by Chkb, causes hindlimb muscular dystrophy. The biosynthesis of phosphatidylcholine (PC) is impaired in the hindlimbs of Chkb−/− mice, with an accumulation of choline and decreased amount of phosphocholine. The activity of CTP:phosphocholine cytidylyltransferase is also decreased in the hindlimb muscle of mutant mice. Concomitantly, the activities of PC phospholipase C and phospholipase A2 are increased. The mitochondria in Chkb−/− mice are abnormally large and exhibit decreased inner membrane potential. Despite the muscular dystrophy in Chkb−/− mice, we observed increased expression of insulin like growth factor 1 and proliferating cell nuclear antigen. However, regeneration of hindlimb muscles of Chkb−/− mice was impaired when challenged with cardiotoxin. Injection of CDP-choline increased PC content of hindlimb muscle and decreased creatine kinase activity in plasma of Chkb−/− mice. We conclude that the hindlimb muscular dystrophy in Chkb−/− mice is due to attenuated PC biosynthesis and enhanced catabolism of PC.  相似文献   

15.
Duchenne muscular dystrophy (DMD) and other types of muscular dystrophies are caused by the loss or alteration of different members of the dystrophin protein complex. Understanding the molecular mechanisms by which dystrophin-associated protein abnormalities contribute to the onset of muscular dystrophy may identify new therapeutic approaches to these human disorders. By examining gene expression alterations in mouse skeletal muscle lacking α-dystrobrevin (Dtna−/−), we identified a highly significant reduction of the cholesterol trafficking protein, Niemann-Pick C1 (NPC1). Mutations in NPC1 cause a progressive neurodegenerative, lysosomal storage disorder. Transgenic expression of NPC1 in skeletal muscle ameliorates muscular dystrophy in the Dtna−/− mouse (which has a relatively mild dystrophic phenotype) and in the mdx mouse, a model for DMD. These results identify a new compensatory gene for muscular dystrophy and reveal a potential new therapeutic target for DMD.  相似文献   

16.
Dystrophinopathies are multi-system disorders that affect the skeletal musculature, the cardio-respiratory system and the central nervous system. The systematic screening of suitable biofluids for released or altered proteins promises new insights into the highly complex pathophysiology of X-linked muscular dystrophy. However, standard detection approaches using antibody-based assays often fail to reproducibly detect low-abundance protein isoforms in dilute biological fluids. In contrast, mass spectrometric screening approaches enable the proteome-wide identification of minor protein changes in biofluids. This report describes the findings from the comparative proteomic analysis of whole saliva samples from wild type versus the established mdx-4cv mouse model of highly progressive muscular dystrophy, focusing on the kallikrein protein family. Kallikrein-1 (Klk1) and 13 Klk1-related peptidases were identified in saliva and serum from normal mice. Comparative proteomics revealed elevated saliva levels of the Klk1-related peptidases Klk1-b1, Klk1-b5 and Klk-b22, as well as an increased Klk-1 concentration, which agrees with higher Klk-1 levels in serum from mdx-4cv mice. This indicates altered cellular signaling, extracellular matrix remodeling and an altered immune response in the mdx-4cv mouse, and establishes liquid biopsy procedures as suitable bioanalytical tools for the systematic survey of complex pathobiochemical changes in animal models of muscular dystrophy.  相似文献   

17.
Fukuyama-type congenital muscular dystrophy (FCMD, MIM#253800) is an autosomal recessive disorder characterized by severe muscular dystrophy associated with brain malformations. FCMD is the second most common form of muscular dystrophy after Duchenne muscular dystrophy and one of the most common autosomal recessive diseases among the Japanese population, and yet few patients outside of Japan had been reported with this disorder. We report the first known Egyptian patient with FCMD, established by clinical features of generalized weakness, pseudohypertrophy of calf muscles, progressive joint contractures, severe scoliosis, elevated serum creatine kinase level, myopathic electrodiagnostic changes, brain MRI with cobblestone complex, and mutation in the fukutin gene. In addition, our patient displayed primary microcephaly, not previously reported associated with fukutin mutations. Our results expand the geographic and clinical spectrum of fukutin mutations.  相似文献   

18.
Dystroglycan is a major cell surface glycoprotein receptor for the extracellular matrix in skeletal muscle. Defects in dystroglycan glycosylation cause muscular dystrophy and alterations in dystroglycan glycosylation can impact extracellular matrix binding. Here we describe an immunoprecipitation technique that allows isolation of beta dystroglycan with members of the dystrophin-associated protein complex (DAPC) from detergent-solubilized skeletal muscle. Immunoprecipitation, coupled with shotgun proteomics, has allowed us to identify new dystroglycan-associated proteins and define changed associations that occur within the DAPC in dystrophic skeletal muscles. In addition, we describe changes that result from overexpression of Galgt2, a normally synaptic muscle glycosyltransferase that can modify alpha dystroglycan and inhibit the development of muscular dystrophy when it is overexpressed. These studies identify new dystroglycan-associated proteins that may participate in dystroglycan's roles, both positive and negative, in muscular dystrophy.  相似文献   

19.
20.
Duchenne muscular dystrophy (DMD), one of the most common and lethal genetic disorders, and the mdx mouse myopathies are caused by a lack of dystrophin protein. These dystrophic muscles contain sporadic clusters of dystrophin-expressing revertant fibers (RFs), as detected by immunohistochemistry. RFs are known to arise from muscle precursor cells with spontaneous exon skipping (alternative splicing) and clonally expand in size with increasing age through the process of muscle degeneration/regeneration. The expansion of revertant clusters is thought to represent the cumulative history of muscle regeneration and proliferation of such precursor cells. However, the precise mechanisms by which RFs arise and expand are poorly understood. Here, to test the effects of mutation types and aging on RF expansion and muscle regeneration, we examined the number of RFs in mdx mice (containing a nonsense mutation in exon 23) and mdx52 mice (containing deletion mutation of exon 52) with the same C57BL/6 background at 2, 6, 12, and 18months of age. Mdx mice displayed a significantly higher number of RFs compared to mdx52 mice in all age groups, suggesting that revertant fiber expansion largely depends on the type of mutation and/or location in the gene. A significant increase in the expression and clustering levels of RFs was found beginning at 6months of age in mdx mice compared with mdx52 mice. In contrast to the significant expansion of RFs with increasing age, the number of centrally nucleated fibers and embryonic myosin heavy chain-positive fibers (indicative of cumulative and current muscle regeneration, respectively) decreased with age in both mouse strains. These results suggest that mutation types and aging differently affect revertant fiber expansion in mdx and mdx52 mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号