首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Kuroshio Current is the major western boundary current of the North Pacific Ocean and has had a large impact on surface water character and climate change in the northwestern Pacific region. The Kuroshio Current becomes a distinctive surface flow in the Ryukyu Arc region after diverging from the North Equatorial Current and passing through the Okinawa Trough. Therefore, the Ryukyu Arc area can be called the Kuroshio source region. We reconstructed post-21-ka time–space changes in surface water masses in the Ryukyu Arc region using 15 piston cores which were dated by planktonic δ18O stratigraphy and AMS 14C ages. Our analysis utilized spatial and temporal changes in planktonic foraminiferal assemblages which were classified into the Kuroshio, Subtropical, Coastal, and Cold water groups on the basis of modern faunal distributions in the study region. These results indicate that the Kuroshio Current and adjacent surface water masses experienced major changes during: (1) the Last Glacial Maximum (LGM), and (2) the so-called Pulleniatina minimum event (PME) from 4,500 to 3,000 yr BP. The Kuroshio LGM event corresponds to severe global cooling and is marked by decreases in planktonic δ18O values and estimated sea-surface temperature (SST) with the dominance of the Cold water group of planktonic foraminifera. Cooling within the Kuroshio source region was enhanced during the LGM event because the Kuroshio Current was forced eastward due to the formation of a land bridge between Taiwan and the southern Ryukyu Arc which prohibited its flow into the Okinawa Trough. Except for the severe reduction and disappearance of the Pulleniatina group, no clear cooling signal was identified during the PME based on δ18O values, estimated SST values and variations in the composition of planktonic foraminiferal faunas. The PME assemblages are marked by high abundances of Neogloboquadrina dutertrei, a distinctive Kuroshio type species, along with other species assigned to the Coastal and Central water groups. Subtle ecological differences exist between Pulleniatina obliquiloculata and N. dutertrei; i.e. P. obliquiloculata exhibits lower rates of reproduction under conditions of lower primary productivity in the central Equatorial Pacific Ocean. El Niño-like conditions in the Equatorial Pacific Ocean result in lower rates of surface transport in the Kuroshio Current. In turn, this response triggers lower rates of primary productivity in central equatorial surface waters as well as in the upstream Kuroshio source region, ultimately resulting in a lower abundance of P. obliquiloculata. Thus, we interpret the PME as a possible proxy signal of El Niño-like conditions and enhancement of the El Niño Southern Oscillation climate system after the PME in the tropical and sub-tropical Pacific Ocean.  相似文献   

2.
Four radiolarian assemblages have been defined in recent seafloor sediments of the equatorial Pacific Ocean. The distribution of these assemblages corresponds to the modern pattern of oceanic circulation and water mass structure in this region: the eastern Pacific shallow permanent thermocline and the Equatorial Undercurrent; Peru Current upwelling and the oxygen minimum; the subtropical water mass; warm western tropical water and the North Equatorial Countercurrent. In twelve cores chosen to transect the region both longitudinally and latitudinally, the distribution of these four assemblages has been reconstructed for six time-intervals during the last 127,000 years: 18,000 B.P. (glacial Stage 2); 36,000 B.P. and 52,000 B.P. (interstadial Stage 3); 65,000 B.P. (glacial Stage 4); 82,000 B.P. and 120,000 B.P. (interglacial Stage 5). Atmospheric and oceanic circulation changes through time have been inferred from the reconstructed microfossil assemblage distributions. Changes in assemblage distributions indicate that variations in intensity, direction and mean position of the tradewinds caused marked changes in the oceanic circulation patterns through the last glacial cycle.Near the end of interglacial Stage 5, the disappearance of the North Equatorial Countercurrent from the eastern Pacific suggests that the mean position of the tradewinds was shifted to the south approximately 5° of latitude relative to the modern position, so that the Northeast trades prevented the flow of the North Equatorial Countercurrent into the eastern Pacific. Near the end of interstadial Stage 3, a change in wind direction occurred from predominantly zonal winds, which enhance equatorial divergence and surfacing of the Equatorial Undercurrent, to more meridional winds, which enhance coastal upwelling associated with the Peru Current.In the tropical Pacific Ocean, late Quaternary changes in atmospheric and oceanic circulation are linked with times of continental ice sheet growth in the Northern Hemisphere (i.e., the interglacial-to-glacial transitions across oxygen isotope stage boundaries 54 and 32). The major changes in circulation seem to occur a few thousand years in advance of the glacial episodes, at or near periods of ice sheet growth. This relationship indicates that changes in atmospheric circulation in the tropics led and influenced the development of conditions suitable for polar and continental ice sheet growth in the Northern Hemisphere.  相似文献   

3.
《Marine Micropaleontology》2007,65(3-4):121-140
We analyzed foraminiferal and nannofossil assemblages and stable isotopes in samples from ODP Hole 807A on the Ontong Java Plateau in order to evaluate productivity and carbonate dissolution cycles over the last 550 kyr (kilo year) in the western equatorial Pacific. Our results indicate that productivity was generally higher in glacials than during interglacials, and gradually increased since MIS 13. Carbonate dissolution was weak in deglacial intervals, but often reached a maximum during interglacial to glacial transitions. Carbonate cycles in the western equatorial Pacific were mainly influenced by changes of deep-water properties rather than by local primary productivity. Fluctuations of the estimated thermocline depth were not related to glacial to interglacial alternations, but changed distinctly at ∼ 280 kyr. Before that time the thermocline was relatively shallow and its depth fluctuated at a comparatively high amplitude and low frequency. After 280 kyr, the thermocline was deeper, and its fluctuations were at lower amplitude and higher frequency. These different patterns in productivity and thermocline variability suggest that thermocline dynamics probably were not a controlling factor of biological productivity in the western equatorial Pacific Ocean. In this region, upwelling, the influx of cool, nutrient-rich waters from the eastern equatorial Pacific or of fresh waters from rivers have probably never been important, and their influence on productivity has been negligible over the studied period. Variations in the inferred productivity in general are well correlated with fluctuations in the eolian flux as recorded in the northwestern Pacific, a proxy for the late Quaternary history of the central East Asian dust flux into the Pacific. Therefore, we suggest that the dust flux from the central East Asian continent may have been an important driver of productivity in the western Pacific.  相似文献   

4.
Twenty-seven radiolarian species and species groups are identified and used in this study. Their stratigraphic ranges span from Late Miocene to modern times and they appear to have distributions which have changed little over this interval of time. Census data for these 27 taxa in surface sediment samples are used to define six assemblages (Q-mode factors). The distribution of these assemblages are similar to modern water-mass distributions and can be statistically related to modern sea-surface temperatures.Census data on these same 27 taxa have been collected in the Upper Miocene intervals of six Pacific sites. These faunal data are described in terms of the modern radiolarian assemblages; and based on the multiple regression equations relating the modern assemblages to modern temperatures, estimates of Late Miocene temperatures are made. The estimated temperatures indicate that there is an overall cooling trend in the later part of the Miocene (magnetic Chron 8 to Chron 5), punctuated by several distinct cooling events. In August the low-latitude sites appear to be slightly cooler, and the mid-latitude sites warmer than in modern times. In February both the low- and mid-latitude sites appear to be warmer than modern temperatures at the same locations. The relatively warm temperatures near the base of the interval studied may be associated with the passage of warm tropical Atlantic waters into the eastern Pacific via the Isthmus of Panama. The general cooling trend seen in these records is thought to be associated with the gradual closure of these straits and the increased influence of the high southern latitudes.  相似文献   

5.
Cluster analysis and species abundance plots of radiolarian abundance counts from core tops from the eastern Indian Ocean between 12° S and 31° S, and the southern Indian Ocean between 31° S and 62.5° S, demonstrate the existence of environmentally-related provinces supporting distinct taxa assemblages. These provinces are closely associated with currents in the eastern sector of the Indian Ocean and with fronts in the southern sector.The radiolarian assemblages correlate strongly with salinity-normalised total alkalinity (NTA) at the sea-surface, with temperature, salinity, and density from the sea-surface to 300 m, and with dissolved oxygen and nitrate and phosphate concentrations from the sea-surface to 100 m. Palaeo-reconstructions of these parameters at the sea-surface have been made for six Last Glacial Maximum (LGM) samples from five eastern Indian Ocean cores. The LGM sea-surface temperature estimates are comparable with those based on planktonic foraminiferal counts of the same samples obtained by other researchers. The reconstructions show that, since the LGM, density increased markedly along the Western Australian coast south of 20° S but changed little further from the Western Australian coast. By contrast, phosphate concentrations were marginally lower than modern values along the Western Australian coast south of 20° S but more than twice modern values in the other LGM samples.The utility of various regression and calibration techniques is discussed. It is concluded that, probably due to the effects of differences in radiolarian habitat, ocean currents, and/or environmental gradients, only one method, weighted averaging — partial least squares, is reliable in a study area of this size and complexity. If other methods are to be used, the study area must be partitioned into at least two separate regions with the major split between the eastern and southern sectors of the Indian Ocean.  相似文献   

6.
Faunal assemblages, principal component (PCA), canonical correspondence (CCA), and factor analysis are applied to planktonic foraminifera from 57 core-top samples from the eastern Indian Ocean. The foraminiferal lysocline occurs at 2400 m north of 15°S where carbonate dissolution is induced by the Java upwelling system, and occurs deeper south of 15°S where carbonate dissolution is characteristic of the oligotrophic regions in the Indian Ocean. Dissolution effects, the February standing stock at the time of collection of the plankton-tow material, and different production rates explain the different foraminiferal assemblages found between plankton-tow and core-top samples. Core-top samples are differentiated by PCA into four groups — Upwelling, Western Pacific Warm Pool (WPWP), Transitional, and Southern — that are related to environmental variables (temperature, salinity and nutrients); all environmental variables follow a strong latitudinal component as indicated by the CCA analysis. Similarly, three assemblages are recognized by factor analysis: Factor 1 (dominated by Globigerinoides sacculifer, G. ruber, Globigerinita glutinata and Globorotalia cultrata), factor 2 (dominated by Globigerina bulloides and Globorotalia inflata) and factor 3 (dominated by Neogloboquadrina dutertrei) explain more than 92% of the variance, and are related to sea-surface temperature, thermocline depth and nutrient levels. The seasonal influence of the Java upwelling system supplies nutrients, phyto- and zooplankton to the oligotrophic eastern Indian Ocean (factor 1). South of 24°S, a deep chlorophyll maximum, a deep euphotic zone, a deep thermocline, SSTs below 22°C, and brief upwelling pulses seem to explain factors 2 and 3. The ratio of G. sacculifer and N. dutertrei, two mutually excluding species, appears to indicate the southern boundary of the WPWP. This ratio is applied to core Fr10/95-11 to demonstrate past shifts of the southern boundary of the WPWP.  相似文献   

7.
Planktic foraminiferal assemblages have been analyzed quantitatively in six DSDP sites in the Atlantic (Site 363), Pacific (Sites 292, 77B, 277), and Indian Ocean (Sites 219, 253) in order to determine the nature of the faunal turnover during Middle Eocene to Oligocene time. Biostratigraphic ranges of taxa and abundance distributions of dominant species are presented and illustrate striking similarities in faunal assemblages of low latitude regions in the Atlantic, Pacific and Indian oceans. A high resolution biochronology, based on dominant faunal characteristics and 55 datum events, permits correlation between all three oceans with a high degree of precision. Population studies provide a view of the global impact of the paleoclimatic and paleoceanographic changes occurring during Middle Eocene to Oligocene time.Planktic foraminiferal assemblage changes indicate a general cooling trend between Middle Eocene to Oligocene time, consistent with previously published oxygen isotope data. Major faunal changes, indicating cooling episodes, occur, however, at discrete intervals: in the Middle Eocene 44-43 Ma (P13), the Middle/Late Eocene boundary 41-40 Ma ( ), the Late Eocene 39-38 Ma ( ), the Eocene/Oligocene boundary 37-36 Ma (P18), and the Late Oligocene 31-29 Ma ( ). With the exception of the boundary, faunal changes occur abruptly during short stratigraphic intervals, and are characterized by major species extinctions and first appearances. The Eocene/Oligocene boundary cooling is marked primarily by increasing abundances of cool water species. This suggests that the boundary cooling, which marks a major event in the oxygen isotope record affected planktic faunas less than during other cooling episodes. Planktic foraminiferal faunas indicate that the boundary event is part of a continued cooling trend which began during the Middle Eocene.Two hiatus intervals are recognized in low and high latitude sections at the Middle/Late Eocene boundary and in the Late Eocene ( ). These hiatuses suggest that vigorous bottom water circulation began developing in the Middle Eocene, consistent with the onset of the faunal cooling trend, and well before the development of the psychrosphere at the boundary.  相似文献   

8.
Spatial distribution patterns of benthic foraminifers in upper Albian sediments from 25 DSDP/ODP sites and 31 onshore sections of the North and South Atlantic Ocean are used to generate paleobathymetric reconstructions and to identify areas of high primary production such as coastal and equatorial upwelling zones. New paleobathymetric estimates are provided for DSDP/ODP sites and onshore locations that are not situated on oceanic crust. Paleobathymetric reconstructions indicate shallow water exchange between the North and South Atlantic but show the existence of a deep-water connection between the western and eastern Tethys (>2500 m) through the Gibraltar Gateway. Strikingly, there is no evidence for a strong latitudinal gradient in deep-water benthic foraminiferal distribution during the late Albian: South Atlantic assemblages show close affinity to North Atlantic and Tethyan assemblages, exhibiting only a minor degree of provincialism. Biogeographic patterns reveal a distinct asymmetry in late Albian paleoproductivity for the North Atlantic. As for the present day, the eastern margins of the Atlantic were generally more productive than the western margins, and a belt of enhanced carbon flux export to the seafloor can be traced around the north African coast, which probably corresponded to a zone of vigorous coastal upwelling. By contrast, assemblage composition in the South Atlantic generally reflects mesotrophic to oligotrophic conditions. Benthic foraminiferal distribution patterns, thus, provide robust proxy data to test predictions from paleocirculation and paleobathymetric models for the mid-Cretaceous Atlantic Ocean and adjacent margins.  相似文献   

9.
Fossil diatom total abundances (# valves/g) in 54 surface-sediment samples from the northeast (NE) Pacific Ocean reflect the position of high primary production associated with coastal upwelling and that possible biases associated with dilution or dissolution are small. Diatom species assemblages, defined by Q-mode factor analysis in 30 samples with abundant diatoms, are related to modern oceanographic properties. Five statistical assemblages, given by five specific diatom species and/or groups, are related to upwelling (Chaetoceros spores), subtropical (Thalassionema nitzschioides), subarctic (Rhizosolenia hebetata), transitional (Neodenticula seminae) and freshwater (freshwater diatoms) ecological environments. These factors are significantly correlated with primary productivity, temperature, nutrient concentrations and salinity, although the strongest relationship is that between diatom assemblages and productivity. However, it is not possible to distinguish between coastal and open-ocean (curl-driven) upwelling based on Chaetoceros spores relative percentages by themselves or on the floral factors.  相似文献   

10.
Oxygen and carbon isotope values of single benthic foraminiferal tests in a core from the Shatsky Rise, NW Pacific Ocean, show greater intra-horizon variance during the Holocene than during the Last Glacial Maximum (LGM). This greater variance is caused by the introduction of glacial specimens some 20 cm upward from their original deposition layer due to bioturbation. In contrast, foraminiferal populations belonging to glacial layers do not include Holocene specimens. The difference in direction of bioturbation greatly modifies climate information in horizons formed during and after deglacial events. After omitting glacial specimens from Holocene sediments, the glacial–interglacial difference in δ18O suggests that Pacific deep-water temperature changed by 2.4–3.8°C at the most. The δ13C values suggest that nutrient concentration was higher during the LGM than the Holocene. The glacial deep North Pacific Ocean apparently was influenced by cold deep waters of southern origin.  相似文献   

11.
The coccolithophore assemblages in two ODP Sites (1237 and 1238) are studied in order to reconstruct the paleoenvironmental conditions in the tropical and equatorial Pacific during the last 800 kyr. Both ODP Sites are located in the two most significant upwelling zones of the tropical and equatorial Pacific: Peru and Equatorial upwelling, respectively. The two sites are considered to have had similar evolutions. The coccolith relative abundance, the nannofossil accumulation rate (NAR) and the N ratio (namely, the proportion of < 3 μm placoliths in relation to Florisphaera profunda) allow us to identify three different intervals. Interval I (0.86-0.45 Ma) and interval III (0.22-0 Ma) are related to weak upwelling and weak Trade Winds, as suggested by coccolithophore assemblages with low N ratios. Interval II (0.45-0.22 Ma), characterized by dominant Gephyrocapsa caribbeanica and very abundant “small” Gephyrocapsa and Gephyrocapsa oceanica, is conversely related to intense upwelling and enhanced Trade Winds.  相似文献   

12.
Polycystine radiolaria from ODP Hole 677A in the eastern equatorialPacific were examined at isotopically identified Early Pleistoceneglacial maxima and minima. Two distinct radiolarian assemblagesare recognized, characterizing glacial and interglacial optima.The Glacial Assemblage is characterized by high abundances ofTheocalyptra davisiana, Botryostrobus auritus, Anthocyrtidiumzanguebaricuim andHexacontium enthacanthum. The InterglacialAssemblage is characterized by Tetrapyle octacantha, Octapylestenozoa and Theocorythium vetulum. A comparison of these fossilassemblages with modern radiolarian distribution suggests thatthe Glacial Assemblage represents intensified upwelling of coldadvected water via the Eastern Pacific Boundary Current, whilstthe Interglacial Assemblage indicates climatic ameliorationin the eastern equatorial Pacific, with the prevalence of warm(>21C) tropical/subtropical surface waters. The recognitionof these radiolarian assemblages could be successfully appliedto studies of adjacent east Pacific areas where other palaeoecologicalindicators are lacking.  相似文献   

13.
Planktonic foraminiferal assemblages from 32 surface sediment samples from high latitudes of the South Pacific Ocean have been subjected to a multivariate statistical classification method termed “principal coordinates analysis”. On the basis of the presence or absence of 18 species of planktonic Foraminifera, and the frequency and coiling direction of the cold-water species Globigerina pachyderma, the samples were clustered into five groups, where one group represents the subtropical, two the subantarctic, and two the Antarctic water mass. This assemblage-grouping method is suitable for investigations of past climatic changes.  相似文献   

14.
Eastern boundary current systems are among the most productive and lucrative ecosystems on Earth because they benefit from upwelling currents. Upwelling currents subsidize the base of the coastal food web by bringing deep, cold and nutrient‐rich water to the surface. As upwelling is driven by large‐scale atmospheric patterns, global climate change has the potential to affect a wide range of significant ecological processes through changes in water chemistry, water temperature, and the transport processes that influence species dispersal and recruitment. We examined long‐term trends in the frequency, duration, and strength of continuous upwelling events for the Oregon and California regions of the California Current System in the eastern Pacific Ocean. We then associated event‐scale upwelling with up to 21 years of barnacle and mussel recruitment, and water temperature data measured at rocky intertidal field sites along the Oregon coast. Our analyses suggest that upwelling events are changing in ways that are consistent with climate change predictions: upwelling events are becoming less frequent, stronger, and longer in duration. In addition, upwelling events have a quasi‐instantaneous and cumulative effect on rocky intertidal water temperatures, with longer events leading to colder temperatures. Longer, more persistent upwelling events were negatively associated with barnacle recruitment but positively associated with mussel recruitment. However, since barnacles facilitate mussel recruitment by providing attachment sites, increased upwelling persistence could have indirect negative impacts on mussel populations. Overall, our results indicate that changes in coastal upwelling that are consistent with climate change predictions are altering the tempo and the mode of environmental forcing in near‐shore ecosystems, with potentially severe and discontinuous ramifications for ecosystem structure and functioning.  相似文献   

15.
In the sediments along the coastal region of Peru, certain radiolarian species have preferences to waters associated with upwelling. Such is the case forPolysolenia murrayana in the upwelling areas “fed” by equatorial water and forCenosphaera (?) sp. in the upwelling areas “fed” by temperate (Subantarctic) water.Cycladophora (?)davisiana appears to “frame” the upwelling centers, suggesting that it prefers regions near thermic fronts.The down-core records of these species, as well as records of quartz and organic carbon, are depicted in three14C andδ18O dated cores, located along the Pacific coast of South America, between 11° and 13°S. They suggest that both the eolian and oceanic circulation were more intense during the last glacial stage (approximately between 33,000 and 11,000 years ago) than during the present postglacial. At these latitudes, the intensification in circulation was not only accompanied by an increased coastal upwelling and in turn by an increased primary productivity, but also by a larger supply of Temperate waters to the area.  相似文献   

16.
Understanding the patterns of spatial and temporal distribution in threshold habitats of highly migratory and endangered species is important for understanding their habitat requirements and recovery trends. Herein, we present new data about the distribution of humpback whales (Megaptera novaeangliae) in neritic waters off the northern coast of Peru: an area that constitutes a transitional path from cold, upwelling waters to warm equatorial waters where the breeding habitat is located. Data was collected during four consecutive austral winter/spring seasons from 2010 to 2013, using whale-watching boats as platforms for research. A total of 1048 whales distributed between 487 groups were sighted. The spatial distribution of humpbacks resembled the characteristic segregation of whale groups according to their size/age class and social context in breeding habitats; mother and calf pairs were present in very shallow waters close to the coast, while dyads, trios or more whales were widely distributed from shallow to moderate depths over the continental shelf break. Sea surface temperatures (range: 18.2–25.9°C) in coastal waters were slightly colder than those closer to the oceanic realm, likely due to the influence of cold upwelled waters from the Humboldt Current system. Our results provide new evidence of the southward extension of the breeding region of humpback whales in the Southeast Pacific. Integrating this information with the knowledge from the rest of the breeding region and foraging grounds would enhance our current understanding of population dynamics and recovery trends of this species.  相似文献   

17.
Reef fish assemblages are exposed to a wide range of anthropogenic threats as well as chronic natural disturbances. In upwelling regions, for example, there is a seasonal influx of cool nutrient-rich waters that may shape the structure and composition of reef fish assemblages. Given that climate change may disrupt the natural oceanographic processes by altering the frequency and strength of natural disturbances, understanding how fish assemblages respond to upwelling events is essential to effectively manage reef ecosystems under changing ocean conditions. This study used the baited remote underwater video stations (BRUVS) and the traditional underwater visual census (UVC) to investigate the spatiotemporal patterns of reef fish assemblages in an upwelling region in the North Pacific of Costa Rica. A total of 183 reef fish species from 60 families were recorded, of which 166 species were detected using BRUVS and 122 using UVC. Only 66% of all species were detected using both methods. This study showed that the upwelling had an important role in shaping reef fish assemblages in this region, but there was also a significant interaction between upwelling and location. In addition, other drivers such as habitat complexity and habitat composition had an effect on reef fish abundances and species. To authors’ knowledge, this is the first study in the Eastern Tropical Pacific that combines BRUVS and UVC to monitor reef fish assemblages in an upwelling region, which provides more detailed information to assess the state of reef ecosystems in response to multiple threats and changing ocean conditions.  相似文献   

18.
《Marine Micropaleontology》2006,58(2):114-134
Planktonic foraminiferal assemblages in 50 core-top samples from the western and southern areas of the Indonesian Archipelago and 29 core tops retrieved northwest of Australia were grouped using cluster analysis. These assemblages make it possible to sub-divide the studied area in five provinces: 1/ the Banda/Java region (I); 2/ the Timor region (II); 3/ the Java upwelling region (III); 4/ the Indian monsoon Sumatra region (IV), and 5/ the NW Australia margin region (V). The foraminiferal assemblage groups reflect differences in sea-surface temperature, salinity, thermocline depth, and nutrient supply between these five provinces. These differences are related to surface circulation patterns. The carbonate dissolution is rather intense compared to that in other areas of the eastern Indian Ocean. Within the studied area, the strongest dissolution occurs in samples from the Java upwelling region, with the lysocline level rising above ∼2800 m. The increase in abundance of Globigerina bulloides at 10–8 ka BP in core SHI-9034 (the Java upwelling region) corresponds to the decrease in core SHI-9006 (the Banda/Java region) which indicates an intensification of upwelling in relation to a strengthened southeastern monsoon over the studied area.  相似文献   

19.
Abundance patterns of planktic and benthic foraminifera from a tropical Atlantic drill site (Ocean Drilling Program Site 1259, Demerara Rise, Suriname margin) display a pronounced 400 kyr cyclicity, uninterrupted throughout our  87.8–92 Ma record, between two clearly distinguishable assemblages: (1) a pelagic foraminifer fauna, which represents a deep oxygen minimum zone, and (2) another assemblage representing a shallow oxygen minimum zone where the foraminifer fauna is dominated by a higher diversity population of mostly small clavate and biserial species common in epicontinental seas. The cyclic changes in the long eccentricity band (400 kyr) between these two assemblages are proposed to reflect changes in the mean latitudinal position of the Intertropical Convergence Zone (ITCZ). Associated fluctuations in precipitation and trade wind strength may have influenced the upwelling regime at Demerara Rise leading to the observed cyclicity of planktic foraminiferal assemblages. The severe Turonian to Coniacian paleoclimatic and paleoceanographic changes in the Atlantic Ocean (e.g., gateway opening, cooling, and glaciation), however, seem to have no influence on the composition of tropical planktic foraminiferal faunas. There is no apparent relationship between foraminifer abundances and a major deflection in the stable isotope record interpreted elsewhere as a sign of the growth and decay of a large polar ice sheet.  相似文献   

20.
Surface sediment samples taken by box corer from 32 stations on the Iceland-Scotland Ridge have been investigated for their benthic foraminiferal content. The live (Rose Bengal stained) benthic foraminiferal fauna was differentiated from empty tests comprising the foraminiferal death assemblage. Principal component analysis of both the live and dead faunal data from the Iceland-Scotland Ridge reveals eight live species assemblages and six corresponding dead assemblages. Bottom water current conditions, surface sediment characteristics, particulate organic matter supply, and to some extent also the bottom water temperatures are the main factors limiting and governing the composition and distribution of live benthic foraminiferal species assemblages on the Iceland-Scotland Ridge. On the Atlantic slope of the Iceland-Scotland Ridge the dead species assemblages differ greatly from the foraminiferal fauna living there today due to winnowing processes and redeposition of Pleistocene sediments. In this area an investigation of distribution patterns of the empty tests only would lead to wrong results concerning ecologic interrelations between benthic foraminiferal species assemblages and their environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号