首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nonviral gene transfer vectors have been actively studied in the past years in order to obtain structural entities with minimum size and defined shape. The final size of a gene transfer vector, which is compacted into unimolecular complexes, is directly proportional to the mass of the nucleic acid to be compacted. Thus, the purpose of this study was to assess the possibility of producing ssDNA vectors and their biophysical and biological characterization. We have obtained ssDNA/poly-L-lysine complexes that are significantly smaller than their double-stranded counterparts. We have also identified a lesser aggregative behavior of compacted single-stranded vs. double-stranded DNA vectors in the presence of physiological NaCl concentrations. Expression of compacted ssDNA is observed in hepatoma cell lines. Moreover, we have successfully delivered galactosylated ssDNA complexes into cells that express the asialoglycoprotein receptor via receptor-mediated endocytosis. The reduced size and biophysical behavior of ssDNA vectors may provide an advantage for transfection of eukaryotic cells.  相似文献   

2.
We studied the ability of single-stranded DNA (ssDNA) to participate in targeted recombination in mammalian cells. A 5' end-deleted adenine phosphoribosyltransferase (aprt) gene was subcloned into M13 vector, and the resulting ssDNA and its double-stranded DNA (dsDNA) were transfected to APRT-Chinese hamster ovary cells with a deleted aprt gene. APRT+ recombinants with the ssDNA was obtained at a frequency of 3 x 10(-7) per survivor, which was almost equal to that with the double-stranded equivalent. Analysis of the genome in recombinant clones produced by ssDNA revealed that 12 of 14 clones resulted from correction of the deletion in the aprt locus. On the other hand, the locus of the remaining 2 was not corrected; instead, the 5' deletion of the vector was corrected by end extension, followed by integration into random sites of the genome. To exclude the possibility that input ssDNA was converted into its duplex form before participating in a recombination reaction, we compared the frequency of extrachromosomal recombination between noncomplementary ssDNAs, and between one ssDNA and one dsDNA, of two phage vectors. The frequency with the ssDNAs was 0.4 x 10(-5), being 10-fold lower than that observed with the ssDNA and the dsDNA, suggesting that as little as 10% of the transfected ssDNA was converted into duplex forms before the recombination event, hence 90% remained unchanged as single-stranded molecules. Nevertheless, the above finding that ssDNA was as efficient as dsDNA in targeted recombination suggests that ssDNA itself is able to participate directly in targeted recombination reactions in mammalian cells.  相似文献   

3.
Nanoparticles of compacted DNA transfect postmitotic cells   总被引:6,自引:0,他引:6  
Charge-neutral DNA nanoparticles have been developed in which single molecules of DNA are compacted to their minimal possible size. We speculated that the small size of these DNA nanoparticles may facilitate gene transfer in postmitotic cells, permitting nuclear uptake across the 25-nm nuclear membrane pore. To determine whether DNA nanoparticles can transfect nondividing cells, growth-arrested neuroblastoma and hepatoma cells were transfected with DNA/liposome mixtures encoding luciferase. In both models, growth-arrested cells were robustly transfected by compacted DNA (6,900-360-fold more than naked DNA). To evaluate mechanisms responsible for enhanced transfection, HuH-7 cells were microinjected with naked or compacted plasmids encoding enhanced green fluorescent protein. Cytoplasmic microinjection of DNA nanoparticles generated a approximately 10-fold improvement in transgene expression as compared with naked DNA; this enhancement was reversed by the nuclear pore inhibitor, wheat germ agglutinin. To determine the upper size limit for gene transfer, DNA nanoparticles of various sizes were microinjected into the cytoplasm. A marked decrease in transgene expression was observed as the minor ellipsoidal diameter approached 25 nm. In summary, suitably sized DNA nanoparticles productively transfect growth arrested cells by traversing the nuclear membrane pore.  相似文献   

4.
The bacteriophage T4 uvsX gene codes for a DNA-binding protein that is important for genetic recombination in T4-infected cells. This protein is a DNA-dependent ATPase that resembles the Escherichia coli recA protein in many of its properties. We have examined the binding of purified uvsX protein to single-stranded DNA (ssDNA) and to double-stranded DNA (dsDNA) using electron microscopy to visualize the complexes that are formed and double label analysis to measure their protein content. We find that the uvsX protein binds cooperatively to dsDNA, forming filaments 14 nm in diameter with an apparently helical axial repeat of 12 nm. Each repeat contains about 42 base pairs and 9-12 uvsX protein monomers. In solutions containing Mg2+, the uvsX protein also binds cooperatively to ssDNA. The filaments that result are 14 nm in diameter, show a 12-nm axial repeat, and they are nearly identical in appearance to the filaments that contain dsDNA. In the filaments formed along ssDNA, each axial repeat contains about 49 DNA bases and 9-12 uvsX monomers. Both the filaments formed on the ssDNA and dsDNA show a strong tendency to align side-by-side. T4 gene 32 protein also binds cooperatively to ssDNA and interacts both physically and functionally with uvsX protein. However, when gene 32 and uvsX proteins were added to ssDNA together, no interaction between the two proteins was detected.  相似文献   

5.
6.
The Saccharomyces cerevisiae origin recognition complex (ORC) is bound to origins of DNA replication throughout the cell cycle and directs the assembly of higher-order protein-DNA complexes during G(1). To examine the fate of ORC when origin DNA is unwound during replication initiation, we determined the effect of single-stranded DNA (ssDNA) on ORC. We show that ORC can bind ssDNA and that ORC bound to ssDNA is distinct from that bound to double-stranded origin DNA. ssDNA stimulated ORC ATPase activity, whereas double-stranded origin DNA inhibited the same activity. Electron microscopy studies revealed two alternative conformations of ORC: an extended conformation stabilized by origin DNA and a bent conformation stabilized by ssDNA. Therefore, ORC appears to exist in two distinct states with respect to its conformation and ATPase activity. Interestingly, the effect of ssDNA on these properties of ORC is correlated with ssDNA length. Since double-stranded origin DNA and ssDNA differentially stabilize these two forms of ORC, we propose that origin unwinding triggers a transition between these alternative states.  相似文献   

7.
Eukaryotic cells encode two homologs of Escherichia coli RecA protein, Rad51 and Dmc1, which are required for meiotic recombination. Rad51, like E.coli RecA, forms helical nucleoprotein filaments that promote joint molecule and heteroduplex DNA formation. Electron microscopy reveals that the human meiosis-specific recombinase Dmc1 forms ring structures that bind single-stranded (ss) and double-stranded (ds) DNA. The protein binds preferentially to ssDNA tails and gaps in duplex DNA. hDmc1-ssDNA complexes exhibit an irregular, often compacted structure, and promote strand-transfer reactions with homologous duplex DNA. hDmc1 binds duplex DNA with reduced affinity to form nucleoprotein complexes. In contrast to helical RecA/Rad51 filaments, however, Dmc1 filaments are composed of a linear array of stacked protein rings. Consistent with the requirement for two recombinases in meiotic recombination, hDmc1 interacts directly with hRad51.  相似文献   

8.
9.
Clinical applications of gene therapy mainly depend on the development of efficient gene transfer vectors. Large DNA molecules can only be transfected into cells by using synthetic vectors such as cationic lipids and polymers. The present investigation was therefore designed to explore the physicochemical properties of cationic lipid-DNA particles, with plasmids ranging from 900 to 52 500 bp. The colloidal stability of the lipoplexes formed by complexing lipopolyamine micelles with plasmid DNA of various lengths, depending on the charge ratio, resulted in the formation of three domains, respectively corresponding to negatively, neutrally and positively charged lipoplexes. Lipoplex morphology and structure were determined by the physicochemical characteristics of the DNA and of the cationic lipid. Thus, the lamellar spacing of the structure was determined by the cationic lipid and its spherical morphology by the DNA. The main result of this study was that the morphological and structural features of the lipopolyamine-DNA complexes did not depend on plasmid DNA length. On the other hand, their gene transfer capacity was affected by the size of plasmid DNA molecules which were sandwiched between the lipid bilayers. The most effective lipopolyamine-DNA complexes for gene transfer were those containing the shortest plasmid DNA.  相似文献   

10.
自身互补型腺相关病毒载体发展趋势   总被引:5,自引:3,他引:2  
重组腺相关病毒(Recombinant adeno-associated virus,rAAV)可以作为基因运载工具将目的基因运送入靶器官并对多种疾病发挥治疗作用。以rAAV为载体进行基因治疗的关键是病毒基因组由单链变为双链,否则不能适时、有效表达目的基因。自身互补型rAAV(scrAAV)载体基因组本身以双链形式存在,与常规的单链rAAV(ssrAAV)载体相比,无论在表达时间还是表达强度上都有十分明显改善,可显著降低在疾病治疗过程中由于载体本身所诱发的免疫反应。目前,scrAAV已经在肝脏疾病、中枢神经系统疾病、眼部疾病、干细胞修饰以及RNA干扰、核酶技术等领域得到应用。以下在介绍scrAAV载体构建、表达、定位的基础上,以血友病B为主要对象,阐述scrAAV的应用潜力及发展趋势。  相似文献   

11.
BACKGROUND: Although polycations are among the most efficient nonviral vectors for gene transfer, the gene expression they allow is still too low for in vivo applications. To engineer more potent polycationic vectors, the factors governing the intracellular trafficking of a plasmid complexed with current polycations need to be identified. METHODS AND RESULTS: The trafficking of plasmid DNA complexed to glycosylated polylysines or polyethylenimine (PEI) derivatives was studied by electron microscopy of human airway epithelial cells. The cellular processing of complexes varied with their size and the polycation derivative used: large complexes (> 200 nm) made with all polycationic vectors studied were internalized by macropinocytosis. In contrast, intermediate (100-200 nm) ligand-coupled polylysine and PEI complexes primarily entered through clathrin-coated pits. Complexes were then found in endosomal vesicles, accumulated in lysosomes or vesicles near the nucleus and their nuclear entry was limited. For the population of small complexes (< or = 100 nm) obtained with PEI derivatives, they were internalized through caveolae and pursued a traffic pattern of potocytosis to the endoplasmic reticulum where their fate remains unclear. Finally, some complexes exited the cells either by regurgitation when PEI derivatives were used or through an exosome-like pathway for glycosylated-polylysine complexes. CONCLUSIONS: The different pathways of complex trafficking observed in relation with complex size imply the development and study of vectors forming complexes with definite size. Moreover, the complex exit we describe may contribute to the well-established short-term efficiency of gene transfer based on synthetic vectors. It favors the engineering of vectors allowing repeated treatment.  相似文献   

12.
Interaction of dimeric intercalating dyes with single-stranded DNA.   总被引:5,自引:2,他引:3       下载免费PDF全文
The unsymmetrical cyanine dye thiazole orange homodimer (TOTO) binds to single-stranded DNA (ssDNA, M13mp18 ssDNA) to form a fluorescent complex that is stable under the standard conditions of electrophoresis. The stability of this complex is indistinguishable from that of the corresponding complex of TOTO with double-stranded DNA (dsDNA). To examine if TOTO exhibits any binding preference for dsDNA or ssDNA, transfer of TOTO from pre-labeled complexes to excess unlabeled DNA was assayed by gel electrophoresis. Transfer of TOTO from M13 ssDNA to unlabeled dsDNA proceeds to the same extent as that from M13 dsDNA to unlabeled dsDNA. A substantial amount of the dye is retained by both the M13 ssDNA and M13 dsDNA even when the competing dsDNA is present at a 600-fold weight excess; for both dsDNA and ssDNA, the pre-labeled complex retains approximately one TOTO per 30 bp (dsDNA) or bases (ssDNA). Rapid transfer of dye from both dsDNA and ssDNA complexes is seen at Na+ concentrations > 50 mM. Interestingly, at higher Na+ or Mg2+ concentrations, the M13 ssDNA-TOTO complex appears to be more stable to intrinsic dissociation (dissociation in the absence of competing DNA) than the complex between TOTO and M13 dsDNA. Similar results were obtained with the structurally unrelated dye ethidium homodimer. The dsDNA- and ssDNA-TOTO complexes were further examined by absorption, fluorescence and circular dichroism spectroscopy. The surprising conclusion is that polycationic dyes, such as TOTO and EthD, capable of bis-intercalation, interact with dsDNA and ssDNA with very similar high affinity.  相似文献   

13.
朱冬琴  张云  刘晓玫  张春 《生物工程学报》2014,30(11):1720-1732
AAV-ITR单链DNA微载体是一种基于腺相关病毒(AAV)倒置末端重复序列(ITR)的基因表达载体(AAV-ITR ss DNA mini vector)。前期研究已证明AAV-ITR单链DNA微载体在HEK 293T细胞中具有较高的转染、表达效率。本文中将相同拷贝数的AAV-ITR单链DNA微载体、3?-ITR末端错配的AAV-ITR单链DNA微载体(AAV-ITRmm ss DNA mutant vector)、AAV-ITR双链DNA和质粒分别用Turbo Fect转入小鼠骨骼肌中,比较检测AAV-ITR单链DNA微载体与其他基因表达载体在小鼠体内1周、1个月及3个月的表达效率。组织切片经荧光显微镜观察及荧光灰度值分析表明,相同分子摩尔数的AAV-ITR单链DNA微载体比AAV-ITR双链DNA和质粒在不同时期表达效率都要高且更稳定。提取注射3个月后的肌肉组织的DNA,用荧光定量PCR分析比较各载体的存留分子数。RT-PCR的结果显示AAV-ITR单链DNA微载体在注射3个月后的存留分子数较其他载体高。综合结果显示AAV-ITR单链DNA微载体在动物体内具有表达效率高和长久稳定的优势,有可能开发为基因治疗的一种高效、稳定的新型载体。  相似文献   

14.
To study the mechanism of nuclear import of T-DNA, complexes consisting of the virulence proteins VirD2 and VirE2 as well as single-stranded DNA (ssDNA) were tested for import into plant nuclei in vitro. Import of these complexes was fast and efficient and could be inhibited by a competitor, a nuclear localization signal (NLS) coupled to BSA. For import of short ssDNA, VirD2 was sufficient, whereas import of long ssDNA additionally required VirE2. A VirD2 mutant lacking its C-terminal NLS was unable to mediate import of the T-DNA complexes into nuclei. Although free VirE2 molecules were imported into nuclei, once bound to ssDNA they were not imported, implying that when complexed to DNA, the NLSs of VirE2 are not exposed and thus do not function. RecA, another ssDNA binding protein, could substitute for VirE2 in the nuclear import of T-DNA but not in earlier events of T-DNA transfer to plant cells. We propose that VirD2 directs the T-DNA complex to the nuclear pore, whereas both proteins mediate its passage through the pore. Therefore, by binding to ssDNA, VirE2 may shape the T-DNA complex such that it is accepted for translocation into the nucleus.  相似文献   

15.
Glycosaminoglycans (GAGs) expressed ubiquitously on the cell surface are known to interact with a variety of ligands to mediate different cellular processes. However, their role in the internalization of cationic gene delivery vectors such as liposomes, polymers, and peptides is still ambiguous and seems to be controlled by multiple factors. In this report, taking peptides as model systems, we show that peptide chemistry is one of the key factors that determine the dependence on cell surface glycosaminoglycans for cellular internalization and gene delivery. Arginine peptides and their complexes with plasmid DNA show efficient uptake and functional gene transfer independent of the cell surface GAGs. On the other hand, lysine peptides and complexes primarily enter through a GAG-dependent pathway. The peptide-DNA complexes also show differential interaction with soluble GAGs. In the presence of exogenous GAGs under certain conditions, arginine peptide-DNA complexes show increased transfection efficiency that is not observed with lysine. This is attributed to a change in the complex nature that ensures better protection of the compacted DNA in the case of arginine complexes, whereas the lysine complexes get destabilized under these conditions. The presence of a GAG coating also ensures better cell association of arginine complexes, resulting in increased uptake. Our results indicate that the role of both the cell surface and exogenous glycosaminoglycans in gene delivery is controlled by the nature of the peptide and its complex with DNA.  相似文献   

16.
Bacteriophage T7 gene 2.5 protein (gp2.5) is a single-stranded DNA (ssDNA)-binding protein that has essential roles in DNA replication, recombination and repair. However, it differs from other ssDNA-binding proteins by its weaker binding to ssDNA and lack of cooperative ssDNA binding. By studying the rate-dependent DNA melting force in the presence of gp2.5 and its deletion mutant lacking 26 C-terminal residues, we probe the kinetics and thermodynamics of gp2.5 binding to ssDNA and double-stranded DNA (dsDNA). These force measurements allow us to determine the binding rate of both proteins to ssDNA, as well as their equilibrium association constants to dsDNA. The salt dependence of dsDNA binding parallels that of ssDNA binding. We attribute the four orders of magnitude salt-independent differences between ssDNA and dsDNA binding to nonelectrostatic interactions involved only in ssDNA binding, in contrast to T4 gene 32 protein, which achieves preferential ssDNA binding primarily through cooperative interactions. The results support a model in which dimerization interactions must be broken for DNA binding, and gp2.5 monomers search dsDNA by 1D diffusion to bind ssDNA. We also quantitatively compare the salt-dependent ssDNA- and dsDNA-binding properties of the T4 and T7 ssDNA-binding proteins for the first time.  相似文献   

17.
New cloning vehicles for transformation of higher plants   总被引:30,自引:4,他引:26       下载免费PDF全文
  相似文献   

18.
Danthron is an important natural occurring component in laxative drugs. In this paper, electrochemical investigation of danthron and its interaction with DNA is reported. Via the electrochemical approach assisted by ultraviolet-visible (UV-Vis) spectroscopy, we have proved that danthron intercalates into DNA strands forming some nonelectroactive complexes, which results in the decrease of redox peak currents of danthron. In addition, the decrease of the peak currents is proportional to the concentration of DNA. The difference between the interaction of danthron with double-stranded DNA (dsDNA) and with single-stranded DNA (ssDNA) has also been studied. This character implies the potential of danthron to discriminate dsDNA and ssDNA.  相似文献   

19.
Cell surface-bound receptors represent suitable entry sites for gene delivery into cells by receptor-mediated endocytosis. Here we have taken advantage of the mannose receptor that is highly expressed on antigen-presenting dendritic cells for targeted gene transfer by employing mannosylpolyethylenimine (ManPEI) conjugates. Several ManPEI conjugates were synthesized and used for formation of ManPEI/DNA transfection complexes. Conjugates differed in the linker between mannose and polyethylenimine (PEI) and in the size of the PEI moiety. We demonstrate that ManPEI transfection is effective in delivering DNA into mannose receptor-expressing cells. Uptake of ManPEI/DNA complexes is receptor-specific, since DNA delivery can be competed with mannosylated albumin. Additionally, incorporation of adenovirus particles into transfection complexes effectively enhances transgene expression. This is particularly important for primary immunocompetent dendritic cells. It is demonstrated here that dendritic cells transfected with ManPEI/DNA complexes containing adenovirus particles are effective in activating T cells of T cell receptor transgenic mice in an antigen-specific fashion.  相似文献   

20.
SV40-based shuttle viruses   总被引:1,自引:0,他引:1  
We summarize in this paper the advantages of the shuttle virus system. These SV40-based vectors exhibit the unique properties of being packaged as SV40 pseudo-virions and of being able to infect host cells. Using these transient vectors, we show that their replication can be regulated in some monkey cell lines, in such a way that either low or very high amounts of plasmid DNA can be obtained. The stability of these infectious shuttle vectors in different conditions is analyzed by rescuing them in E. coli, using various gene mutation targets. Moreover, we describe a new series of vectors which can be produced as single-stranded DNA in bacteria. They allow the transfection of a plasmid genome into mammalian cells, as either single-stranded or double-stranded DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号