首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Accurate DNA segregation is essential for genome transmission. Segregation of the prototypical F plasmid requires the centromere-binding protein SopB, the NTPase SopA and the sopC centromere. SopB displays an intriguing range of DNA-binding properties essential for partition; it binds sopC to form a partition complex, which recruits SopA, and it also coats DNA to prevent non-specific SopA–DNA interactions, which inhibits SopA polymerization. To understand the myriad functions of SopB, we determined a series of SopB–DNA crystal structures. SopB does not distort its DNA site and our data suggest that SopB–sopC forms an extended rather than wrapped partition complex with the SopA-interacting domains aligned on one face. SopB is a multidomain protein, which like P1 ParB contains an all-helical DNA-binding domain that is flexibly attached to a compact (β3–α)2 dimer-domain. Unlike P1 ParB, the SopB dimer-domain does not bind DNA. Moreover, SopB contains a unique secondary dimerization motif that bridges between DNA duplexes. Both specific and non-specific SopB–DNA bridging structures were observed. This DNA-linking function suggests a novel mechanism for in trans DNA spreading by SopB, explaining how it might mask DNA to prevent DNA-mediated inhibition of SopA polymerization.  相似文献   

2.
During the last decade, finite element (FE) modelling has become ubiquitous in understanding complex mechanobiological phenomena, e.g. bone–implant interactions. The extensive computational effort required to achieve biorealistic results when modelling the post-yield behaviour of microstructures like cancellous bone is a major limitation of these techniques. This study describes the anisotropic biomechanical response of cancellous bone through stress–strain curves of equivalent bulk geometries. A cancellous bone segment, reverse engineered by micro computed tomography, was subjected to uniaxial compression. The material's constitutive law, obtained by nano-indentations, was considered during the simulation of the experimental process. A homodimensionally bulk geometry was employed to determine equivalent properties, resulting in a similar anisotropic response to the trabecular structure. The experimental verification of our model sustained that the obtained stress–strain curves can adequately reflect the post-yield behaviour of the sample. The introduced approach facilitates the consideration of nonlinearity and anisotropy of the tissue, while reducing the geometrical complexity of the model to a minimum.  相似文献   

3.
Summary The 15N relaxation rates of the -aminoisobutyric acid (Aib)-rich peptide alamethicin dissolved in methanol at 27°C and 5°C, and dissolved in aqueous sodium dodecylsulfate (SDS) at 27°C, were measured using inverse-detected one-and two-dimensional 1H–15N NMR spectroscopy. Measurements of 15N longitudinal (RN(Nz)) and transverse (RN(Nx,y)) relaxation rates and the {1H} 15N nuclear Overhauser enhancement (NOE) at 11.7 Tesla were used to calculate (quasi-) spectral density values at 0, 50, and 450 MHz for the peptide in methanol and in SDS. Spectral density mapping at 0, 50, 450, 500, and 550 MHz was done using additional measurements of the 1H–15N lingitudinal two-spin order, RNH(2H infZ supN NZ), two-spin antiphase coherence, RNH(2H infN supZ Nx,y), and the proton longitudinal relaxation rate, RH(H infN supZ ), for the peptide dissolved in methanol only. The spectral density of motions was also modeled using the three-parameter Lipari-Szabo function. The overall rotational correlation times were determined to be 1.1, 2.5, and 5.7 ns for alamethicin in methanol at 27°C and 5°C, and in SDS at 27°C, respectively. From the rotational correlation time determined in SDS the number of detergent molecules associated with the peptide was estimated to be about 40. The average order parameter was about 0.7 and the internal correlation times were about 70 ps for the majority of backbone amide 15N sites of alamethicin in methanol and in SDS. The relaxation data, spectral densities, and order parameters suggest that the peptide N-H vectors of alamethicin are not as highly constrained as the core regions of folded globular proteins. However, the peptide backbone is clearly not as mobile as the most unconstrained regions of folded proteins, such as those found in the frayed C-and N-termini of some proteins, or in randomcoil peptides. The data also suggest significant mobility at both ends of the peptide dissolved in methanol. In SDS the mobility in the middle and at the ends of the peptide is reduced. The implications of the results with respect to the sterically hindered Aib residues and the biological activities of the peptide are discussed.To whom correspondence should be addressed.  相似文献   

4.
Tempe is a traditional fermented food in Indonesia. The manufacture process is quite complex, which comprises two stages, preparatory soaking of soybeans and fungal solid state fermentation. Daily addition of previous soak water (back-slopping) during the soybean soaking step is considered to be crucial in the manufacture of high quality tempe. The microbial diversity and dynamics of the microbial communities evolving during back-slop soaking of soybeans for tempe making was investigated by culture-independent PCR–DGGE and molecular cloning. Both DNA and total RNA were isolated and included in this study, to obtain a view on the succession of total and viable bacteria in the complex microbiota. DGGE profiles indicated that Enterobacter sp., Enterococcus sp., Pseudomonas putida, Leuconostoc fallax, Pediococcus pentosaceus, and Weissella cibaria, were the predominant bacteria. Their occurrence shifted dramatically during the back-slop soaking procedure. This study combined with previous culture-dependent studies could gain a better understanding of the complex microbiota of traditional fermented food and give useful information for its quality control.  相似文献   

5.
6.
Protein–protein interactions occur with a wide range of affinities from tight complexes characterized by femtomolar dissociation constants to weak, and more transient, complexes of millimolar affinity. Many of the weak and transiently formed protein–protein complexes have escaped characterization due to the difficulties in obtaining experimental parameters that report on the complexes alone without contributions from the unbound, free proteins. Here, we review recent developments for characterizing the structures of weak protein–protein complexes using nuclear magnetic resonance spectroscopy with special emphasis on the utility of residual dipolar couplings.  相似文献   

7.
Summary α-conotoxin EI is an 18-residue peptide (RDOCCYHPTCNMSNPQIC; 4–10, 5–18) isolated from the venom ofConus ermineus, the only fish-hunting cone snail of the Atlantic Ocean. This peptide targets specifically the nicotinic acetylcholine receptor (nAChR) found in mammalian skeletal muscle and the electric organTorpedo, showing a novel selectivity profile when compared to other α-conotoxins. The 3D structure of EI has been determined by 2D-NMR methods in combination with dynamical simulated annealing protocols. A total of 133 NOE-derived distances were used to produce 13 structures with minimum energy that complied with the NOE restraints. The structure of EI is characterized by a helical loop between THr9 and Met12 that is stabilized by the Cys4-Cys10 disulfide bond and turns involving Cys4-Cys5 and Asn14-Pro15. Other regions of the peptide appear to be flexible. The overall fold of EI is similar to that of other α4/7-conotoxins (PnIA/B, MII, EpI). However, unlike these other α4/7-conotoxins, EI targets the muscular type nAChR. The differences in selectivity can be attributed to differences in the surface charge distribution among these α4/7-conotoxins. The implications for binding of EI to the muscular nAChR are discussed with respect to the current NMR structure of EI. Supplementary material available:1H resonance assignments of α-conotoxin EI.  相似文献   

8.
9.
The light-harvesting complex II (LHCII) is the main component of the antenna system of plants and green algae and plays a major role in the capture of sun light for photosynthesis. The LHCII complexes have also been proposed to play a key role in the optimization of photosynthetic efficiency through the process of state 1-state 2 transitions and are involved in down-regulation of photosynthesis under excess light by energy dissipation through non-photochemical quenching (NPQ). We present here the first solid-state magic-angle spinning (MAS) NMR data of the major light-harvesting complex (LHCII) of Chlamydomonas reinhardtii, a eukaryotic green alga. We are able to identify nuclear spin clusters of the protein and of its associated chlorophyll pigments in 13C-13C dipolar homonuclear correlation spectra on a uniformly 13C-labeled sample. In particular, we were able to resolve several chlorophyll 131 carbon resonances that are sensitive to hydrogen bonding to the 131-keto carbonyl group. The data show that 13C NMR signals of the pigments and protein sites are well resolved, thus paving the way to study possible structural reorganization processes involved in light-harvesting regulation through MAS solid-state NMR.  相似文献   

10.
A novel method is described, which uses changes in NMR chemical shifts to characterise the structural change in a protein with pressure. Melittin in methanol is a small -helical protein, and its chemical shifts change linearly and reversibly with pressure between 1 and 2000 bar. An improved relationship between structure and HN shift has been calculated, and used to drive a molecular dynamics-based calculation of the change in structure. With pressure, the helix is compressed, with the H—O distance of the NH—O=C hydrogen bonds decreased by 0.021 ± 0.039 Å, leading to an overall compression along the entire helix of about 0.4 Å, corresponding to a static compressibility of 6 ×10–6 bar–1. The backbone dihedral angles and are altered by no more than ± 3° for most residues with a negative correlation coefficient of –0.85 between i and i–1, indicating that the local conformation alters to maintain hydrogen bonds in good geometries. The method is shown to be capable of calculating structural change with high precision, and the results agree with structural changes determined using other methodologies.  相似文献   

11.
Direct detection of 13C can be advantageous when studying uniformly enriched proteins, in particular for paramagnetic proteins or when hydrogen exchange with solvent is fast. A scheme recently introduced for long-observation-window band-selective homonuclear decoupling in solid state NMR, LOW-BASHD (Struppe et al. in J Magn Reson 236:89–94, 2013) is shown to be effective for 13Cα decoupling during direct 13C′ observation in solution NMR experiments too. For this purpose, adjustment of the decoupling pulse parameters and delays is demonstrated to be important for increasing spectral resolution, to reduce three-spin effects, and to decrease the intensity of decoupling side-bands. LOW-BASHD then yields 13C′ line widths comparable to those obtained with the popular IPAP method, while enhancing sensitivity by ca 35 %. As a practical application of LOW-BASHD decoupling, requiring quantitative intensity measurement over a wide dynamic range, the impact of lipid binding on the 13C′-detected NCO spectrum of the intrinsically disordered protein α-synuclein is compared with that on the 1H-detected 1H–15N HSQC spectrum. Results confirm that synuclein’s “dark state” behavior is not caused by paramagnetic relaxation or rapid hydrogen exchange.  相似文献   

12.
Lu L  Gao X  Zhu M  Wang S  Wu Q  Xing S  Fu X  Liu Z  Guo M 《Biometals》2012,25(3):599-610
The inhibitory effects of three biguanido-oxovanadium complexes ([VO(L(1-3))(2)]·nH(2)O: HL(1) = metformin, HL(2) = phenformin, HL(3) = moroxydine) against four protein tyrosine phosphatases (PTPs) and an alkaline phosphatase (ALP) were investigated. The complexes display strong inhibition against PTP1B and TCPTP (IC(50), 80-160 nM), a bit weaker inhibition against HePTP (IC(50), 190-410 nM) and SHP-1(IC(50), 0.8-3.3 μM) and much weaker inhibition against ALP (IC(50), 17-35 μM). Complex 3 is about twofold less potent against PTP1B, TCPTP and HePTP than complexes 1 and 2, while complex 2 inhibits SHP-1 more strongly (about three to fourfold) than the other two complexes. These results suggest that the structures of the ligands slightly influence the potency and selectivity against PTPs. The complexes inhibit PTP1B and ALP with a typical competitive type.  相似文献   

13.
14.
The preparation and characterisation of the complexes [Co2(CO)4(PMe3)2][Co2(CO)6](Me3SiC2C2SiMe3) (4), [Co2(CO)4(dppm)][Co2(CO)6](Me3SiC2C2H) (5), [Co2(CO)4(dppa)][Co2(CO)6](Me3SiC2C2SiMe3) (6), [Co2(CO)4(dppm)]2[Co2(CO)6](Me3SiC2CCC2C2SiMe3) (7) and [{SiMe3(Co2(CO)4(dppm))C2}2(HCC)(1,3,5-C6H3)] (8) are described. An electrochemical study of the complexes 5-8 and of the related [Co2(CO)4(dppm)]2(Me3SiC2(CC)2C2SiMe3) (1), [Co2(CO)4(dppa)]2(Me3SiC2C2SiMe3) (2) and [{SiMe3(Co2(CO)4(dppm))C2}(HCC)2(1,3,5-C6H3)] (3) is presented by means of the cyclic and square-wave voltammetry techniques. Crystals of 8 suitable for single-crystal X-ray diffraction were grown and the molecular structure of this compound is discussed.  相似文献   

15.
The fusion of biological membranes is mediated by integral membrane proteins with α-helical transmembrane segments. Additionally, those proteins are often modified by the covalent attachment of hydrocarbon chains. Previously, a series of de novo designed α-helical peptides with mixed Leu/Val sequences was presented, mimicking fusiogenically active transmembrane segments in model membranes (Hofmann et al., Proc. Natl. Acad. Sci. USA 101 (2004) 14776-14781). From this series, we have investigated the peptide LV16 (KKKW LVLV LVLV LVLV LVLV KKK), which was synthesized featuring either a free N-terminus or a saturated N-acylation of 2, 8, 12, or 16 carbons. We used 2H and 31P NMR spectroscopy to investigate the structure and dynamics of those peptide lipid modifications in POPC and DLPC bilayers and compared them to the hydrocarbon chains of the surrounding membrane. Except for the C2 chain, all peptide acyl chains were found to insert well into the membrane. This can be explained by the high local lipid concentrations the N-terminal lipid chains experience. Further, the insertion of these peptides did not influence the membrane structure and dynamics as seen from the 2H and 31P NMR data. In spite of the fact that the longer acyl chains insert into the membrane, they do not adapt their lengths to the thickness of the bilayer. Even the C16 lipid chain on the peptide, which could match the length of the POPC palmitoyl chain, exhibited lower order parameters in the upper chain, which get closer and finally reach similar values in the lower chain region. 2H NMR square law plots reveal motions of slightly larger amplitudes for the peptide lipid chains compared to the surrounding phospholipids. In spite of the significantly different chain lengths of the acylations, the fraction of gauche defects in the inserted chains is constant.  相似文献   

16.
Measurements of bomb-produced radiocarbon and 210Pb provide concordant estimates of the growth rate of the sclerosponge Ceratoporella nicholsoni collected from the reef slope of northern Jamaica. Radiocarbon measurements of older growth bands in the same specimen are similar to the time history of radiocarbon in coral bands from two sites in the northwestern Atlantic. Furthermore, 210Pb and stable Pb analyses reveal that the sclerosponge incorporates this element at much higher concentrations than corals.Contribution No. 5955 to the Woods Hole Oceanographic Institution  相似文献   

17.
The kinetic folding of β2-microglobulin from the acid-denatured state was investigated by interrupted-unfolding and interrupted-refolding experiments using stopped-flow double-jump techniques. In the interrupted unfolding, we first unfolded the protein by a pH jump from pH 7.5 to pH 2.0, and the kinetic refolding assay was carried out by the reverse pH jump by monitoring tryptophan fluorescence. Similarly, in the interrupted refolding, we first refolded the protein by a pH jump from pH 2.0 to pH 7.5 and used a guanidine hydrochloride (GdnHCl) concentration jump as well as the reverse pH jump as unfolding assays. Based on these experiments, the folding is represented by a parallel-pathway model, in which the molecule with the correct Pro32 cis isomer refolds rapidly with a rate constant of 5–6 s? 1, while the molecule with the Pro32 trans isomer refolds more slowly (pH 7.5 and 25 °C). At the last step of folding, the native-like trans conformer produced on the latter pathway isomerizes very slowly (0.001–0.002 s? 1) into the native cis conformer. In the GdnHCl-induced unfolding assays in the interrupted refolding, the native-like trans conformer unfolded remarkably faster than the native cis conformer, and the direct GdnHCl-induced unfolding was also biphasic, indicating that the native-like trans conformer is populated at a significant level under the native condition. The one-dimensional NMR and the real-time NMR experiments of refolding further indicated that the population of the trans conformer increases up to 7–9% under a more physiological condition (pH 7.5 and 37 °C).  相似文献   

18.
Differences in the feeding habits between phytophagous and predatory species can determine distinct ecological interactions between mites and their host plants. Herein, plant–mite networks were constructed using available literature on plant-dwelling mites from Brazilian natural vegetation in order to contrast phytophagous and predatory mite networks. The structural patterns of plant–mite networks were described through network specialization (connectance) and modularity. A total of 187 mite species, 65 host plant species and 646 interactions were recorded in 14 plant–mite networks. Phytophagous networks included 96 mite species, 61 host plants and 277 interactions, whereas predatory networks contained 91 mite species, 54 host plants and 369 interactions. No differences in the species richness of mites and host plants were observed between phytophagous and predatory networks. However, plant–mite networks composed of phytophagous mites showed lower connectance and higher modularity when compared to the predatory mite networks. The present results corroborate the hypothesis that trophic networks are more specialized than commensalistic networks, given that the phytophagous species must deal with plant defenses, in contrast to predatory mites which only inhabit and forage for resources on plants.  相似文献   

19.
20.
ωB97XD/6-311++G(d,p) calculations were carried out to investigate the hydrogen-bonding interactions between adrenaline (Ad) and water. Six Ad-H(2)O complexes possessing various types of hydrogen bonds (H-bonds) were characterized in terms of their geometries, energies, vibrational frequencies, and electron-density topology. Natural bond orbital (NBO) and quantum theory of atoms in molecules (QTAIM) analyses were performed to elucidate the nature of the hydrogen-bonding interactions in these complexes. The intramolecular H-bond between the amino and carboxyl oxygen atom of Ad was retained in most of the complexes, and cooperativity between the intra- and intermolecular H-bonds was present in some of the complexes. H-bonds in which hydroxyls of Ad/water acted as proton donors were stronger than other H-bonds. Both hydrogen-bonding interactions and structural deformation play important roles in the relative stabilities of the complexes. The intramolecular H-bond was broken during the formation of the most stable complex, which indicates that Ad tends to break the intramolecular H-bond and form two new intermolecular H-bonds with the first water molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号