首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kliuchev SA 《Biofizika》2003,48(3):400-404
The influence of various factors on the electron-transfer activity of ferredoxin I from Azotobacter vinelandii was studied. The method of cyclic voltammetry was used to obtain the data.  相似文献   

2.
The structure of Azotobacter vinelandii ferredoxin I (AvFdI) has been extensively characterized by a variety of techniques. Although its physiological function is unknown, it has long been implicated as being involved in electron donation to nitrogenase. Here we report that the AvFdI gene (fdxA) has been cloned from an EcoRI digest lambda library using a synthetic oligonucleotide probe and that its sequence has been determined. The amino acid sequence deduced from the DNA sequence is identical to the previously published protein sequence. Analysis of the promoter region indicates that AvFdI is not a nif specific gene product. A mutant of A. vinelandii has been constructed which is identical to the wild-type, at the DNA level, except that the fdxA gene has been interrupted by insertion of a kanamycin cartridge. This mutant, called LM100, does not synthesize AvFdI but does synthesize the Fe and MoFe proteins of nitrogenase and grows at wild-type rates under N2-fixing conditions. This demonstrates that AvFdI is not required for N2 fixation by A. vinelandii. There is a small acidic protein, which is present in wild-type A. vinelandii, whose level is dramatically increased in LM100. The nature of this protein is under further investigation.  相似文献   

3.
Adenosine monophosphate nucleosidases from Azotobacter vinelandii and Escherichia coli have been studied crystallographically to determine their quarternary structures. Preliminary characterization of the A. vinelandii enzyme shows that the crystals are monoclinic, C2 with a = 347 A, b = 204 A, c = 114 A, and beta = 91.7 degrees. The asymmetric unit contains 12 or 9 subunits of Mr 54,000. Self-rotation functions with data from the AMP nucleosidases from A. vinelandii and from E. coli (Giranda, V. L., Berman, H. M., and Schramm, V. L. (1986) J. Biol. Chem. 261, 15307-15309) are consistent with the monomers arranged as hexamers with point symmetry 32. The hexamers are arranged in the unit cells so that crystallographic 2-fold axes are coincident with the local 2-folds of the point group 32.  相似文献   

4.
Isolation of ntrA-like mutants of Azotobacter vinelandii.   总被引:6,自引:3,他引:3       下载免费PDF全文
A number of chlorate-resistant mutants of Azotobacter vinelandii affected in a general control of nitrogen metabolism were isolated. These mutants could not utilize dinitrogen, nitrate, or nitrite as a nitrogen source. The reason for this inability is that they were simultaneously deficient in nitrogenase and nitrate and nitrite reductase activities. They were complemented by a cosmid carrying a DNA fragment of A. vinelandii able to complement ntrA mutants of Escherichia coli, so they seemed to be ntrA-like mutants.  相似文献   

5.
Summary Temperature-sensitive nitrogen fixation mutants of Azotobacter vinelandii were obtained by nitrosoguanidine mutagenesis and penicillin selection. The mutants were unable to grow on N2 at 39° but grew normally at 30° on N2 and at both temperatures in the presence of metabolizable nitrogen compounds. Growth experiments and assays of whole cells for nitrogenase activity separated the mutants into two classes: 1. mutants in which the nitrogenase activity present in cells grown at 30° was unaffected by a shift to 39°, and 2. mutants which lost their nitrogen fixation activity after such a temperature shift. Assays of cell-free extracts of the second class of mutants showed that in all cases tested the enzymatic activity of the nitrogenase complex itself was not affected by the mutation. These mutants might therefore contain some other temperature-sensitive proteins specifically involved in nitrogen fixation.  相似文献   

6.
Cytochrome-c-deficient mutants of Azotobacter vinelandii have been isolated following mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine. These mutants grow well under nitrogen-fixing conditions and studies of the physiology and energy conservation efficiency show no apparent differences from those of the parent strain. Under oxygen-limited growth conditions, the growth rate of the cytochrome-c-deficient mutant was slightly slower (approx. 15%) than that of the parent strain. Cytochromes of the c-type are required for the oxidation of artificial electron donors such as reduced N,N,N',N'-tetramethyl-p-phenylenediamine [Ph(NMe2)2]. This study could not demonstrate a physiological role for the c-type cytochromes which supports the idea that the minor Ph(NMe2)2-oxidizing pathway of the electron transport chain may be independent of the major pathway terminated by cytochrome d.  相似文献   

7.
Room temperature circular dichroism (CD) and low temperature magnetic circular dichroism (MCD) spectra of air-oxidized and dithionite-reduced Azotobacter vinelandii ferredoxin I (FdI), a [( 4Fe-4S]2+/1+, [3Fe-4S]1+/0) protein, are reported. Unlike the CD of oxidized FdI, the CD of dithionite-reduced FdI exhibits significant pH dependence, consistent with protonation-deprotonation at or near the cluster reduced: the [3Fe-4S] cluster. The MCD of reduced FdI, which originates in the paramagnetic reduced [3Fe-4S]0 cluster, is also pH-dependent. Detailed studies of the field dependence and temperature dependence of the MCD of oxidized and reduced FdI, in the latter case at pH 6.0 and 8.3, are reported. The low-field temperature dependence of the MCD of oxidized FdI, which originates in the paramagnetic oxidized [3Fe-4S]1+ cluster, establishes the absence of a significant population of excited electronic states of this cluster up to 60 K. The low-field temperature dependence of the MCD of reduced FdI establishes that the ground-state manifold of the reduced [3Fe-4S]0 cluster possesses S greater than or equal to 2 at both pH 6.0 and 8.3. Analysis, assuming S = 2 and an axial zero-field splitting Hamiltonian, leads to D = -2.0 and -3.5 cm-1 at pH 6.0 and 8.3, respectively. The site of the (de)protonation affecting the spectroscopic properties of the [3Fe-4S] cluster remains unknown.  相似文献   

8.
Nif- mutants of Azotobacter vinelandii defective in dinitrogenase activity synthesized iron-molybdenum cofactor (FeMo-co) and accumulated it in two protein-bound forms: inactive dinitrogenase and a possible intermediate involved in the FeMo-co biosynthetic pathway. FeMo-co from both these proteins could activate apo-dinitrogenase from FeMo-co-deficient mutants.  相似文献   

9.
NADPH:ferredoxin reductase (AvFPR) is involved in the response to oxidative stress in Azotobacter vinelandii. The crystal structure of AvFPR has been determined at 2.0 A resolution. The polypeptide fold is homologous with six other oxidoreductases whose structures have been solved including Escherichia coli flavodoxin reductase (EcFldR) and spinach, and Anabaena ferredoxin:NADP+ reductases (FNR). AvFPR is overall most homologous to EcFldR. The structure is comprised of a N-terminal six-stranded antiparallel beta-barrel domain, which binds FAD, and a C-terminal five-stranded parallel beta-sheet domain, which binds NADPH/NADP+ and has a classical nucleotide binding fold. The two domains associate to form a deep cleft where the NADPH and FAD binding sites are juxtaposed. The structure displays sequence conserved motifs in the region surrounding the two dinucleotide binding sites, which are characteristic of the homologous enzymes. The folded over conformation of FAD in AvFPR is similar to that in EcFldR due to stacking of Phe255 on the adenine ring of FAD, but it differs from that in the FNR enzymes, which lack a homologous aromatic residue. The structure of AvFPR displays three unique features in the environment of the bound FAD. Two features may affect the rate of reduction of FAD: the absence of an aromatic residue stacked on the isoalloxazine ring in the NADPH binding site; and the interaction of a carbonyl group with N10 of the flavin. Both of these features are due to the substitution of a conserved C-terminal tyrosine residue with alanine (Ala254) in AvFPR. An additional unique feature may affect the interaction of AvFPR with its redox partner ferredoxin I (FdI). This is the extension of the C-terminus by three residues relative to EcFldR and by four residues relative to FNR. The C-terminal residue, Lys258, interacts with the AMP phosphate of FAD. Consequently, both phosphate groups are paired with a basic group due to the simultaneous interaction of the FMN phosphate with Arg51 in a conserved FAD binding motif. The fourth feature, common to homologous oxidoreductases, is a concentration of 10 basic residues on the face of the protein surrounding the active site, in addition to Arg51 and Lys258.  相似文献   

10.
Mutants of Azotobacter vinelandii ATCC 12837 were isolated which could fix N2 in the presence of high tungsten concentrations. The most studied of these mutants (WD2) grew well in N-free modified Burk broth containing 10 mM W, whereas the wild type would not grow in this medium. WD2 would also grow in Burk N-free broth at about the same rate as the wild type. WD2 in broth containing W exhibited 22% of the whole cell acetylene reduction activity of the wild type in broth containing Mo and showed a lowered affinity for acetylene. Two-dimensional gel electrophoresis experiments showed that N2-fixing cells of WD2 from broth containing W or Mo did not produce significant amounts of component I of native nitrogenase protein. Electron spin resonance spectra of whole cells and cell-free extracts of WD2 from broth containing W lacked any trace of the g = 3.6 resonance associated with FeMoCo.  相似文献   

11.
The recently redetermined structure of the 7 Fe ferredoxin from Azotobacter vinelandii has been refined against a new 1.9 A data set. The crystallographic R-factor is 0.215 for all 9586 observed reflections 8.0 to 1.9 A. The model contains 106 amino acid residues, two Fe-S clusters and 21 water molecules. The root-mean-square deviations from ideality of bonds and angles are 0.014 A and 3.3 degrees, respectively. The refinement confirms the presence of two free cysteines: the thiol of C11 is in association with the side-chain of K100; the thiol of C24 is 3.35 A from inorganic sulfur of the [4 Fe-4 S] cluster. The refinement confirms a [3 Fe-4 S] model for the 3 Fe cluster. The two Fe-S clusters have similar bond distances and angles. The structure of the protein for residues 1 to 57 superposes within 0.85 A on residues 1 to 53 of the 8 Fe ferredoxin structure for main-chain N, CA and C atoms, if residues 9, 10, 29 and 30 of 7 Fe ferredoxin are omitted. These residues are part of two loops in contact with residues of the extended C-terminal chain of 7 Fe ferredoxin.  相似文献   

12.
Crystals of Azotobacter vinelandii ferredoxin I (FdI) have been soaked in solutions containing K3Fe(CN)6 in order to study the oxidation of the [3Fe-4S] and [4Fe-4S] clusters in the protein. Ferricyanide treatment results in partial loss of Fe and S from each cluster accompanied by alteration of Fe-S bonds. The effects of oxidation can be quantitated by crystallographic refinement when each [Fe-S] cluster is modeled as having a single, average structure with non-standard geometry. The oxidized clusters refined at 2.1-Å resolution display statistically significant deviations from geometric ideality. If interpreted in terms of atomic shifts these deviations indicate that each cluster first loses an inorganic S atom. In each case an Fe atom bonded to this S separates from the remaining atoms of the cluster such that the [3Fe-4S] and [4Fe-4S] clusters partially decompose into a single Fe plus 2Fe and 3Fe fragments. The extent of structural changes observed are essentially the same in crystals soaked at 3?:?1, 9?:?1 and 30?:?1 mole ratio of K3 Fe(CN)6?:?FdI, suggesting that the crystal lattice permits limited oxidation reactions to occur at a low mole ratio but restricts conformational changes from occurring that may be required for more extensive oxidative reactions at higher mole ratio. The results are relevant to understanding the transformations which may take place when [Fe-S] proteins are deliberately oxidized with ferricyanide.  相似文献   

13.
14.
The destructive oxidation of aerobically isolated 7Fe Azotobacter vinelandii ferredoxin I [(7Fe)FdI] by Fe(CN)3-6 is examined using low-temperature magnetic circular dichroism (MCD) and EPR. The results demonstrate that oxidation of the [3Fe-3S] cluster occurs only after essentially complete destruction of the [4Fe-4S] cluster. It is therefore feasible by controlled Fe(CN)3-6 oxidation to obtain a partially metallated form of FdI, (3Fe)FdI, containing only a [3Fe-3S] cluster. The MCD and EPR data demonstrate that the [3Fe-3S] cluster in (3Fe)FdI is essentially identical in structure to that in the native protein.  相似文献   

15.
16.
Structural, energetic, and dynamical studies of Azotobacter vinelandii ferredoxin I are presented for native and mutant forms. The protein contains two iron-sulfur clusters, one of which ([3Fe-4S]) is believed to play a central role in the electron-coupled proton transfer. Different charge sets for the [3Fe-4S] cluster in its reduced and oxidized state are calculated with broken symmetry ab initio density functional theory methods and used in molecular dynamics (MD) simulations. The validity of the ab initio calculations is assessed by comparing partially optimized structures of the [3Fe-4S] clusters with x-ray structures. Possible proton transfer pathways between the protein and the iron-sulfur cluster are examined by both MD simulations and ab initio calculations. The MD simulations identify three main-chain hydrogen atoms--HN(13), HN(14), and HN(16)--that are within H-bonding distance of the [3Fe-4S] cluster throughout the MD simulations. They could thus play a role in the proton transfer from the protein to the iron-sulfur cluster. By contrast, the HD2(15) atom of the Asp-15 is seldom close enough to the [3Fe-4S] cluster to transfer a proton. Poisson-Boltzmann calculations indicate that there is a low, but nonzero probability, that Asp-15 is protonated at pH 7; this is a requirement for it to serve as a proton donor. Ab initio calculations with a fragment model for the protein find similar behavior for the transfer of a proton from the OH of the protonated side chain and the main-chain NH of Asp-15. The existence of a stable salt bridge between Asp-15 and Lys-84 in the D15E mutant, versus its absence in the wild-type, has been suggested as the cause of the difference in the rate of proton transfer. Extensive MD simulations were done to test this idea; the results do not support the proposal. The present findings, together with the available data, serve as the basis for an alternative proposal for the mechanism of the coupled electron-proton transfer reaction in ferredoxin I.  相似文献   

17.
Analyses of resting cells of Azotobacter vinelandii revealed that numerous phospholipids were present that did not concentrate in the membranous R(3) fraction which carried out electron transport function.  相似文献   

18.
Ultrastructure of Azotobacter vinelandii   总被引:7,自引:6,他引:1       下载免费PDF全文
Vegetative cells and cysts of Azotobacter vinelandii 12837 were prepared for electron microscopy by several methods assumed to preserve structural details destroyed by techniques previously reported in the literature. Examination of large numbers of cells and cysts by these methods revealed four structural details not reported previously: intine fibrils, intine vesicles, intine membrane, and microtubules. The intine fibrils form a network in the gel-like homogeneous matrix of the CC2 layer. Intine vesicles which seem to originate in the cell wall complex of the central body are seen in the intine and exine of cysts. Analogous structures are found on vegetative cells. The intine is divided into two chemically distinct areas by the two-layered intine membrane. Microtubules, previously reported only in vegetative cells, were found in cysts.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号