首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A cDNA clone,CaOMTl encoding ano-diphenol-O-methyltransferase (OMT), which is involved in capsaicin biosynthesis, was isolated by screening of a cDNA library prepared from the mRNA of pepper (Capsicum annuum L.) pericarp. Nucleotide sequence analysis ofCaOMTl revealed that it had an open reading frame of 1080 bp which encodes a polypeptide with a predicted molecular weight of 39,430 D, corresponding well with the size of the known OMT’s of tobacco, poplar, aspen, alfalfa, and cabbage. It also had five conserved boxes which appear in all known OMT’s. The nucleotide sequence ofCaOMTl had 89–74% identity with the OMT cDNA’s of tobacco, aspen, alfalfa, and poplar, but a relatively lower identity of 59% with the OMT cDNA of maize. Amino acid sequence analysis also revealed that CaOMT1 has high identity with the known OMT’s which have a substrate ofo-diphenolic compounds, especially 5-hydroxyferulic acid and caffeic acid. It supportsCaOMTl which encodes an OMT. Southern blot analysis suggested thatCaOMTl might exist in the form of multiple copies in the pepper genome.CaOMTl is expressed preferentially in pepper fruit and its expression levels increased during pepper fruit development, but decreased during fruit ripening, suggesting that theCaOMTl gene is fruit development-related.CaOMTl is the first reported cDNA clone for enzymes related to the phenlypropanoid pathway in pepper.  相似文献   

2.
In this work we report a new method forin vitro chili pepper (Capsicum annuum L.) plant regeneration based on shoot formation from wounded hypocotyls. Chili pepper seeds were surface sterilized and germinated on agar (0.8%) at 25 ± 2°C in the dark. Five factors that may influence shoot regeneration were studied: age of seedlings, hypocotyl wounding site, time elapsed between wounding the hypocotyls and decapitation of seedlings, culture media and cultivars. In order to study the influence of the first three factors on shoot regeneration, the apical, middle or basal hypocotyl regions of seedlings of cv. Mulato Bajio at different stages of development (9, 15, 16, 21 and 28 d old) were wounded with a syringe needle, and the seedlings were cultured on MS semisolid medium without growth regulators at 25 ± 2°C under a 16/8 h light/dark photoperiod (daylight fluorescent lamps; 35 mol m-2 s--1) until decapitation. The seedlings were decapitated (3 mm below the cotyledons) at different times after wounding (0, 2, 4, 10, 12 and 14 d), and each explant was evaluated for bud and shoot formation ( 5 mm in length) at the wounded site after 30 d of incubation. In general, seedlings at the stage of curved hypocotyl (9 d old) wounded in the apical region of hypocotyl were the best explants for shoot regeneration when inoculated on culture medium without growth regulators. Decapitation after wounding also influenced the shoot regeneration efficiency, with 10–14 d being the best period. Up to 90% shoot regeneration in cv. Mulato Bajio was obtained under these conditions. Statistically significant differences were observed for shoot formation among 21 cultivars tested. Regeneration of whole plants was achieved by rooting the shoots with indole-3-butyric acid pulses of 60 mg L–1 for 3 h and then subculturing on MS medium without growth regulators.  相似文献   

3.
Summary Octoploidy was induced in Chili pepper (Capsicum annuum cultivar cerasiformis) through the application of colchicine and the cytomorphological features of two octoploid plants were described. In general, the octoploids did not exhibit gigas characters when compared to the tetraploids; on the contrary they were less vigorous, suggesting that the optimum and desirable ploidy level for Capsicum is probably tetraploid. Chromosome associations such as octovalents and hexavalents, in addition to IVs, IIIs, IIs and Is, were recorded at diakinesis and metaphase I. Meiosis was highly irregular and the pollen and seed fertility was very low. Cytological features of octoploid Chili peppers are compared with octoploids of Physalis and Petunia.  相似文献   

4.
Summary Chile pepper (Capsicum annuum L.) plants were regenerated from cotyledon explantsin vitro in four major stages: bud induction, bud enlargement, shoot elongation, and root development. Bud induction medium contained 0.5 mg/L (2.9μM) indole-3-acetic acid and 2 mg/L (8.9 μM) N6-benzyladenine. Bud enlargement occurred, and an occasional shoot appeared when medium with 2 mg/L (6μM) gibberellic acid, 2 mg/L (8.9 μM) N6-benzyladenine, and 5 mg/L (29.4 μM) silver nitrate was used. Most shoots elongated after placement on a third medium without plant growth regulators or on fresh plates of bud enlargement medium. Incubations were for 2, 2, and 4 weeks, respectively, at 28.5°C and continuous light. Treatment with silver nitrate was necessary for multiple shoot production and elongation to occur in the third culture stage and was most effective when present in the second-stage medium but not in the bud induction medium. Sixteen to 26% of the shoots rooted in medium with 1 mg/L (5.4 μM) 1-naphthaleneacetic acid after 1 month. Additional shoots transferred to a second rooting medium with 0.1 or 1.0 mg/L (0.54 or 5.4 μM) 1-naphthaleneacetic acid developed roots, increasing the overall rooting efficiency to 70–72%. Most rooted shoots grew well and produced viable seeds when grown in the greenhouse. Other cytokinins tested for plant regeneration were zeatin and thidiazuron. Zeatin induced few shoots and fewer well-developed plants. Thidiazuron induced multiple shoots 4 months after culture began, but many were small and did not elongate further. Phytagar tissue culture grade proved superior to other agars tested, increasing bud induction frequency from 0-33% to 80–93% and eliminating explant hyperhydricity.  相似文献   

5.
Kim M  Jang IC  Kim JA  Park EJ  Yoon M  Lee Y 《Plant cell reports》2008,27(3):425-434
We report high frequencies of embryo production and plant regeneration through isolated microspore culture of hot pepper (Capsicum annuum L.). Microspores cultured in modified NLN medium (NLNS) divided and developed to embryos. Globular and heart-shaped embryos were observed from 3 weeks after the beginning of culture, and many embryos reached the cotyledonary stage after 4 weeks of culture. These cotyledonary embryos developed to plantlets after transfer to solid B5 basal medium. We also optimized conditions for embryo production by varying the pretreatment media, the carbon sources, and culture densities. Heat shock treatment in sucrose-starvation medium was more effective than in B5 medium. Direct comparisons of sucrose and maltose as carbon sources clearly demonstrated the superiority of sucrose compared to maltose, with the highest frequency of embryo production being obtained in 9% (w/v) sucrose. Microspore plating density was critical for efficient embryonic induction and development, with an optimal plating density of 8 × 104–10 × 104/ml. Under our optimized culture conditions, we obtained over 54 embryos, and an average of 5.5 cotyledonary embryos when 10 × 104 microspores were grown on an individual plate.  相似文献   

6.
7.
Background information. In vitro-cultured microspores, after an appropriate stress treatment, can switch towards an embryogenic pathway. This process, known as microspore embryogenesis, is an important tool in plant breeding. Basic studies on this process in economically interesting crops, especially in recalcitrant plants, are very limited and the sequence of events is poorly understood. In situ studies are very convenient for an appropriate dissection of microspore embryogenesis, a process in which a mixture of different cell populations (induced and non-induced) develop asynchronically.Results. In the present study, the occurrence of defined subcellular rearrangements has been investigated during early microspore embryogenesis in pepper, an horticultural crop of agronomic interest, in relation to proliferation and differentiation events. Haploid plants of Capsicum annuum L. (var. Yolo Wonder B) have been regenerated from in vitro anther cultures by a heat treatment at 35 degrees C for 8 days. Morphogenesis of microspore-derived embryos has been analysed, at both light and electron microscopy levels, using low-temperature-processed, well-preserved specimens. The comparison with the normal gametophytic development revealed changes in cell organization after embryogenesis induction, and permitted the characterization of the time sequence of a set of structural events, not previously defined in pepper, related to the activation of proliferative activity and differentiation. These changes mainly affected the plastids, the vacuolar compartment, the cell wall and the nucleus. Further differentiation processes mimicked that of the zygotic development.Conclusions. The reported changes can be considered as markers of the microspore embryogenesis. They have increased the understanding of the mechanisms controlling the switch and progression of the microspore embryogenesis, which could help to improve its efficiency and to direct strategies, especially in agronomically interesting crops.  相似文献   

8.
9.
10.
In vitro plant regeneration was achieved from eightsweet pepper varieties (Capsicum annuum L.). The effect ofvarious explant types (cotyledons, leaves, cotyledonary nodes and shoot-tip from25-day-old seedlings and embryonic cotyledons, embryonic hypocotyls and woundedseedlings) on bud and shoot regeneration and shoot elongation was evaluated.Differences in ability for in vitro shoot regeneration andelongation depended on the variety and explant type. In general, highregeneration frequency was obtained from all varieties. Agridulcedisplayed the highest regeneration response: an average of 3.45 elongated shootsper explant using embryonic cotyledons. Elongated shoots were excised and rootedon Murashige and Skoog (MS) basal medium either without plant growth regulatorsor with 0.5 IBA (indole-3-butyric acid) or 0.05 NAA (-naphthaleneacetic acid). Plantlets weretransplanted to soil and acclimatised in the greenhouse showing normaldevelopment and growing to maturity bearing normal fruits with seeds.  相似文献   

11.
We conducted a 2-year field assessment of the gene flow from genetically modified (GM) chili pepper (Capsicum annuum L.), containing the PepEST (pepper esterase) gene, to a non-GM control line “WT512” and two commercial hybrid cultivars, “Manidda” and “Cheongpung Myeongwol (CM).” After seeds were collected from the pollen-recipient non-GM plants, hybrids between them and the GM peppers were screened by a hygromycin assay. PCR with the targeting hpt gene was performed to confirm the presence of transgenes in hygromycin-resistant seedlings. Out of 7,071 “WT512” seeds and 6,854 “Manidda” seeds collected in 2006, eight and 12 hybrids, respectively, were detected. In 2007, 33 hybrids from 3,456 “WT512” seeds and 50 hybrids from 3,457 “CM” seeds were found. The highest frequency of gene flow, 6.19%, was observed in that 2007 trial. These results suggest that a limited isolation distance would be sufficient to prevent gene flow from GM to conventionally bred chili peppers.  相似文献   

12.
Leaf, stem, hypocotyl, cotyledon, root, shoot tip and embryo explants of Capsicum annuum L. cv. mathania were cultured on Murashige and Skoog (MS) medium supplemented with 6-benzylaminopurine (BAP) or kinetin (Kin) alone or in combination with 3-indoleacetic acid (IAA), 3-indolebutyric acid (IBA), α-naphthaleneacetic acid (NAA) or 2,4-dichlorophenoxyacetic acid (2,4-D). BAP (5.0 mgl−1) in the medium was found to be the best growth regulator for shoot bud differentiation. Shoot buds cultured on 5.0 mgl−1 BAP increased in number but did not elongate. For obtaining complete plantlets, shoot buds were placed on a medium with IBA or NAA (0.1 mgl−1). Histological evidence revealed direct differentiation of buds from cotyledons. Regenerated plants were normal diploids. Unorganized callus could not be induced to differentiate shoot buds.  相似文献   

13.
Hot pepper fruits (Capsicum annuum L.) var. Bronowicka Ostra have been studied with regard to content of flavonoids and other phenolics. Nine compounds were isolated from pericarp of pepper fruits by preparative HPLC. Their structures were identified by chromatographic (analytical HPLC) and spectroscopic (UV, NMR) techniques. Two of the identified compounds, trans-p-ferulylalcohol-4-O-(6-(2-methyl-3-hydroxypropionyl) glucopyranoside and luteolin-7-O-(2-apiofuranosyl-4-glucopyranosyl-6-malonyl)-glucopyranoside were found for the first time in the plant kingdom. Additionally compounds: trans-p-feruloyl-beta-D-glucopyranoside, trans-p-sinapoyl-beta- D-glucopyranoside, quercetin 3-O-alpha-L-rhamnopyranoside-7-O-beta-D-glucopyranoside, luteolin 6-C-beta-D-glucopyranoside-8-C-alpha-L-arabinopyranoside, apigenin 6-C-beta-D-glucopyranoside-8-C-alpha-L-arabinopyranoside and luteolin 7-O-[2-(beta-D-apiofuranosyl)-beta-D-glucopyranoside] were found for the first time in pepper fruit Capsicum annuum L.  相似文献   

14.
Phytophthora blight is one of the most important devastating diseases of red pepper plants. Forty-one bacterial isolates were obtained from rhizosphere soil and subsequently tested for antagonistic activity under in vitro and in vivo conditions. Among the 41 isolates tested, 12 exhibited a maximum antagonistic activity in dual culture assay. These 12 isolates were further screened for disease suppression on red pepper plants in both natural and greenhouse conditions. All the antagonists showed varying levels of antagonism, whereas the isolates R33 and R13 exhibited the maximum (86.8 and 71%) ability to reduce the disease severity in in vivo conditions. Based on the 16S rDNA sequencing, the most effective isolates were identified as Bacillus subtilis. In addition, the isolates were also screened for siderophores, hydrogen cyanide and hydrolytic enzymes. Further, the isolates increased the root and shoot length of the red pepper, which is an added advantage of the isolates while performing the desired function.  相似文献   

15.
The influence of the developmental stage of microspores on establishing isolated microspore cultures of three Hungarian (‘Szegedi 80’, ‘Szegedi 178’, and ‘Remény’) and three Spanish (‘Jeromin’, ‘Jariza’, and ‘Jaranda’) pepper genotypes was investigated. Donor anthers containing 80% uninucleated and 20% binucleated microspores yielded the highest frequency of successful microspore cultures. Co-cultures with wheat, line ‘CY-45’, ovaries exhibited enhanced frequency of embryoid production than those with pepper ovaries. Differences in efficiency of isolated pepper microspore culture establishment were observed among different pepper genotypes. Green plantlets were regenerated from microspore-derived embryoids, but some were exhibited abnormal growth habits, such as leaf rosetting. A total of seven fertile microspore-derived plants were obtained, including three ‘Jariza’, three ‘Jaranda’, and a single ‘Szegedi 80’ plant.  相似文献   

16.
Stimulation of leaf expansion by an exogenous cytokinin was studied in isolated leaf discs of sweet pepper with emphasis on the assimilate utilization of the tissue. Leaf discs were floated on solutions containing sucrose and plant growth regulators. Benzyladenine (BA) promoted the area expansion rate of the leaf discs. Sucrose at 100 mM resulted in increased area expansion rate compared with 10 mM sucrose. However, the increased sucrose concentration had no influence on the effect of BA. Over a period of 24 h, treatment with BA did not result in any change of sucrose uptake nor of the partitioning of assimilated carbon in the leaf discs. Neither did BA treatment affect the activity of acid invertase (EC 3.2.1.26) or pyrophosphate-dependent phosphofructokinase (EC 2.7.1.90) in the leaf discs. We conclude that the observed promotion of leaf area expansion by exogenous BA is not mediated through the uptake of sucrose or the carbohydrate metabolism of the leaf tissue.Abbreviations BA N6-benzyladenine - GA3 gibberellic acid - PPi-PFK pyrophosphate-dependent phosphofructokinase (EC 2.7.1.90) This study was supported by grants from the Danish Research Counsil (SJVF 13-4148 and 13-4547 to P.U. SJVF 13-4146 and 13-4494 to T.H.N.) and from The Research Center for Plant Biotechnology to P.U.  相似文献   

17.
18.
The biosynthesis of the sesquiterpenic phytoalexin capsidiol was investigated using in vitro root cultures of chili pepper (Capsicum annuum) elicited with cellulase. Optimal concentrations of cellulase and sucrose for capsidiol production were established. A simple spectrophotometric procedure to quantify capsidiol was improved. Monoclonal antibodies against a tobacco sesquiterpene cyclase were used to detect a similar protein in pepper root extracts. We found that capsidiol was secreted to the medium and the maximal production was achieved at 24 h after elicitation. In contrast, the maximal amount of the elicitor inducible sesquiterpene cyclase was found between 6 and 8 h. Addition of small amounts of polyvinylpyrrolidone was necessary for sesquiterpene cyclase enzyme activity assays.Abbreviations AP alkaline phosphatase - BCIP 5-bromo-4-chloro-3-indolylphosphate - DMF dimethyl-formamide - FPP farnesyl pyrophosphate - MAb monoclonal antibodies - NBT nitro blue tetrazolium - PVP polyvinylpyrrolidone - SC sesquiterpene cyclase  相似文献   

19.
High-quality RNA is important in studying gene expression. This report describes an improved method for isolating intact purified RNA from dehydrated organs of chili pepper plants. Common RNA extraction protocols have produced poor yields because dehydrated leaves accumulate polysaccharides and RNases. Our protocol is based on a guanidine thiocyanate extraction combined with additional purification steps using butanol and the ionic detergent CTAB (cetyltrimethylammonium bromide). Using this protocol, RNA yields ranged from 40–70 μg of total RNA per 200 mg of fresh tissue. This method can be adapted to large-scale isolations, allowing the recovery of larger amounts of intact RNA (up to 250 μg per gram of fresh tissue).  相似文献   

20.
Summary Ninetten aminoacids, twelve sugars, eleven organic acids and ten phenols were detected in the leaf exudates of three cultivars of chilli. The number of aminoacids, sugars, organic acids and phenols increased as the plants grew older. More aminoacids and sugars were detected in the exudate from the susceptible cultivar (Malwa). More organic acids and phenols were detected from the resistant cultivar (Simla). The leaf exudate of the resistant cultivar (Simla) inhibited spore germination of the pathogen (Alternaria solani) while that of susceptible (Malwa) stimulated spore germination. The cultivar ‘Patna’ which is moderately resistant, occupied an intermediate position. Spore germination of the isolated fungi was enhanced in leaf exudate of susceptible cultivar (Malwa), while leaf exudates of the moderately resistant (Patna) and resistant (Simla) inhibited spore germination of the majority of fungi isolated. Most of the antagonistic fungi were not isolated from the susceptible cultivar and the percentage spore germination of these fungi was less in leaf exudate of the susceptible cultivar, while leaf exudates of resistant cultivars enhanced the percentage spore germination of antagonistic fungi,viz Aspergillus flavus, A. fumigatus, A. versicolor, Penicillium citrinum, P. restrictum andTrichoderma viride.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号