首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fecal wastes from a variety of farmed livestock were inoculated with livestock isolates of Escherichia coli O157, Listeria monocytogenes, Salmonella, Campylobacter jejuni, and Cryptosporidium parvum oocysts at levels representative of the levels found in naturally contaminated wastes. The wastes were subsequently spread onto a grass pasture, and the decline of each of the zoonotic agents was monitored over time. There were no significant differences among the decimal reduction times for the bacterial pathogens. The mean bacterial decimal reduction time was 1.94 days. A range of times between 8 and 31 days for a 1-log reduction in C. parvum levels was obtained, demonstrating that the protozoans were significantly more hardy than the bacteria. Oocyst recovery was more efficient from wastes with lower dry matter contents. The levels of most of the zoonotic agents had declined to below detectable levels by 64 days. However, for some waste types, 128 days was required for the complete decline of L. monocytogenes levels. We were unable to find significant differences between the rates of pathogen decline in liquid (slurry) and solid (farmyard manure) wastes, although concerns have been raised that increased slurry generation as a consequence of more intensive farming practices could lead to increased survival of zoonotic agents in the environment.  相似文献   

2.
In response to reports that the contamination of food can occur during the on-farm primary phase of food production, we report data that describes a possible cost-effective intervention measure. The effect of time before soil incorporation of livestock wastes spread to land on the rate of decline of zoonotic agents present in the waste was investigated. Fresh livestock wastes were inoculated with laboratory-cultured Salmonella, Listeria, and Campylobacter spp. and Escherichia coli O157 before they were spead onto soil. Incorporation of the spread wastes was either immediate, delayed for 1 week, or did not occur at all. Bacterial decline was monitored over time and found to be significantly more rapid for all waste types when they were left on the soil surface. There were no significant differences in initial bacterial decline rates when wastes were spread in summer or winter. Our results indicate that not incorporating contaminated livestock wastes into soil is a potential intervention measure that may help to limit the spread of zoonotic agents further up the food chain. The implications of these findings are discussed in relation to current advice for livestock waste disposal.  相似文献   

3.
Survey results describing the levels and prevalences of zoonotic agents in 1,549 livestock waste samples were analyzed for significance with livestock husbandry and farm waste management practices. Statistical analyses of survey data showed that livestock groups containing calves of <3 months of age, piglets, or lambs had higher prevalences and levels of Campylobacter spp. and Escherichia coli O157 in their wastes. Younger calves that were still receiving milk, however, had significantly lower levels and prevalence of E. coli O157. Furthermore, when wastes contained any form of bedding, they had lowered prevalences and levels of both pathogenic Listeria spp. and Campylobacter spp. Livestock wastes generated by stock consuming a diet composed principally of grass were less likely to harbor E. coli O157 or Salmonella spp. Stocking density did not appear to influence either the levels or prevalences of bacterial pathogens. Significant seasonal differences in prevalences were detected in cattle wastes; Listeria spp. were more likely to be isolated in March to June, and E. coli O157 was more likely to be found in May and June. Factors such as livestock diet and age also had significant influence on the levels and prevalences of some zoonotic agents in livestock wastes. A number of the correlations identified could be used as the basis of a best-practice disposal document for farmers, thereby lowering the microbiological risks associated with applying manures of contaminated livestock to land.  相似文献   

4.
Decline of zoonotic agents in livestock waste and bedding heaps   总被引:1,自引:0,他引:1  
AIMS: To measure the rates of decline of zoonotic agents introduced into heaps of spent bedding and faecal wastes generated by commercially farmed livestock and managed in a similar way to that of a working farm. METHODS AND RESULTS: Livestock isolates of Salmonella, pathogenic Listeria, Campylobacter and Escherichia coli O157 were laboratory cultured and used to inoculate 5 m3 heaps of cattle, sheep or pig wastes mixed with bedding materials. Decline of each of the infectious agents was monitored with time as was the temperature inside each heap. Temperatures of >50 degrees C were typically achieved at the core of the heaps. Pathogen decline was rapid, typically <3 days for a 1-log reduction in levels. The longest time that zoonotic agents were isolated from the heaps was 93 days. CONCLUSIONS: Movement of heaps of livestock bedding waste from animal pens to a secondary store, and storing them under conditions conducive for increased temperature is a simple and cost-effective treatment for rapidly lowering levels of zoonotic agents in solid farm wastes. SIGNIFICANCE AND IMPACT OF THE STUDY: This study demonstrates a simple and cheap treatment that can be used to help prevent the spread of zoonotic agents through agricultural environments.  相似文献   

5.
AIM: To measure the decline rates of zoonotic agents introduced into liquid livestock wastes in on-farm storage tanks. METHODS AND RESULTS: Salmonella spp., Escherichia coli O157, Campylobacter jejuni, Listeria monocytogenes and Cryptosporidium parvum, propagated in laboratory-controlled conditions, were inoculated into 35,000-l volumes of fresh livestock wastes (pig slurries, cattle slurries and dirty waters). D-values for bacteria were six to 44 days, and for C. parvum were 133 to 345 days. Campylobacter jejuni declined significantly more rapidly than the other bacterial pathogens, while E. coli O157 declined significantly more slowly. On average, bacterial declines were not affected by the season of waste deposition and storage or by the dry matter content of the wastes, but were more rapid in dirty waters than in pig slurries. The physiciochemical composition of wastes in each category varied significantly. CONCLUSIONS: Zoonotic agents can survive for several months during storage of liquid livestock wastes. Livestock wastes should be batch-stored and not subjected to continuous additions. SIGNIFICANCE AND IMPACT OF THE STUDY: This study indicates that batches of liquid livestock waste, if contaminated with bacterial pathogens, should be stored for 6 months to reduce contamination levels. Alternative strategies for reducing C. parvum levels in liquid livestock wastes should be explored.  相似文献   

6.
In response to reports that the contamination of food can occur during the on-farm primary phase of food production, we report data that describes a possible cost-effective intervention measure. The effect of time before soil incorporation of livestock wastes spread to land on the rate of decline of zoonotic agents present in the waste was investigated. Fresh livestock wastes were inoculated with laboratory-cultured Salmonella, Listeria, and Campylobacter spp. and Escherichia coli O157 before they were spread onto soil. Incorporation of the spread wastes was either immediate, delayed for 1 week, or did not occur at all. Bacterial decline was monitored over time and found to be significantly more rapid for all waste types when they were left on the soil surface. There were no significant differences in initial bacterial decline rates when wastes were spread in summer or winter. Our results indicate that not incorporating contaminated livestock wastes into soil is a potential intervention measure that may help to limit the spread of zoonotic agents further up the food chain. The implications of these findings are discussed in relation to current advice for livestock waste disposal.  相似文献   

7.
Aims:  To assess the risks of zoonotic agents in dissemination of livestock wastes into the environment by airborne distribution. To subsequently assess the survival time of zoonotic agents, introduced in irrigation water, on the phylloplane of produce.
Methods and Results:  An Escherichia coli marker was introduced into pig slurry which was spread using a rain gun sprayer. Air sampling was undertaken to determine the distance reached by the marker. No recoveries were observed at a distance of 250 m. Borehole water, contaminated with zoonotic agents, was used to irrigate field plots sown with lettuce and spinach. Decline in bacterial numbers on the phylloplane was observed with time. After initial rapid decreases, we were unable to detect any pathogen from the phylloplane, 1 month after contamination.
Conclusions:  These preliminary results suggest that the risks to public health from the aerosolized spread of bacteria during slurry spreading by rain gun are low. Although, zoonotic agents on crop phylloplanes perish quickly, the risks of overhead irrigation of fresh produce 3 weeks before harvest should still be considered.
Significance and Impact of the Study:  These preliminary results improve our understanding on the fate of zoonotic agents in the environment. Spreading liquid livestock wastes by an airborne mechanism may not pose a significant public health risk. Detection of zoonotic agents 3 weeks after contamination of lettuce and spinach means that consideration should be given by the farmers until the time of harvest, when irrigating fresh produce with water that may have been directly or indirectly contaminated by livestock wastes.  相似文献   

8.
Survey results describing the levels and prevalences of zoonotic agents in 1,549 livestock waste samples were analyzed for significance with livestock husbandry and farm waste management practices. Statistical analyses of survey data showed that livestock groups containing calves of <3 months of age, piglets, or lambs had higher prevalences and levels of Campylobacter spp. and Escherichia coli O157 in their wastes. Younger calves that were still receiving milk, however, had significantly lower levels and prevalence of E. coli O157. Furthermore, when wastes contained any form of bedding, they had lowered prevalences and levels of both pathogenic Listeria spp. and Campylobacter spp. Livestock wastes generated by stock consuming a diet composed principally of grass were less likely to harbor E. coli O157 or Salmonella spp. Stocking density did not appear to influence either the levels or prevalences of bacterial pathogens. Significant seasonal differences in prevalences were detected in cattle wastes; Listeria spp. were more likely to be isolated in March to June, and E. coli O157 was more likely to be found in May and June. Factors such as livestock diet and age also had significant influence on the levels and prevalences of some zoonotic agents in livestock wastes. A number of the correlations identified could be used as the basis of a best-practice disposal document for farmers, thereby lowering the microbiological risks associated with applying manures of contaminated livestock to land.  相似文献   

9.
The decimal reduction times of Streptococcus faecium, Listeria monocytogenes, Salmonella enteritidis, and Aeromonas hydrophila corresponding to heat treatment at 62°C were 7.1, 0.34, 0.024, and 0.0096 min, and those corresponding to manosonication treatment (40°C, 200 kPa, 117 μm) were 4.0, 1.5, 0.86, and 0.90 min, respectively. The manosonication decimal reduction times of the four species investigated decreased sixfold when the amplitude was increased from 62 to 150 μm and fivefold when the relative pressure was raised from 0 to 400 kPa. In L. monocytogenes, S. enteritidis, and A. hydrophila, the lethal effect of manothermosonication was the result of the addition of the lethal effects of heat and manosonication, whereas in S. faecium it was a synergistic effect.  相似文献   

10.
Cryptosporidiosis is a worldwide-diffused protozoan disease causing important economic losses to animal husbandry and livestock production. Additionally, several species/genotypes of Cryptosporidium have a relevant zoonotic potential and ruminants may be important sources of infection for human beings. Nonetheless, in Europe, little is known of the presence of Cryptosporidium in sheep nor on the species/genotypes involved. To obtain information on the occurrence of cryptosporidiosis in lambs and the potential zoonotic role of the Cryptosporidium isolates, one hundred and forty-nine faecal samples individually collected from lambs in central Italy have been examined for the presence of Cryptosporidium. All faecal specimens were processed with a commercial ELISA kit immunoassay and all ELISA-positive samples were further analyzed genetically. Twenty-six ELISA-positive samples scored positive at the PCR and the sequences obtained displayed 100% identity with the zoonotic Cryptosporidum parvum. This work suggests for the first time that lambs in Italy may shed C. parvum, thus representing a potential public health hazard.  相似文献   

11.
Stainless steel coupons were treated with skim milk and subsequently challenged with individual bacterial suspensions of Staphylococcus aureus, Pseudomonas fragi, Escherichia coli, Listeria monocytogenes, and Serratia marcescens. The numbers of attached bacteria were determined by direct epifluorescence microscopy and compared with the attachment levels on clean stainless steel with two different surface finishes. Skim milk was found to reduce adhesion of S. aureus, L. monocytogenes, and S. marcescens. P. fragi and E. coli attached in very small numbers to the clear surfaces, making the effect of any adsorbed protein layer difficult to assess. Individual milk proteins α-casein, β-casein, κ-casein, and α-lactalbumin were also found to reduce the adhesion of S. aureus and L. monocytogenes. The adhesion of bacteria to samples treated with milk dilutions up to 0.001% was investigated. X-ray photoelectron spectroscopy was used to determine the proportion of nitrogen in the adsorbed films. Attached bacterial numbers were inversely related to the relative atomic percentage of nitrogen on the surface. A comparison of two types of stainless steel surface, a 2B and a no. 8 mirror finish, indicated that the difference in these levels of surface roughness did not greatly affect bacterial attachment, and reduction in adhesion to a milk-treated surface was still observed. Cross-linking of adsorbed proteins partially reversed the inhibition of bacterial attachment, indicating that protein chain mobility and steric exclusion may be important in this phenomenon.  相似文献   

12.
A total of 250 mouse fecal specimens collected from crop farms in Queensland, Australia, were screened for the presence of Cryptosporidium spp. using PCR. Of these, 19 positives were detected and characterized at a number of loci, including the 18S rRNA gene, the acetyl coenzyme A gene, and the actin gene. Sequence and phylogenetic analyses identified two genotypes: mouse genotype I and a novel genotype (mouse genotype II), which is likely to be a valid species. Cryptosporidium parvum, which is zoonotic, was not detected. The results of the study indicate that wild Australian mice that are not in close contact with livestock are probably not an important reservoir of Cryptosporidium infection for humans and other animals.  相似文献   

13.
This study was undertaken in order to characterize Cryptosporidium meleagridis isolated from a turkey in Hungary and to compare the morphologies, host specificities, organ locations, and small-subunit RNA (SSU rRNA) gene sequences of this organism and other Cryptosporidium species. The phenotypic differences between C. meleagridis and Cryptosporidium parvum Hungarian calf isolate (zoonotic genotype) oocysts were small, although they were statistically significant. Oocysts of C. meleagridis were successfully passaged in turkeys and were transmitted from turkeys to immunosuppressed mice and from mice to chickens. The location of C. meleagridis was the small intestine, like the location of C. parvum. A comparison of sequence data for the variable region of the SSU rRNA gene of C. meleagridis isolated from turkeys with other Cryptosporidium sequence data in the GenBank database revealed that the Hungarian C. meleagridis sequence is identical to a C. meleagridis sequence recently described for a North Carolina isolate. Thus, C. meleagridis is a distinct species that occurs worldwide and has a broad host range, like the C. parvum zoonotic strain (also called the calf or bovine strain) and Cryptosporidium felis. Because birds are susceptible to C. meleagridis and to some zoonotic strains of C. parvum, these animals may play an active role in contamination of surface waters not only with Cryptosporidium baileyi but also with C. parvum-like parasites.  相似文献   

14.
Cryptosporidium parvum is a zoonotic protozoan parasite that causes cryptosporidiosis, an infectious diarrheal disease primarily affecting humans and neonatal ruminants. Understanding the transmission dynamics of C. parvum, particularly the specific contributions of zoonotic and anthroponotic transmission, is critical to the control of this pathogen. This study used a population genetics approach to better understand the transmission of C. parvum in the Upper Midwest United States. A total of 254 C. parvum isolates from cases of human cryptosporidiosis in Minnesota and Wisconsin and diarrheic calves in Minnesota, Wisconsin, and North Dakota were genotyped at eight polymorphic loci. Isolates with a complete profile from all eight loci (n = 212) were used to derive a multilocus genotype (MLT), which was used in population genetic analyses. Among the 94 MLTs identified, 60 were represented by a single isolate. Approximately 20% of isolates belonged to MLT 2, a group that included both human and cattle isolates. Population analyses revealed a predominantly panmictic population with no apparent geographic or host substructuring.  相似文献   

15.
Macrophage cells play a central role during infection with Listeria monocytogenes by both providing a major habitat for bacterial multiplication and presenting bacterial antigens to the immune system. In this study, we investigated the influence of L. monocytogenes infection on the expression of MHC class I and class II genes in two murine macrophage cell lines. Steady-state levels of I-Aβ chain mRNA were decreased in both resting J774A.1 and P388D1 macrophages infected with L. monocytogenes whereas reduction of H-2K mRNA was only observed in P388D1 cells. In addition, L. monocytogenes suppressed induction of MHC class I and class II mRNAs in response to γ-interferon as well as the maintenance of the induced state in activated P388D1 macrophages. Exposure to the non-pathogenic species L. innocua or a deletion mutant of L. monocytogenes, which lacks the lecithinase operon, did not cause a reduction in H-2K and I-Aβ mRNA levels nor suppress expression of Ia antigens. Inhibition of MHC gene expression may represent an important part of the cross-talk between L. monocytogenes and the macrophage that probably influences the efficiency of a T cell-mediated immune response and thus the outcome of a listerial infection.  相似文献   

16.
To assess the genetic diversity in Cryptosporidium parvum, we have sequenced the small subunit (SSU) rRNA gene of seven Cryptosporidium spp., various isolates of C. parvum from eight hosts, and a Cryptosporidium isolate from a desert monitor. Phylogenetic analysis of the SSU rRNA sequences confirmed the multispecies nature of the genus Cryptosporidium, with at least four distinct species (C. parvum, C. baileyi, C. muris, and C. serpentis). Other species previously defined by biologic characteristics, including C. wrairi, C. meleagridis, and C. felis, and the desert monitor isolate, clustered together or within C. parvum. Extensive genetic diversities were present among C. parvum isolates from humans, calves, pigs, dogs, mice, ferrets, marsupials, and a monkey. In general, specific genotypes were associated with specific host species. A PCR-restriction fragment length polymorphism technique previously developed by us could differentiate most Cryptosporidium spp. and C. parvum genotypes, but sequence analysis of the PCR product was needed to differentiate C. wrairi and C. meleagridis from some of the C. parvum genotypes. These results indicate a need for revision in the taxonomy and assessment of the zoonotic potential of some animal C. parvum isolates.  相似文献   

17.
Fecal droppings of migratory Canada geese, Branta canadensis, collected from nine sites near the Chesapeake Bay (Maryland), were examined for the presence of Cryptosporidium parvum and Giardia spp. Cryptosporidium sp. oocysts were found in feces at seven of nine sites, and Giardia cysts were found at all nine sites. The oocysts from three sites were infectious for mice and molecularly identified as the zoonotic genotype of Cryptosporidium parvum. Waterfowl can disseminate infectious C. parvum oocysts in the environment.  相似文献   

18.
Two human single chain variable fragment (scFv) libraries were used to select clones that bound to the surface glycoprotein S16 of Cryptosporidium parvum. Panning of the Tomlinson libraries I and J resulted in the isolation of nine distinct clones. Of the four clones which had full-length scFv, three contained stop codons. The remaining five clones were truncated, with four missing the heavy chain, and one missing most of the light chain. The full-length clones exhibited better binding to native C. parvum proteins and recombinant S16 than the truncated clones, with the exception of one truncated clone. None of the selected clones cross-reacted with Giardia lamblia, Escherichia coli, Streptococcus pyogenes, Listeria monocytogenes, Bacillus cereus or another immunogenic target of C. parvum, P23. Clones expressed as the soluble scFv-gIIIp construct were able to detect C. parvum native proteins and sporozoites. Panning from naïve libraries was an useful method for isolation and identification of recombinant antibodies that have the potential for use in pathogen detection and immunotherapy.  相似文献   

19.
Cryptosporidium, is the most common non-viral cause of diarrhea worldwide. Of the 5 described species that contribute to the majority of human infections, C. parvum is of major interest due to its zoonotic potential. A species-specific fluorescence in situ hybridisation probe was designed to the variable region in the small subunit of the 18S rRNA of C. parvum and labeled with Cy3. Probe specificity was validated against a panel of 7 other Cryptosporidium spp. before it was applied to 33 human faecal samples positive for cryptosporidiosis which were obtained during the period from 2006–2007. Results were compared to PCR-RFLP targeting the 18S rDNA. FISH results revealed that 19 of the 33 isolates analysed were identified as C. parvum. Correlation of PCR-RFLP and FISH was statistically significant (P < 0.05), resulting in a calculated correlation coefficient of 0.994. In this study, species identification by FISH and PCR-RFLP provided preliminary evidence to support both anthroponotic and zoonotic transmission of sporadic cases of cryptosporidiosis in the Sydney basin. In conclusion, FISH using a C. parvum-specific probe provided an alternative tool for accurate identification of zoonotic Cryptosporidium which will be applied in the future to both epidemiological and outbreak investigations.  相似文献   

20.
The ongoing coronavirus disease 19s pandemic has yet again demonstrated the importance of the human-animal interface in the emergence of zoonotic diseases, and in particular the role of wildlife and livestock species as potential hosts and virus reservoirs. As most diseases emerge out of the human-animal interface, a better understanding of the specific drivers and mechanisms involved is crucial to prepare for future disease outbreaks. Interactions between wildlife and livestock systems contribute to the emergence of zoonotic diseases, especially in the face of globalization, habitat fragmentation and destruction and climate change. As several groups of viruses and bacteria are more likely to emerge, we focus on pathogenic viruses of the Bunyavirales, Coronaviridae, Flaviviridae, Orthomyxoviridae, and Paramyxoviridae, as well as bacterial species including Mycobacterium sp., Brucella sp., Bacillus anthracis and Coxiella burnetii. Noteworthy, it was difficult to predict the drivers of disease emergence in the past, even for well-known pathogens. Thus, an improved surveillance in hotspot areas and the availability of fast, effective, and adaptable control measures would definitely contribute to preparedness. We here propose strategies to mitigate the risk of emergence and/or re-emergence of prioritized pathogens to prevent future epidemics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号