首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The elite rice cultivar Yuejingsimiao 2 (YJ2) is characterized by a high level of grain quality and yield, and resistance against Magnaporthe oryzae. YJ2 showed 100% resistance to four fungal populations collected from Guangdong, Sichuan, Liaoning, and Heilongjiang Provinces, which is a higher frequency than that shown by the well-known resistance (R) gene donor cultivars such as Sanhuangzhan 2 and 28zhan. Segregation analysis for resistance with F2 and F4 populations indicated the resistance of YJ2 was controlled by multiple genes that are dominant or recessive. The putative R genes of YJ2 were roughly tagged by SSR markers, located on chromosomes 2, 6, 8, and 12, in a bulked-segregant analysis using genome-wide selected SSR markers with F4 lines that segregated into 3 resistant (R):1 susceptible (S) or 1R:3S. The recessive R gene on chromosome 8 was further mapped to an interval ≈1.9 cM/152 kb in length by linkage analysis with genomic position-ready markers in the mapping population derived from an F4 line that segregated into 1R:3S. Given that no major R gene was mapped to this interval, the novel R gene was designated as pi55(t). Out of 26 candidate genes predicted in the region based on the reference genomic sequence of the cultivar Nipponbare, two genes that encode a leucine-rich repeat-containing protein and heavy-metal-associated domain-containing protein, respectively, were suggested as the most likely candidates for pi55(t).  相似文献   

2.
The bean pod weevil (Apion godmani Wagner) is a serious insect pest of common beans (Phaseolus vulgaris L.) grown in Mexico and Central America that is best controlled by host-plant resistance available in Durango or Jalisco genotypes such as J-117. Given unreliable infestation by the insect, the use of marker-assisted selection is desirable. In the present study, we developed a set of nine molecular markers for Apion resistance and mapped them to loci on chromosomes 2, 3, 4 and 6 (linkage groups b01, b08, b07and b11, respectively) based on genetic analysis of an F 5:10 susceptible × resistant recombinant inbred line population (Jamapa × J-117) and two reference mapping populations (DOR364 × G19833 and BAT93 × JaloEEP558) for which chromosome and linkage group designations are known. All the markers were derived from randomly amplified polymorphic DNA (RAPD) bands that were identified through bulked segregant analysis and cloned for conversion to sequence tagged site (STS) markers. One of the markers was dominant while four detected polymorphism upon digestion with restriction enzymes. The other markers were mapped as RAPD fragments. Phenotypic data for the population was based on the evaluation of percentage seed damage in replicated trials conducted over four seasons in Mexico. In single point regression analysis, individual markers explained from 3.5 to 22.5% of the variance for the resistance trait with the most significant markers overall being F10-500S, U1-1400R, R20-1200S, W9-1300S and Z4-800S, all markers that mapped to chromosome 2 (b01). Two additional significant markers, B1-1400R and W6-800R, were mapped to chromosome 6 (b11) and explained from 4.3 to 10.2% of variance depending on the season. The latter of these markers was a dominant STS marker that may find immediate utility in marker-assisted selection. The association of these two loci with the Agr and Agm genes is discussed as well as the possibility of additional resistance genes on chromosome 4 (b07) and chromosome 3 (b08). These are among the first specific markers developed for tagging insect resistance in common bean and are expected to be useful for evaluating the mechanism of resistance to A. godmani.  相似文献   

3.
Blackleg resistant cultivars have been developed through conventional breeding methods and are successfully used globally to control this disease in canola production. To clone blackleg resistance genes and to understand the mechanism underlying the resistance, a blackleg resistant canola cultivar ‘Surpass 400’ was used to develop a gene mapping population. A previously reported high density genetic map was used to find a resistance gene region that corresponded to linkage group N10 in B. napus. Differential interactions between the resistant lines and a pathogen isolate were discovered with two resistance genes BLMR1 and BLMR2 identified through linkage analysis of five genome-specific molecular markers. BLMR1 provides resistance through the hypersensitive response that protects inoculated cotyledons from becoming infected, Unlike BLMR1, BLMR2 slows down the development of individual infection loci. BLMR1 and BLMR2 segregated independently in two large F3BC2 populations. Fine mapping of BLMR1 was performed with 12 genome-specific molecular markers. The closest marker with a genetic distance of 0.13 cM to BLMR1 was identified, which lays a solid foundation for cloning BLMR1.  相似文献   

4.
Summary Inheritance of resistance to cowpea aphid, Aphis craccivora Koch, in three resistant cultivars of cowpea, Vigna unguiculata (L.) Walp, was studied. The parents, F1 and F2 population were grown in an insect-proof screenhouse. Each 3-day-old seedling was infested with 10 apterous adult aphids. Seedling reaction was recorded when the susceptible check was killed. The segregation data revealed that the resistance of ICV11 and TVU310 is governed by single dominant genes. All the F2 seedlings of the cross ICV10xTVU310 were resistant, indicating that they have the same gene for resistance. However, the F2 populations from the crosses ICV10xICV11 and ICV11xTVU310 segregated in a ratio of 151, indicating that the dominant genes in ICV11 and TVU310 are non-allelic and independent of each other. The resistance gene of ICV10 and TVU310 is designated as Ac1 and that of ICV11 as Ac2.  相似文献   

5.
Angular leaf spot (ALS) is one of the major diseases of the common bean (Phaseolus vulgaris L.). Different sources of resistance have been identified but few have been characterized. Studies were conducted to elucidate the inheritance of ALS resistance in the bean accession G10909 and to identify molecular markers linked to these genes. Evaluation of parental genotypes, F1, F2 and backcross to susceptible parent (Sprite) populations revealed that two dominant and complementary genes conditioned ALS resistance. Allelism tests showed that the ALS resistance genes in G10909 were different from those in the Mesoamerican cultivars Mexico 54, MAR 2, G10474 and Cornell 49-242. Three sequence-characterized amplified region (SCAR) markers, PF13310, PF9260 and OPE04709, and a microsatellite, Pv-gaat001, segregated in coupling with the resistance genes in G10909. Pairwise segregation analysis revealed that markers PF13310, PF9260 and OPE04709 were linked, while Pv-gaat001 segregated in a 9:3:3:1 ratio from all markers. Markers PF13310, PF9260 and OPE04709 were mapped to linkage group B08, and segregated with resistance gene Phg G10909B at 4.9, 7.4 and 9.9 cM, respectively. Pv-gaat001, previously mapped to linkage group B04, segregated with resistance gene Phg G10909A at 13 cM. The potential utility of these markers to aid breeding for ALS resistance is discussed.  相似文献   

6.
A genetic map of common bean was constructed using 197 markers including 152 RAPDs, 32 RFLPs, 12 SCARs, and 1 morphological marker. The map was established by using a F2 population of 85 individuals from the cross between a line derived from the Spanish landrace Andecha (Andean origin) and the Mesoamerican genotype A252. The resulting map covers about 1,401.9 cM, with an average marker distance of 7.1 cM and includes molecular markers linked to disease resistance genes for anthracnose, bean common mosaic virus, bean golden yellow mosaic virus, common bacterial blight, and rust. Resistance to races 6, 31, 38, 39, 65, and 357 of the pathogenic fungus Colletotrichum lindemuthianum (anthracnose) was evaluated in F3 families derived from the corresponding F2 individuals. The intermediate resistance to race 65 proceeding from Andecha can be explained by a single dominant gene located on linkage group B1, corresponding to the Co-1 gene. The recombination between the resistance specificities proceeding from A252 agrees with the assumption that total resistance to races 6, 31, 38, 39, 65, and 357, is organized in two clusters. One cluster, located on B4 linkage group, includes individual genes for specific resistance to races 6, 38, 39, and 357. The second cluster is located on linkage group B11 and includes individual genes for specific resistance to races 6, 31, 38, 39, and 65. These two clusters correspond to genes Co-3/Co-9 and Co-2, respectively. It is concluded that most anthracnose resistance Co- genes, previously described as single major genes conferring resistance to several races, could be organized as clusters of different genes conferring race-specific resistance. C. Rodríguez-Suárez and B. Méndez-Vigo equally share for authorship.  相似文献   

7.
An important aspect of studying putative new genes in wheat is determining their position on the wheat genetic map. The primary difficulty in mapping genes is determining which chromosome carries the gene of interest. Several approaches have been developed to address this problem, each with advantages and disadvantages. Here we describe a new approach called multiple bulked segregant analysis (MBSA). A set of 423 simple sequence repeat (SSR) markers were selected based on profile simplicity, frequency of polymorphism, and distribution across the wheat genome. SSR primers were preloaded in 384-well PCR plates with each primer occupying 16 wells. In practice, 14 wells are reserved for “mini-bulks” that are equivalent to four gametes (e.g. two F2 individuals) comprised of individuals from a segregated population that have a known homozygous genotype for the gene of interest. The remaining two wells are reserved for the parents of the population. Each well containing a mini-bulk can have one of three allele compositions for each SSR: only the allele from one parent, only the allele from the other parent, or both alleles. Simulation experiments were performed to determine the pattern of mini-bulk allele composition that would indicate putative linkage between the SSR in question and the gene of interest. As a test case, MBSA was employed to locate an unidentified stem rust resistance (Sr) gene in the winter wheat cultivar Norin 40. A doubled haploid (DH) population (n = 267) was produced from hybrids of the cross LMPG-6S/Norin 40. The DH population segregated for a single gene (χ 1:1 2  = 0.093, p = 0.76) for resistance to Puccinia graminis f.sp. tritici race LCBN. Four resistant DH lines were included in each of the 14 mini-bulks for screening. The Sr gene was successfully located to the long arm of chromosome 2D using MBSA. Further mapping confirmed the chromosome location and revealed that the Sr gene was located in a linkage block that may represent an alien translocation. The new Sr gene was designated as Sr54.  相似文献   

8.
Resistance (R) genes containing nucleotide-binding site (NBS)-leucine rich repeats (LRR) are the most prevalent types of R gene in plants. The objective of this study was to develop PCR-based R-gene analog polymorphism (RGAP) markers for common bean (Phaseolus vulgaris L). Twenty degenerate primers were designed from the conserved kinase-1a (GVGKTT) and hydrophobic domains (GLPLAL) of known NBS-LRR type R-genes and from EST databases. Sixty-six of the 100 primer combinations tested yielded polymorphism. Thirty-two RGAP markers were mapped in the BAT 93/Jalo EEP558 core mapping population for common bean. The markers mapped to 10 of 11 linkage groups with a strong tendency for clustering. In addition, the RGAP markers co-located, on six linkage groups, with 15 resistance gene analogs (RGAs) that were previously mapped in other populations of common bean. The distance between the priming sites in NBS-LRR type R-genes is around 500 bp. Of the 32 RGAP markers, 19 had sizes larger and 13 less than 500 bp. RGAP markers mapped close to known R-genes on B11, and to QTLs for resistance on B1, B2, B6, B7, B8, B10, and B11. RGAP appears to provide a useful marker technique for tagging and mapping R-genes in segregating common bean populations, discovery of candidate genes underlying resistance QTL, and future cloning of R-genes in common bean.  相似文献   

9.
The R10 and R11 late blight differentials of Black (tetraploid clones 3681ad1 and 5008ab6) were crossed with the susceptible potato (Solanum tuberosum) cultivar Maris Piper and the progeny were assessed for blight resistance in a whole plant glasshouse test using race 1,2,3,4,6,7 of Phytophthora infestans. The disease scores for the R10 population displayed a continuous distribution whereas the progeny in the R11 population could be categorised as resistant or susceptible. A bulk segregant analysis using amplified fragment length polymorphism assays was done on the ten most resistant and ten most susceptible progeny in each population and two closely linked markers were found to be associated with resistance. R11 mapped to 8.5 cM from marker PAG/MAAG_172.3 and R10 mapped as a quantitative trait locus in which marker PAC/MATC_264.1 explained 56.9% of the variation in disease scores. The results were consistent with R10 and R11 being allelic versions of genes at the R3 locus on chromosome 11. The implications are discussed for mapping R-genes which fail to give complete immunity to a pathogen.  相似文献   

10.
A blackgrass population has developed resistance to fenoxaprop-P-ethyl following field selection with the herbicide for 6 consecutive years. Within this population, 95% of the individuals are also resistant to flupyrsulfuron. Both the inheritance(s) and the mechanism(s) of resistances were investigated by making crosses between the resistant and a susceptible biotype. The inheritance was followed through the F1 and F2 generations either by spraying the herbicide on seedlings at the three-leaf stage or using a seedling bioassay, based on coleoptile length. No maternal effects were evident in the fenoxaprop-P-ethyl responses of the F1 plants, suggesting that the inheritance was nuclear. Some F1 families treated with fenoxaprop-P-ethyl segregated in a 3:1 (resistant:susceptible) ratio, indicating that the resistance was conferred by two dominant and independent nuclear genes. This was confirmed by the 15:1 (R:S) ratio observed in the F2 generation treated with fenoxaprop- P-ethyl. The use of selective inhibitors of herbicide de-toxifying enzymes (aminobenzotriazole, pyperonylbutoxide, malathion and tridiphane) with the F2 plants suggested that each of the two genes may govern two different mechanisms of fenoxaprop-P-ethyl resistance: the ACCase mutation previously postulated and an enhanced herbicide metabolism, mediated by cytochrome P 450 mono-oxygenases (P 450) susceptible to malathion. The P 450 activity may also confer resistance to flupyrsulfuron. This study clearly indicates that two distinct mechanisms of resistance may co-exist in the same plant. Received: 18 August 2000 / Accepted: 6 December 2000  相似文献   

11.
A genetic linkage map containing potential candidate loci for wood, fibre and floral traits has been constructed for Eucalyptus globulus (Labill.) based on the segregation of 249 codominant loci in an outbred F1 population of 148 individuals. The map contains 204 RFLP loci, including 31 cambium-specific expressed sequence tags (ESTs) and 14 known function genes, and 40 microsatellite and five isozyme loci. Independent male and female maps were constructed, and the 98 loci (39%) that segregated in both parents were used to combine the parental maps into an integrated map. The 249 loci mapped to 11 major linkage groups (n=11 in eucalypts) and a 12th small linkage group containing three loci that segregated in the male parent only. Total map distance is 1375 cM with an average interval of 6 cM. Forty one of the mapped loci identify known proteins (five isozymes) or sequences with known function (14 genes and 22 ESTs). The mapped genes include enzymes involved in lignin and cell-wall polysaccharide biosynthesis, and floral-development genes. This map will be used to locate quantitative trait loci for wood, fibre, and other traits in Eucalyptus. Received: 30 August 2000 / Accepted: 23 March 2001  相似文献   

12.
Powdery mildew (PM) is a serious disease in many legume species, including the common bean (Phaseolus vulgaris L.). This study investigated the genetic control behind resistance reaction to PM in the bean genotype, Cornell 49242. The results revealed evidence supporting a qualitative mode of inheritance for resistance and the involvement of two independent genes in the resistance reaction. The location of these resistance genes was investigated in a linkage genetic map developed for the XC RIL population. Contingency tests revealed significant associations for 28 loci out of a total of 329 mapped loci. Fifteen were isolated or formed groups with less than two loci. The thirteen remaining loci were located at three regions in linkage groups Pv04, Pv09, and Pv11. The involvement of Pv09 was discarded due to the observed segregation in the subpopulation obtained from the Xana genotype for the loci located in this region. In contrast, the two subpopulations obtained from the Xana genotype for the BM161 locus, linked to the Co-3/9 anthracnose resistance gene (Pv04), and from the Xana genotype for the SCAReoli locus, linked to the Co-2 anthracnose resistance gene (Pv11), exhibited monogenic segregations, suggesting that both regions were involved in the genetic control of resistance. A genetic dissection was carried out to verify the involvement of both regions in the reaction to PM. Two resistant recombinant lines were selected, according to their genotypes, for the block of loci included in the Co-2 and Co-3/9 regions, and they were crossed with the susceptible parent, Xana. Linkage analysis in the respective F2 populations supported the hypothesis that a dominant gene (Pm1) was located in the linkage group Pv11 and another gene (Pm2) was located in the linkage group Pv04. This is the first report showing the localization of resistance genes against powdery mildew in Phaseolus vulgaris and the results offer the opportunity to increase the efficiency of breeding programs by means of marker-assisted selection.  相似文献   

13.
Soybean mosaic virus (SMV) is one of the most broadly distributed diseases worldwide. It causes severe yield loss and seed quality deficiency in soybean (Glycine max (L.) Merr.). SMV Strain SC14 isolated from Shanxi Province, China, was a newly identified virulent strain and can infect Kefeng No. 1, a source with wide spectrum resistance. In the present study, soybean accessions, PI96983, Qihuang No. 1 and Qihuang No. 22 were identified to be resistant (R) and Nannong 1138‐2, Pixianchadou susceptible (S) to SC14. Segregation analysis of PI96983 x Nannong 1138‐2 indicated that a single dominant gene (designated as RSC14) controlled the resistance to SC14 at both V2 and R1 developmental stages. The same results were obtained for the crosses of Qihuang No. 1 × Nannong 1138‐2 and Qihuang No. 22 × Nannong 1138‐2 as in PI96983 × Nannong 1138‐2 at V2 stage, but at R1 stage, the F1 performed as necrosis (a susceptible symptom other than mosaic), F2 segregated in a ratio of 1R:2N:1S, and the progenies of necrotic (N) F2 individuals segregated also in R, N and S. It indicated that a single gene (designated as RSC14Q, to be different from that of PI96983) controlled the resistance to SC14, its dominance was the same as in PI96983 × Nannong 1138‐2 (without symptoms) at V2 stage and not the same at R1 stage. The tightly linked co‐dominant simple sequence repeat (SSR) marker Satt334 indicated that all the heterozygous bands were completely corresponding to the necrotic F2 individuals, or all the necrotic F2 individuals were heterozygotes. It was inferred that necrosis might be due to the interaction among SMV strains, resistance genes, genetic background of the resistance genes, and plant development stage. Furthermore, the bulked segregant analysis (BSA) of SSR markers was conducted to map the resistance genes. In F2of PI96983 × Nannong 1138‐2, five SSR markers, Sat_297, Sat_234, Sat_154, Sct_033 and Sat_120, were found closely linked to RSC14, with genetic distances of 14.5 cM, 11.3cM, 4.3cM,3.2cM and 6cM, respectively. In F2 of Qihuang No. 1 × Nannong 1138‐2, three SSR markers, Sat_234, Satt334 and Sct_033, tightly linked to RSC14Q with genetic distances of 7.2 cM, 1.4 cM and 2.8 cM, respectively. Based on the integrated joint map by Cregan et al. (1999), both RScMand RSC14Q were located between Sat_234 and Sct_033 on linkage with group F of soybean, with their distances from Sct_033 at the same side being 3.2 cM and 2.8 cM, respectively. Therefore, RSC14and RSC14Q might be on a same locus. The obtained information provides a basic knowledge for marker‐assisted selection of the resistance gene in soybean breeding programs and fine mapping and map‐based cloning of the resistance gene. (Managing editor: Li‐Hui Zhao)  相似文献   

14.
Crown rust resistance is an important selection criterion in ryegrass breeding. The disease, caused by the biotrophic fungus Puccinia coronata, causes yield losses and reduced quality. In this study, we used linkage mapping and QTL analysis to unravel the genomic organization of crown rust resistance in a Lolium perenne population. The progeny of a pair cross between a susceptible and a resistant plant were analysed for crown rust resistance. A linkage map, consisting of 227 loci (AFLP, SSR, RFLP and STS) and spanning 744 cM, was generated using the two-way pseudo-testcross approach from 252 individuals. QTL analysis revealed four genomic regions involved in crown rust resistance. Two QTLs were located on LG1 (LpPc4 and LpPc2) and two on LG2 (LpPc3 and LpPc1). They explain 12.5, 24.9, 5.5 and 2.6% of phenotypic variance, respectively. An STS marker, showing homology to R genes, maps in the proximity of LpPc2. Further research is, however, necessary to check the presence of functional R genes in this region. Synteny at the QTL level between homologous groups of chromosomes within the Gramineae was observed. LG1 and LG2 show homology with group A and B chromosomes of oat on which crown rust-resistance genes have been identified, and with the group 1 chromosomes of the Triticeae, on which leaf rust-resistance genes have been mapped. These results are of major importance for understanding the molecular background of crown rust resistance in ryegrasses. The identified markers linked to crown rust resistance have the potential for use in marker-assisted breeding.  相似文献   

15.
Soybean mosaic virus (SMV) is one of the most devastating pathogens for soybeans in China. Among the country-wide 22 strains, SC5 dominates in Huang-Huai and Changjiang valleys. For controlling its damage, the resistance gene was searched through Mendelian inheritance study, gene fine-mapping, and candidate gene analysis combined with qRT-PCR (quantitative real-time polymerase chain reaction) analysis. The parents F1, F2, and RILs (recombinant inbred lines) of the cross Kefeng-1 (Resistance, R)?×?NN1138-2 (Susceptible, S) were used to examine the inheritance of SC5-resistance. The F1 was resistant and the F2 and RILs segregated in a 3R:1S and 1R:1S ratio, respectively, indicating a single dominant gene conferring the Kefeng-1 resistance. Subsequently, the genomic region conferring the resistance was found in “Bin 352–Bin353 with 500 kb” on Chromosome 2 using the phenotyping data of the 427 RILs and a high-density genetic map with 4703 bin markers. In the 500 kb genomic region, 38 putative genes are contained. The association analysis between the SNPs in a putative gene and the resistance phenotype for the 427 RILs prioritized 11 candidate genes using Chi-square criterion. The expression levels of these genes were tested by qRT-PCR. On infection with SC5, 7 out of the 11 genes had differential expression in Kefeng-1 and NN1138-2. Furthermore, integrating SNP-phenotype association analysis with qRT-PCR expression profiling analysis, Glyma02g13495 was found the most possible candidate gene for SC5-resistance. This finding can facilitate the breeding for SC5-resistance through marker-assisted selection and provide a platform to gain a better understanding of SMV-resistance gene system in soybean.  相似文献   

16.
Genetic mapping of gray leaf spot (GLS) resistance genes in maize   总被引:3,自引:0,他引:3  
Bulked segregant analysis was used to identify amplified fragment length polymorphism markers (AFLPs) linked to quantitative trait loci (QTLs) involved in the resistance to gray leaf spot (GLS) in maize. By using ten AFLP primer combinations 11 polymorphic markers were identified and converted to sequence- specific PCR markers. Five of the 11 converted AFLPs were linked to three GLS resistance QTLs. The markers were mapped to maize chromosomes 1, 3 and 5 using existing linkage maps of two commercially available recombinant inbred-line populations. Converted restriction fragment length polymorphism markers and microsatellite markers were used to obtain a more-precise localization for the detected QTLs. The QTL on chromosome 1 was localized in bin 1.05/06 and had a LOD score of 21. A variance of 37% was explained by the QTL. Two peaks were visible on chromosome 5, one was localized in bin 5.03/04 and the other in bin 5.05/06. Both peaks had a LOD score of 5, and 11% of the variance was explained by the QTLs. A variance of 8–10% was explained by the QTL on chromosome 3 (bin 3.04). The consistency of the QTLs was tested across two F2 populations planted in consecutive years. Received: 10.10.00 / Accepted: 26.01.01  相似文献   

17.
In 1961 a third race, EA. 3, of Puccinia polysora was recognized in Kenya. This was virulent to maize carrying either of the genes Rpp 1 or Rpp 2, previously isolated. Resistance to EA. 3 was found in many Central American maizes; in two, Andaqui (Colombia) and Zapalote Chico (Mexico), genes Rpp 10 and Rpp 11 were recognized. Rpp 10 was fully dominant and its genotypes highly resistant to both EA. 1 and EA. 3. Rpp 11 was incompletely dominant, but determined effective resistance to both races when homozygous. Experimental crosses gave no evidence of linkage between the genes Rpp 1, Rpp 10 and Rpp 11.  相似文献   

18.
A sunflower line, XRQ, carrying the gene Pl5, which gives resistance to all French downy mildew races shows cotyledon-limited sporulation in seedling immersion tests; consequently, segregations in crosses with other downy mildew resistance sources were tested both by this method and by a secondary infection on leaves. Pl5 was found to segregate independently of Pl7 (HA338) but to be closely linked, or allelic, with Pl8 (RHA340). F3 and F4 progenies from a cross with a line containing Pl2 showed that Pl5 carries resistance to race 100 which segregates independently of Pl2. The Pl5 gene was mapped on linkage group 6 of the Cartisol RFLP map, linked to two RFLP markers, ten AFLP markers and the restorer gene Rf1. Tests with downy mildew race 330 distinguished Pl5 and Pl8, the first being susceptible, the second resistant, whereas both these genes were active against race 304 to which Pl6 (HA335) and Pl7 gave susceptibility. It is concluded that Pl5 and Pl8 are closely linked on linkage group 6 and form a separate resistance gene group from Pl6/Pl7 on linkage group 1. The origins of these groups of downy mildew resistance genes and their use in breeding are discussed. Received: 10 November 2000 / Accepted: 8 February 2001  相似文献   

19.
A genetic linkage map of the tetraploid water yam (Dioscorea alata L.) genome was constructed based on 469 co-dominantly scored amplified fragment length polymorphism (AFLP) markers segregating in an intraspecific F1 cross. The F1 was obtained by crossing two improved breeding lines, TDa 95/00328 as female parent and TDa 87/01091 as male parent. Since the mapping population was an F1 cross between presumed heterozygous parents, marker segregation data from both parents were initially split into maternal and paternal data sets, and separate genetic linkage maps were constructed. Later, data analysis showed that this was not necessary and thus the combined markers from both parents were used to construct a genetic linkage map. The 469 markers were mapped on 20 linkage groups with a total map length of 1,233 cM and a mean marker spacing of 2.62 cM. The markers segregated like a diploid cross-pollinator population suggesting that the water yam genome is allo-tetraploid (2n = 4x = 40). QTL mapping revealed one AFLP marker E-14/M52-307 located on linkage group 2 that was associated with anthracnose resistance, explaining 10% of the total phenotypic variance. This map covers 65% of the yam genome and is the first linkage map reported for D. alata. The map provides a tool for further genetic analysis of traits of agronomic importance and for using marker-assisted selection in D. alata breeding programmes. QTL mapping opens new avenues for accumulating anthracnose resistance genes in preferred D. alata cultivars.  相似文献   

20.
Soybean mosaic virus (SMV) is one of the most destructive viral diseases in soybean (Glycine max). Three independent loci for SMV resistance have been identified in soybean germplasm. The use of genetic resistance is the most effective method of controlling this disease. Marker assisted selection (MAS) has become very important and useful in the effort of selecting genes for SMV resistance. Single nucleotide polymorphism (SNP), because of its abundance and high-throughput potential, is a powerful tool in genome mapping, association studies, diversity analysis, and tagging of important genes in plant genomics. In this study, a 10 SNPs plus one insert/deletion (InDel) multiplex assay was developed for SMV resistance: two SNPs were developed from the candidate gene 3gG2 at Rsv1 locus, two SNPs selected from the clone N11PF linked to Rsv1, one ‘BARC’ SNP screened from soybean chromosome 13 [linkage group (LG) F] near Rsv1, two ‘BARC’ SNPs from probe A519 linked to Rsv3, one ‘BARC’ SNP from chromosome 14 (LG B2) near Rsv3, and two ‘BARC’ SNPs from chromosome 2 (LG D1b) near Rsv4, plus one InDel marker from expressed sequence tag (EST) AW307114 linked to Rsv4. This 11 SNP/InDel multiplex assay showed polymorphism among 47 diverse soybean germplasm, indicating this assay can be used to investigate the mode of inheritance in a SMV resistant soybean line carrying Rsv1, Rsv3, and/or Rsv4 through a segregating population with phenotypic data, and to select a specific gene or pyramid two or three genes for SMV resistance through MAS in soybean breeding program. The presence of two SMV resistance genes (Rsv1 and Rsv3) in J05 soybean was confirmed by the SNP assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号