首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nucleotide sequence encoding the crystalline bacterial cell surface (S-layer) protein SbpA of Bacillus sphaericus CCM 2177 was determined by a PCR-based technique using four overlapping fragments. The entire sbpA sequence indicated one open reading frame of 3,804 bp encoding a protein of 1,268 amino acids with a theoretical molecular mass of 132,062 Da and a calculated isoelectric point of 4.69. The N-terminal part of SbpA, which is involved in anchoring the S-layer subunits via a distinct type of secondary cell wall polymer to the rigid cell wall layer, comprises three S-layer-homologous motifs. For screening of amino acid positions located on the outer surface of the square S-layer lattice, the sequence encoding Strep-tag I, showing affinity to streptavidin, was linked to the 5′ end of the sequence encoding the recombinant S-layer protein (rSbpA) or a C-terminally truncated form (rSbpA31-1068). The deletion of 200 C-terminal amino acids did not interfere with the self-assembly properties of the S-layer protein but significantly increased the accessibility of Strep-tag I. Thus, the sequence encoding the major birch pollen allergen (Bet v1) was fused via a short linker to the sequence encoding the C-terminally truncated form rSpbA31-1068. Labeling of the square S-layer lattice formed by recrystallization of rSbpA31-1068/Bet v1 on peptidoglycan-containing sacculi with a Bet v1-specific monoclonal mouse antibody demonstrated the functionality of the fused protein sequence and its location on the outer surface of the S-layer lattice. The specific interactions between the N-terminal part of SbpA and the secondary cell wall polymer will be exploited for an oriented binding of the S-layer fusion protein on solid supports to generate regularly structured functional protein lattices.  相似文献   

2.
Crystalline bacterial cell surface layer (S-layer) proteins are composed of a single protein or glycoprotein species. Isolated S-layer subunits frequently recrystallize into monomolecular protein lattices on various types of solid supports. For generating a functional protein lattice, a chimeric protein was constructed, which comprised the secondary cell wall polymer-binding region and the self-assembly domain of the S-layer protein SbpA from Bacillus sphaericus CCM 2177, and a single variable region of a heavy chain camel antibody (cAb-Lys3) recognizing lysozyme as antigen. For construction of the S-layer fusion protein, the 3'-end of the sequence encoding the C-terminally truncated form rSbpA(31)(-)(1068) was fused via a short linker to the 5'-end of the sequence encoding cAb-Lys3. The functionality of the fused cAb-Lys3 in the S-layer fusion protein was proved by surface plasmon resonance measurements. Dot blot assays revealed that the accessibility of the fused functional sequence for the antigen was independent of the use of soluble or assembled S-layer fusion protein. Recrystallization of the S-layer fusion protein into the square lattice structure was observed on peptidoglycan-containing sacculi of B. sphaericus CCM 2177, on polystyrene or on gold chips precoated with thiolated secondary cell wall polymer, which is the natural anchoring molecule for the S-layer protein in the bacterial cell wall. Thereby, the fused cAb-Lys3 remained located on the outer S-layer surface and accessible for lysozyme binding. Together with solid supports precoated with secondary cell wall polymers, S-layer fusion proteins comprising rSbpA(31)(-)(1068) and cAbs directed against various antigens shall be exploited for building up monomolecular functional protein lattices as required for applications in nanobiotechnology.  相似文献   

3.
The bacterial cell surface layer (S-layer) protein of Bacillus sphaericus CCM 2177 assembles into a square lattice structure and recognizes a distinct type of secondary cell wall polymer (SCWP) as the proper anchoring structure in the rigid cell wall layer. For generating a nanopatterned sensing layer with high density and well defined distance of the ligand on the outermost surface, an S-layer fusion protein incorporating the sequence of a variable domain of a heavy chain camel antibody directed against prostate-specific antigen (PSA) was constructed, produced, and recrystallized on gold chips precoated with thiolated SCWP. The S-layer protein moiety consisted of the N-terminal part which specifically recognized the SCWP as binding site and the self-assembly domain. The PSA-specific variable domain of the camel heavy chain antibody was selected by several rounds of panning from a phage display library of an immunized dromedary, and was produced by heterologous expression in Escherichia coli. For construction of the S-layer fusion protein, the 3'-end of the sequence encoding the C-terminally truncated form rSbpA(31)(-)(1068) was fused via a short linker to the 5'-end of the sequence encoding cAb-PSA-N7. The S-layer fusion protein had retained the ability to self-assemble into the square lattice structure. According to the selected fusion site in the SbpA sequence, the cAb-PSA-N7 moiety remained located on the outer surface of the protein lattice. After recrystallization of the S-layer fusion protein on gold chips precoated with thiolated SCWP, the monomolecular protein lattice was exploited as sensing layer in surface plasmon resonance biochips to detect PSA.  相似文献   

4.
The mature crystalline bacterial cell surface (S-layer) protein SbsC of Bacillus stearothermophilus ATCC 12980 comprises amino acids 31-1099 and assembles into an oblique lattice type. As the deletion of up to 179 C-terminal amino acids did not interfere with the self-assembly properties of SbsC, the sequence encoding the major birch pollen allergen (Bet v1) was fused to the sequence encoding the truncated form rSbsC(31-920). The S-layer fusion protein, termed rSbsC/Bet v1, maintained the ability to self-assemble into flat sheets and open-ended cylinders. The presence and the functionality of the fused Bet v1 sequence was proved by blot experiments using BIP1, a monoclonal antibody against Bet v1 and Bet v1-specific IgE-containing serum samples from birch pollen allergic patients. The location and accessibility of the allergen moiety on the outer surface of the S-layer lattice were demonstrated by immunogold labeling of the rSbsC/Bet v1 monolayer, which was obtained by oriented recrystallization of the S-layer fusion protein on native cell wall sacculi. Thereby, the specific interactions between the N-terminal part of SbsC and a distinct type of secondary cell wall polymer were exploited. This is the first S-layer fusion protein described that had retained the specific properties of the S-layer protein moiety in addition to those of the fused functional peptide sequence.  相似文献   

5.
The S-layer protein SbpA of Bacillus sphaericus CCM 2177 recognizes a pyruvylated secondary cell wall polymer (SCWP) as anchoring structure to the peptidoglycan-containing layer. Data analysis from surface plasmon resonance (SPR) spectroscopy revealed the existence of three different binding sites with high, medium and low affinity for rSbpA on SCWP immobilized to the sensor chip. The shortest C-terminal truncation with specific affinity to SCWP was rSbpA(31-318). Surprisingly, rSbpA(31-202) comprising the three S-layer-like homology (SLH) motifs did not bind at all. Analysis of the SbpA sequence revealed a 58-amino-acid-long SLH-like motif starting 11 amino acids after the third SLH motif. The importance of this motif for reconstituting the functional SCWP-binding domain was further demonstrated by construction of a chimaeric protein consisting of the SLH domain of SbsB, the S-layer protein of Geobacillus stearothermophilus PV72/p2 and the C-terminal part of SbpA. In contrast to SbsB or its SLH domain which did not recognize SCWP of B. sphaericus CCM 2177 as binding site, the chimaeric protein showed specific affinity. Deletion of 213 C-terminal amino acids of SbpA had no impact on the square (p4) lattice structure, whereas deletion of 350 amino acids was linked to a change in lattice type from square to oblique (p1).  相似文献   

6.
The chimeric gene encoding a C-terminally-truncated form of the S-layer protein SbpA from Bacillus sphaericus CCM 2177 and two copies of the Fc-binding Z-domain was constructed, cloned, and heterologously expressed in Escherichia coli HMS174(DE3). The Z-domain is a synthetic analogue of the B-domain of protein A, capable of binding the Fc part of immunoglobulin G (IgG). The S-layer fusion protein rSbpA(31-1068)/ZZ retained the specific properties of the S-layer protein moiety to self-assemble in suspension and to recrystallize on supports precoated with secondary cell wall polymer (SCWP), which is the natural anchoring molecule for the S-layer protein in the bacterial cell wall. Due to the construction principle of the S-layer fusion protein, the ZZ-domains remained exposed on the outermost surface of the protein lattice. The binding capacity of the native or cross-linked monolayer for human IgG was determined by surface plasmon resonance measurements. For batch adsorption experiments, 3-microm-diameter, biocompatible cellulose-based, SCWP-coated microbeads were used for recrystallization of the S-layer fusion protein. In the case of the native monolayer, the binding capacity for human IgG was 5.1 ng/mm(2), whereas after cross-linking with dimethyl pimelimidate, 4.4 ng of IgG/mm(2) was bound. This corresponded to 78 and 65% of the theoretical saturation capacity of a planar surface for IgGs aligned in the upright position, respectively. Compared to commercial particles used as immunoadsorbents to remove autoantibodies from sera of patients suffering from an autoimmune disease, the IgG binding capacity of the S-layer fusion protein-coated microbeads was at least 20 times higher. For that reason, this novel type of microbeads should find application in the microsphere-based detoxification system.  相似文献   

7.
The cell surface of Bacillus stearothermophilus ATCC 12980 is completely covered by an oblique lattice which consists of the S-layer protein SbsC. On SDS-polyacrylamide gels, the mature S-layer protein migrates as a single band with an apparent molecular mass of 122 kDa. During cultivation of B. stearothermophilus ATCC 12980 at 67 degrees C instead of 55 degrees C, a variant developed that had a secondary cell wall polymer identical to that of the wild-type strain, but it carried an S-layer glycoprotein that could be separated on SDS-polyacrylamide gels into four bands with apparent molecular masses of 92, 118, 150 and 175 kDa. After deglycosylation, only a single protein band with a molecular mass of 92 kDa remained. The complete nucleotide sequence encoding the protein moiety of this S-layer glycoprotein, termed SbsD, was established by PCR and inverse PCR. The sbsD gene of 2,709 bp is predicted to encode a protein of 96.2 kDa with a 30-amino-acid signal peptide. Within the 807 bp encoding the signal peptide and the N-terminal sequence (amino acids 31-269), different nucleotides for sbsD and sbsC were observed in 46 positions, but 70% of these mutations were silent, thus leading to a level of identity of 95% for the N-terminal parts. The level of identity of the remaining parts of SbsD and SbsC was below 10%, indicating that the lysine-, tyrosine- and arginine-rich N-terminal region in combination with a distinct type of secondary cell wall polymer remained conserved upon S-layer variation. The sbsD sequence encoding the mature S-layer protein cloned into the pET28a vector led to stable expression in Escherichia coli HMS174(DE3). This is the first example demonstrating that S-layer variation leads to the synthesis of an S-layer glycoprotein.  相似文献   

8.
The fluorescent properties of the S-layer enhanced green fluorescent fusion protein (rSbpA31-1068/EGFP) were investigated as a function of temperature, pH conditions, and guanidine hydrochloride concentration. These results were compared to the fluorescent properties of the recombinant enhanced green fluorescent protein (EGFP) and an equimolar mixture of the S-layer protein rSbpA and EGFP. The intensity of the fluorescence emission of the EGFP at 510 nm, after excitation at 490 nm, is not affected by the presence of rSbpA, either as a fusion partner or as a free protein in solution. In each of the three protein systems, the emission intensity at 510 nm reaches its maximum value between pH 7 and 9 at 20 degrees C and at 0 M guanidine hydrochloride. No fluorescence could be measured at pH 4 and 6 M guanidine hydrochloride. These results show that the S-layer fusion protein (rSbpA31-1068/EGFP) is a suitable candidate for future applications in nanobiotechonology at a wide range of pH, temperature, and guanidine hydrochloride concentrations.  相似文献   

9.
Counterregulating the disease-eliciting Th2-like immune response of allergen-specific Th lymphocytes by fostering an allergen-specific Th1-like response is a promising concept for future immunotherapy of type I allergy. The use of recombinant allergens combined with more functional adjuvants has been proposed. In this respect, we present a novel approach. The gene sequence encoding the major birch pollen allergen, Bet v 1, was fused with the gene encoding the bacterial cell surface (S-layer) protein of Geobacillus stearothermophilus, resulting in the recombinant protein, rSbsC-Bet v 1. rSbsC-Bet v 1 contained all relevant Bet v 1-specific B and T cell epitopes, but was significantly less efficient to release histamine than rBet v 1. In cells of birch pollen-allergic individuals, rSbsC-Bet v 1 induced IFN-gamma along with IL-10, but no Th2-like response, as observed after stimulation with Bet v 1. Intracellular cytokine staining revealed that rSbsC-Bet v 1 promoted IFN-gamma-producing Th cells. Moreover, rSbsC-Bet v 1 induced IFN-gamma synthesis in Bet v 1-specific Th2 cell clones, and importantly, increased IL-10 production in these cells. In conclusion, genetic fusion of an allergen to S-layer proteins combined reduced allergenicity with immunomodulatory capacity. The strategy described in this work may be generally applied to design vaccines for specific immunotherapy of type I allergy with improved efficacy and safety.  相似文献   

10.
11.

Background  

Genetic fusion of the major birch pollen allergen (Bet v1) to bacterial surface-(S)-layer proteins resulted in recombinant proteins exhibiting reduced allergenicity as well as immunomodulatory capacity. Thus, S-layer/allergen fusion proteins were considered as suitable carriers for new immunotherapeutical vaccines for treatment of Type I hypersensitivity. Up to now, endotoxin contamination of the fusion protein which occurred after isolation from the gram-negative expression host E. coli had to be removed by an expensive and time consuming procedure. In the present study, in order to achieve expression of pyrogen-free, recombinant S-layer/allergen fusion protein and to study the secretion of a protein capable to self-assemble, the S-layer/allergen fusion protein rSbpA/Bet v1 was produced in the gram-positive organism Bacillus subtilis 1012.  相似文献   

12.
Monomolecular crystalline bacterial cell surface layers (S-layers) have broad application potential in nanobiotechnology due to their ability to generate functional supramolecular structures. Here, we report that Bacillus megaterium is an excellent host organism for the heterologous expression and efficient secretion of hemagglutinin (HA) epitope-tagged versions of the S-layer protein SslA from Sporosarcina ureae ATCC 13881. Three chimeric proteins were constructed, comprising the precursor, C-terminally truncated, and N- and C-terminally truncated forms of the S-layer SslA protein tagged with the human influenza hemagglutinin epitope. For secretion of fusion proteins, the open reading frames were cloned into the Escherichia coli-Bacillus megaterium shuttle vector pHIS1525. After transformation of the respective plasmids into Bacillus megaterium protoplasts, the recombinant genes were successfully expressed and the proteins were secreted into the growth medium. The isolated S-layer proteins are able to assemble in vitro into highly ordered, crystalline, sheetlike structures with the fused HA tag accessible to antibody. We further show by fluorescent labeling that the secreted S-layer fusion proteins are also clustered on the cell envelope of Bacillus megaterium, indicating that the cell surface can serve in vivo as a nucleation point for crystallization. Thus, this system can be used as a display system that allows the dense and periodic presentation of S-layer proteins or the fused tags.  相似文献   

13.
Fusion proteins based on the crystalline bacterial cell surface layer (S-layer) proteins SbpA from Bacillus sphaericus CCM 2177 and SbsB from Geobacillus stearothermophilus PV72/p2 and a peptide mimotope F1 that mimics an immunodominant epitope of Epstein-Barr virus (EBV) were designed and overexpressed in Escherichia coli. Constructs were designed such that the peptide mimotope was presented either at the C-terminus (SbpA/F1) or at the N-terminus (SbsB/F1) of the respective S-layer proteins. The resulting S-layer fusion proteins, SbpA/F1 and SbsB/F1, fully retained the intrinsic self-assembly capability of the S-layer moiety into monomolecular lattices. As determined by immunodot assays and ELISAs using monoclonal antibodies, the F1 mimotope was well-presented on the outer surface of the S-layer lattices and accessible for antibody binding. Further comparison of the two S-layer fusion proteins showed that the S-layer fusion protein SbpA/F1 had a higher antibody binding capacity than SbsB/F1 in aqueous solution and in immune sera, illustrating the importance of epitope orientation on the performance of solid-phase immunoassays. To assess the diagnostic values of S-layer mimotope fusion protein SbpA/F1, we screened a panel of 83 individual EBV IgM-positive, EBV negative, and potential cross-reactive sera for their reactivities. This resulted in 98.2% specificity and 89.3% sensitivity, and furthermore no cross-reactivity with related viral disease states including rheumatoid factor was observed. This study shows the potential of S-layer fusion proteins as a matrix for site-directed immobilization of small ligands in solid-phase immunoassays using EBV diagnostics as a model system.  相似文献   

14.
Acetogenium kivui is anaerobically growing thermophilic bacterium with a gram-positive type of cell wall structure. The outer surface is covered with a hexagonally packed surface (S) layer. The gene coding for the S-layer polypeptide was cloned in Escherichia coli on two overlapping fragments by using the plasmid pUC18 as the vector. It was expressed under control of a cloned Acetogenium promoter or the lacZ gene. We determined the complete sequence of the structural gene. The mature polypeptide comprises 736 amino acids and is preceded by a typical procaryotic signal sequence of 26 amino acids. It i weakly acidic, weakly hydrophilic, and contains a relatively high proportion of hydroxyamino acids, including two clusters of serine and threonine residues. An N-terminal region of about 200 residues is homologous to the N-terminal part of the middle wall protein, one of the two S-layer proteins of Bacillus brevis, and there is also an internal homology within the N-terminal region of the A. kivui polypeptide.  相似文献   

15.
The cbsA gene of Lactobacillus crispatus strain JCM 5810, encoding a protein that mediates adhesiveness to collagens, was characterized and expressed in Escherichia coli. The cbsA open reading frame encoded a signal sequence of 30 amino acids and a mature polypeptide of 410 amino acids with typical features of a bacterial S-layer protein. The cbsA gene product was expressed as a His tag fusion protein, purified by affinity chromatography, and shown to bind solubilized as well as immobilized type I and IV collagens. Three other Lactobacillus S-layer proteins, SlpA, CbsB, and SlpnB, bound collagens only weakly, and sequence comparisons of CbsA with these S-layer proteins were used to select sites in cbsA where deletions and mutations were introduced. In addition, hybrid S-layer proteins that contained the N or the C terminus from CbsA, SlpA, or SlpnB as well as N- and C-terminally truncated peptides from CbsA were constructed by gene fusion. Analysis of these molecules revealed the major collagen-binding region within the N-terminal 287 residues and a weaker type I collagen-binding region in the C terminus of the CbsA molecule. The mutated or hybrid CbsA molecules and peptides that failed to polymerize into a periodic S-layer did not bind collagens, suggesting that the crystal structure with a regular array is optimal for expression of collagen binding by CbsA. Strain JCM 5810 was found to contain another S-layer gene termed cbsB that was 44% identical in sequence to cbsA. RNA analysis showed that cbsA, but not cbsB, was transcribed under laboratory conditions. S-layer-protein-expressing cells of strain JCM 5810 adhered to collagen-containing regions in the chicken colon, suggesting that CbsA-mediated collagen binding represents a true tissue adherence property of L. crispatus.  相似文献   

16.
The gene encoding the crystalline surface layer (S-layer) protein from Campylobacter rectus , designated slp , was sequenced and the recombinant gene product was expressed in Escherichia coli . The gene consisted of 4086 nucleotides encoding a protein with 1361 amino acids. The N-terminal amino acid sequence revealed that Slp did not contain a signal sequence, but that the initial methionine residue was processed. The deduced amino acid sequence displayed some common characteristic features of S-layer proteins previously reported. A homology search showed a high similarity to the Campylobacter fetus S-layer proteins, especially in their N-terminus. The C-terminal third of Slp exhibited homology with the RTX toxins from Gram-negative bacteria via the region including the glycine-rich repeats. The Slp protein had the same N-terminal sequence as a 104-kDa cytotoxin isolated from the culture supernatants of C. rectus . However, neither native nor recombinant Slp showed cytotoxicity against HL-60 cells or human peripheral white blood cells. These data support the idea that the N-terminus acts as an anchor to the cell surface components and that the C-terminus is involved in the assembly and/or transport of the protein.  相似文献   

17.
The S-layer of Bacillus stearothermophilus PV72/p2 shows oblique lattice symmetry and is composed of identical protein subunits with a molecular weight of 97,000. The isolated S-layer subunits could bind and recrystallize into the oblique lattice on native peptidoglycan-containing sacculi which consist of peptidoglycan of the A1gamma chemotype and a secondary cell wall polymer with an estimated molecular weight of 24,000. The secondary cell wall polymer could be completely extracted from peptidoglycan-containing sacculi with 48% HF, indicating the presence of phosphodiester linkages between the polymer chains and the peptidoglycan backbone. The cell wall polymer was composed mainly of GlcNAc and ManNAc in a molar ratio of 4:1, constituted about 20% of the peptidoglycan-containing sacculus dry weight, and was also detected in the fraction of the S-layer self-assembly products. Extraction experiments and recrystallization of the whole S-layer protein and proteolytic cleavage fragments confirmed that the secondary cell wall polymer is responsible for anchoring the S-layer subunits by the N-terminal part to the peptidoglycan-containing sacculi. In addition to this binding function, the cell wall polymer was found to influence the in vitro self-assembly of the guanidinium hydrochloride-extracted S-layer protein. Chemical modification studies further showed that the secondary cell wall polymer does not contribute significant free amino or carboxylate groups to the peptidoglycan-containing sacculi.  相似文献   

18.
The chimeric gene encoding a C-terminally-truncated form of the S-layer protein SbpA from Bacillus sphaericus CCM 2177 and two copies of the Fc-binding Z-domain was constructed, cloned, and heterologously expressed in Escherichia coli HMS174(DE3). The Z-domain is a synthetic analogue of the B-domain of protein A, capable of binding the Fc part of immunoglobulin G (IgG). The S-layer fusion protein rSbpA31-1068/ZZ retained the specific properties of the S-layer protein moiety to self-assemble in suspension and to recrystallize on supports precoated with secondary cell wall polymer (SCWP), which is the natural anchoring molecule for the S-layer protein in the bacterial cell wall. Due to the construction principle of the S-layer fusion protein, the ZZ-domains remained exposed on the outermost surface of the protein lattice. The binding capacity of the native or cross-linked monolayer for human IgG was determined by surface plasmon resonance measurements. For batch adsorption experiments, 3-μm-diameter, biocompatible cellulose-based, SCWP-coated microbeads were used for recrystallization of the S-layer fusion protein. In the case of the native monolayer, the binding capacity for human IgG was 5.1 ng/mm2, whereas after cross-linking with dimethyl pimelimidate, 4.4 ng of IgG/mm2 was bound. This corresponded to 78 and 65% of the theoretical saturation capacity of a planar surface for IgGs aligned in the upright position, respectively. Compared to commercial particles used as immunoadsorbents to remove autoantibodies from sera of patients suffering from an autoimmune disease, the IgG binding capacity of the S-layer fusion protein-coated microbeads was at least 20 times higher. For that reason, this novel type of microbeads should find application in the microsphere-based detoxification system.  相似文献   

19.
The Gram-positive, mesophilic bacterium Paenibacillus alvei CCM 2051T possesses a two-dimensional crystalline protein surface layer (S-layer) with oblique lattice symmetry composed of a single type of O-glycoprotein species. Herein, we describe a strategy for nanopatterned in vivo cell surface co-display of peptide and glycan epitopes based on this S-layer glycoprotein self-assembly system. The open reading frame of the corresponding structural gene spaA codes for a protein of 983 amino acids, including a signal peptide of 24 amino acids. The mature S-layer protein has a theoretical molecular mass of 105.95 kDa and a calculated pI of 5.83. It contains three S-layer homology domains at the N-terminus that are involved in anchoring of the glycoprotein via a non-classical, pyruvylated secondary cell wall polymer to the peptidoglycan layer of the cell wall. For this polymer, several putative biosynthesis enzymes were identified upstream of the spaA gene. For in vivo cell surface display, the hexahistidine tag and the enhanced green fluorescent protein, respectively, were translationally fused to the C-terminus of SpaA. Immunoblot analysis, immunofluorescence staining, and fluorescence microscopy revealed that the fused epitopes were efficiently expressed and successfully displayed via the S-layer glycoprotein matrix on the surface of P. alvei CCM 2051T cells. In contrast, exclusively non-glycosylated chimeric SpaA proteins were displayed, when the S-layer of the glycosylation-deficient wsfP mutant was used as a display matrix.  相似文献   

20.
A fusion protein based on the S-layer protein SbpA from Bacillus sphaericus CCM 2177 and the enzyme laminarinase (LamA) from Pyrococcus furiosus was designed and overexpressed in Escherichia coli. Due to the construction principle, the S-layer fusion protein fully retained the self-assembly capability of the S-layer moiety, while the catalytic domain of LamA remained exposed at the outer surface of the formed protein lattice. The enzyme activity of the S-layer fusion protein monolayer obtained upon recrystallization on silicon wafers, glass slides and different types of polymer membranes was determined colorimetrically and related to the activity of sole LamA that has been immobilized with conventional techniques. LamA aligned within the S-layer fusion protein lattice in a periodic and orientated fashion catalyzed twice the glucose release from the laminarin polysaccharide substrate in comparison to the randomly immobilized enzyme. In combination with the good shelf-life and the high resistance towards temperature and diverse chemicals, these novel composites are regarded a promising approach for site-directed enzyme immobilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号