首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of a number of quinones on the bioluminescence characteristics of a three-component enzymatic system containing alcohol dehydrogenase, bacterial luciferase, and NADH-FMN oxidoreductase were studied to find the most sensitive kinetic parameters of the system intended to be used in biological testing. Both direct and back reactions catalyzed by alcohol dehydrogenase were studied in the presence and in the absence of quinones. The kinetic parameters of the bioluminescent system were found to depend on the redox potentials and concentrations of quinones. The quinone-induced effects were shown to be associated with changes in the NAD+/NADH ratio in the chain of NADH-dependent enzymes. The three-enzyme system based on alcohol dehydrogenase is suggested as a bioluminescence test for ecological monitoring of waste water.  相似文献   

2.
A review of the mechanisms of the exogenous redox compounds influence on the bacterial coupled enzyme system: NAD(P)H:FMN-oxidoreductase-luciferase has been done. A series of quinones has been used as model organic oxidants. The three mechanisms of the quinones' effects on bioluminescence were suggested: (1) inhibition of the NADH-dependent redox reactions; (2) interactions between the compounds and the enzymes of the coupled enzyme system; and (3) intermolecular energy migration. The correlation between the kinetic parameters of bioluminescence and the standard redox potential of the quinones proved that the inhibition of redox reactions was the key mechanism by which the quinones decrease the light emission intensity. The changes in the fluorescence anisotropy decay of the endogenous flavin of the enzyme preparations showed the direct interaction between quinones and enzymes. It has been demonstrated that the intermolecular energy migration mechanism played a minor role in the effect of quinones on the bioluminescence. A comparative analysis of the effect of quinones, phenols and inorganic redox compounds on bioluminescent coupled enzyme systems has been carried out.  相似文献   

3.
Reductive methylation of lysine residues activates liver alcohol dehydrogenase in the oxidation of primary alcohols, but decreases the activity of the enzyme towards secondary alcohols. The modification also desensitizes the dehydrogenase to substrate inhibition at high alcohol concentrations. Steady-state kinetic studies of methylated liver alcohol dehydrogenase over a wide range of alcohol concentrations suggest that alcohol oxidation proceeds via a random addition of coenzyme and substrate with a pathway for the formation of the productive enzyme-NADH-alcohol complex. To facilitate the analyses of the effects of methylation on liver alcohol dehydrogenase and factors affecting them, new operational kinetic parameters to describe the results at high substrate concentration were introduced. The changes in the dehydrogenase activity on alkylation were found to be associated with changes in the maximum velocities that are affected by the hydrophobicity of alkyl groups introduced at lysine residues. The desensitization of alkylated liver alcohol dehydrogenase to substrate inhibition is identified with a decrease in inhibitory Michaelis constants for alcohols and this is favoured by the steric effects of substituents at the lysine residues.  相似文献   

4.
We have developed a single-step method for the purification of NADP+-dependent alcohol dehydrogenase fromEntamoeba histolyticaand NAD+-dependent alcohol dehydrogenase fromSaccharomyces cerevisiae.It is based on the affinity for zinc of both enzymes. The amebic enzyme was purified almost 800 times with a recovery of 54% and the yeast enzyme was purified 30 times with a recovery of 100%. The kinetic constants of the purified enzymes were similar to those reported for other purification methods. With mammalian alcohol dehydrogenase, we obtained a 40-kDa band suggestive of purified alcohol dehydrogenase, but we failed to retain enzymatic activity in this preparation. Our results suggest that the described method is more applicable to the purification of tetrameric alcohol dehydrogenases.  相似文献   

5.
The structural and kinetic analyses of the components of the lactate shuttle from heterotrophic Euglena gracilis were carried out. Mitochondrial membrane-bound, NAD+-independent d-lactate dehydrogenase (d-iLDH) was purified by solubilization with CHAPS and heat treatment. The active enzyme was a 62-kDa monomer containing non-covalently bound FAD as cofactor. d-iLDH was specific for d-lactate and it was able to reduce quinones of different redox potential values. Oxalate and l-lactate were mixed-type inhibitors of d-iLDH. Mitochondrial l-iLDH also catalyzed the reduction of quinones, but it was inactivated during the extraction with detergents. Both l-iLDH and d-iLDH were inhibited by the specific flavoprotein-inhibitor diphenyleneiodonium, suggesting that l-iLDH was also a flavoprotein. Affinity chromatography revealed that the E. gracilis cytosolic fraction contained two types of NAD+-dependent LDH specific for the generation of d- and l-lactate (d-nLDH and l-nLDH, respectively). These two enzymes were tetramers of 126-132 kDa and showed an ordered bi-bi kinetic mechanism. Kinetic properties were different in both enzymes. Pyruvate reduction by d-nLDH was inhibited by its two products; the d-lactate oxidation was 40-fold lower than forward reaction. l-lactate oxidation by l-nLDH was not detected, whereas pyruvate reduction was activated by fructose-1, 6-bisphosphate, K+ or NH4+. Interestingly, membrane-bound l- and d-lactate dehydrogenases with quinone reductase activity have been only detected in bacteria, whereas the activity of soluble d-nLDH has been identified in bacteria and some yeast. Also, FBP-activated l-nLDH has been found solely in lactic bacteria. Based on their similar kinetic and structural characteristics, a possible common origin among bacterial and E. gracilis lactic dehydrogenase enzymes is discussed.  相似文献   

6.
A mathematical model for hexanol oxidation catalyzed by NAD+‐dependent alcohol dehydrogenase from baker's yeast in a microreactor was developed and compared with the model when the reaction takes place in a macroscopic reactor. The enzyme kinetics was modeled as a pseudo‐homogeneous process with the double substrate Michaelis–Menten rate expression. In comparison with the kinetic parameters estimated in the cuvette, a 30‐fold higher maximum reaction rate and a relatively small change in the saturation constants are observed for the kinetic parameters estimated in the continuously operated tubular microreactor (Vm1=197.275 U/mg, Kmhexanol=9.420 mmol/L, and Km1NAD+=0.187 mmol/L). Kinetic measurements performed in the microreactor, estimated from the initial reaction rate experiments at the residence time of 36 s, showed no product inhibition, which could be explained by hydrodynamic effects and the continuous removal of inhibiting products. The Fourier amplitude sensitivity test method was applied for global kinetic parameter analysis, which shows a significant increase in the sensitivity of Km1NAD+ in the microreactor. Independent experiments performed in the microreactor were used to validate and to verify the developed mathematical model.  相似文献   

7.
A soil bacterium, Mycobacterium sp. B-009, is able to grow on racemic 1,2-propanediol (PD). The strain was revealed to oxidize 3-methyl-1,5-pentanediol (MPD) to 5-hydroxy-3-methyl-pentanoic acid (HMPA) during growth on PD. MPD was converted into an almost equimolar amount of the S-form of HMPA (S-HMPA) at 72%ee, suggesting the presence of an enantioselective MPD dehydrogenase (MPD-DH). As expected, an NADP+-dependent alcohol dehydrogenase, which catalyzes the initial step of MPD oxidation, was detected and purified from the cell-free extract. This enzyme was suggested to be a homodimeric medium-chain alcohol dehydrogenase/reductase (MDR). The catalytic and kinetic parameters indicated that MPD is the most suitable substrate for the enzyme. The enzyme was encoded by a 1047-bp gene (mpd1) and several mycobacterial strains were found to have putative MDR genes similar to mpd1. In a phylogenetic tree, MPD-DH formed an independent clade together with the putative MDR of Mycobacterium neoaurum, which produces opportunistic infections.  相似文献   

8.
Alcohol dehydrogenase from horse liver was reductively alkylated with aldehydes having varied alkyl substituents. Kinetic studies of alkylated liver alcohol dehydrogenases which were modified in the absence and in the presence of NADH indicate that the alkylation of the specific lysine residues generally activates the enzyme by increasing Michaelis and inhibition constants for substrates and maximum velocities for the reactions. These kinetic parameters were analyzed in terms of electronic, steric, and hydrophobic effects of alkyl substituents. The hydrophilic character of the lysine residues is the most important factor which affects all kinetic parameters, particularly Kia and V2. In addition, the nucleophilic character of the lysine residues enhances the enzyme activity by increasing the maximum velocity of ethanol oxidation and the affinity of alcohol dehydrogenase for NADH and acetaldehyde. The steric interaction at the lysine residues favors the affinity of the enzyme for NADH and ethanol.  相似文献   

9.
Testicular ethanol-metabolizing enzymes (alcohol dehydrogenase, microsomal ethanol-oxidizing system, catalase) were investigated. Alcohol dehydrogenase was purified to homogeneity and its main kinetic parameters were analyzed. It was shown that alcohol dehydrogenase corresponds to class III isozymes and does not participate in ethanol oxidation. The testicular microsomal ethanol-oxidizing activity does not exceed 0.02 nmol/min/mg of protein. The activity of catalase and its peroxidase component is far lower in the testes than in the liver. On the whole, testicular tissue is rather inactive in respect of ethanol oxidation.  相似文献   

10.
Liver alcohol dehydrogenase (LADH; E.C. 1.1.1.1) provides an excellent system for probing the role of binding interactions with NAD+ and alcohols as well as with NADH and the corresponding aldehydes. The enzyme catalyzes the transfer of hydride ion from an alcohol substrate to the NAD+ cofactor, yielding the corresponding aldehyde and the reduced cofactor, NADH. The enzyme is also an excellent catalyst for the reverse reaction. X-ray crystallography has shown that the NAD+ binds in an extended conformation with a distance of 15 Å between the buried reacting carbon of the nicotinamide ring and the adenine ring near the surface of the horse liver enzyme. A major criticism of X-ray crystallographic studies of enzymes is that they do not provide dynamic information. Such data provide time-averaged and space-averaged models. Significantly, entries in the protein data bank contain both coordinates as well as temperature factors. However, enzyme function involves both dynamics and motion. The motions can be as large as a domain closure such as observed with liver alcohol dehydrogenase or as small as the vibrations of certain atoms in the active site where reactions take place. Ternary complexes produced during the reaction of the enzyme binary entity, E-NAD+, with retinol (vitamin A alcohol) lead to retinal (vitamin A aldehyde) release and the enzyme binary entity E-NADH. Retinal is further metabolized via the E-NAD+-retinal ternary complex to retinoic acid (vitamin A acid). To unravel the mechanistic aspects of these transformations, the kinetics and energetics of interconversion between various ternary complexes are characterized. Proton transfers along hydrogen bond bridges and NADH hydride transfers along hydrophobic entities are considered in some detail. Secondary kinetic isotope effects with retinol are not particularly large with the wild-type form of alcohol dehydrogenase from horse liver. We analyze alcohol dehydrogenase catalysis through a re-examination of the reaction coordinates. The ground states of the binary and ternary complexes are shown to be related to the corresponding transition states through topology and free energy acting along the reaction path.  相似文献   

11.
Non-covalent interaction of alcohol dehydrogenase with polysaccharides was studied using three neutral and three anionic polysaccharides. The process of interaction of alcohol dehydrogenase with gum Arabic was optimized with respect to the ratio of enzyme to gum Arabic, pH, and molarity of buffer. Alcohol dehydrogenase–gum Arabic complex formed under optimized conditions showed 93 % retention of original activity with enhanced thermal and pH stability. Lower inactivation rate constant of alcohol dehydrogenase–gum Arabic complex within the temperature range of 45 to 60 °C implied its better stability. Half-life of alcohol dehydrogenase–gum Arabic complex was higher than that of free alcohol dehydrogenase. A slight increment was observed in kinetic constants (K m and V max) of gum Arabic-complexed alcohol dehydrogenase which may be due to interference by gum Arabic for the binding of substrate to the enzyme. Helix to turn conversion was observed in complexed alcohol dehydrogenase as compared to free alcohol dehydrogenase which may be responsible for observed stability enhancement.  相似文献   

12.
The steady-state kinetics of alcohol dehydrogenases (alcohol:NAD+ oxidoreductase, EC 1.1.1.1 and alcohol:NADP+ oxidoreductase, EC 1.1.1.2), lactate dehydrogenases (l-lactate:NAD+ oxidoreductase, EC 1.1.1.27 and d-lactate:NAD+ oxidoreductase, EC 1.1.1.28), malate dehydrogenase (l-malate:NAD+ oxidoreductase, EC 1.1.1.37), and glyceraldehyde-3-phosphate dehydrogenases [d-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating), EC 1.2.1.12] from different sources (prokaryote and eukaryote, mesophilic and thermophilic organisms) have been studied using NAD(H), N6-(2-carboxyethyl)-NAD(H), and poly(ethylene glycol)-bound NAD(H) as coenzymes. The kinetic constants for NAD(H) were changed by carboxyethylation of the 6-amino group of the adenine ring and by conversion to macromolecular form. Enzymes from thermophilic bacteria showed especially high activities for the derivatives. The relative values of the maximum velocity (NAD = 1) of Thermus thermophilus malate dehydrogenase for N6-(2-carboxyethyl)-NAD and poly(ethylene glycol)-bound NAD were 5.7 and 1.9, respectively, and that of Bacillus stearothermophilus glyceraldehyde-3-phosphate dehydrogenase for poly(ethylene glycol)-bound NAD was 1.9.  相似文献   

13.
The brown-rot basidiomycete Gloeophyllum trabeum uses a quinone redox cycle to generate extracellular Fenton reagent, a key component of the biodegradative system expressed by this highly destructive wood decay fungus. The hitherto uncharacterized quinone reductase that drives this cycle is a potential target for inhibitors of wood decay. We have identified the major quinone reductase expressed by G. trabeum under conditions that elicit high levels of quinone redox cycling. The enzyme comprises two identical 22-kDa subunits, each with one molecule of flavin mononucleotide. It is specific for NADH as the reductant and uses the quinones produced by G. trabeum (2,5-dimethoxy-1,4-benzoquinone and 4,5-dimethoxy-1,2-benzoquinone) as electron acceptors. The affinity of the reductase for these quinones is so high that precise kinetic parameters were not obtainable, but it is clear that kcat/Km for the quinones is greater than 108 M−1 s−1. The reductase is encoded by a gene with substantial similarity to NAD(P)H:quinone reductase genes from other fungi. The G. trabeum quinone reductase may function in quinone detoxification, a role often proposed for these enzymes, but we hypothesize that the fungus has recruited it to drive extracellular oxyradical production.  相似文献   

14.
Summary Quinohaemoprotein alcohol dehydrogenase from Comamonas testosteroni was immobilized on polypyrrole-coated track-etch and microporous membranes. On the track-etch membrane, 3.4 to 4.8 × 10–3 Units of enzyme/cm2 was immobilized whilst on the microporous membrane 0.05 U/cm2 was immobilized. The track-etch membrane was then used in electrochemical studies using ferricyanide as a redox mediator giving a maximum catalytic current of 0.022 mA/cm2 membrane with 1-pentanol as the substrate. The kinetic parameters (Km and Vmax) of the immobilized enzyme are of the same order of magnitude as those of the free enzyme.  相似文献   

15.
Anaerobically grown cells of Saccharomyces cerevisiae entrapped in polyacrylamide gel have been shown to provide a stable source of alcohol dehydrogenase [(ADH) alcohol:NAD+ oxidoreductase, EC 1.1.1.1] for effective regeneration of NAD(H). This system was able to provide the coenzyme required for the operation of other dehydrogenases, such as lactate dehydrogenase [(LDH) l-lactate: NAD+ oxidoreductase, EC 1.1.1.27] and malate dehydrogenase [(MDH) l-malate:NAD+ oxidoreductase, EC 1.1.1.37]. Yeast cells coimmobilized with a dehydrogenase are capable of the reversible regeneration of the reduced or oxidized coenzyme, depending on the additions made. A two-cell system can also be constituted using the same strain of yeast, adapted differently. Cells grown anaerobically and aerobically as sources of ADH and MDH, respectively, can operate efficiently on coimmobilization. The system can be used repeatedly without measurable loss of efficiency.  相似文献   

16.
The transient kinetics of aldehyde reduction by NADH catalyzed by liver alcohol dehydrogenase consist of two kinetic processes. This biphasic rate behavior is consistent with a model in which one of the two identical subunits in the enzyme is inactive during the reaction at the adjacent protomer. Alternatively, enzyme heterogeneity could result in such biphasic behavior. We have prepared liver alcohol dehydrogenase containing a single major isozyme; and the transient kinetics of this purified enzyme are biphasic.Addition of two [14C]carboxymethyl groups per dimer to the two “reactive” sulfhydryl groups (Cys46) yields enzyme which is catalytically inactive toward alcohol oxidation. Alkylated enzyme, as initially isolated by gel filtration chromatography at pH 7·5, forms an NAD+-pyrazole complex. However, the ability to bind NAD+-pyrazole is rapidly lost in pH 8·75 buffer; therefore, our alkylated preparations, as isolated by chromatography at pH 8·75, are inactive toward NAD+-pyrazole complex formation. We have prepared partially inactivated enzyme by allowing iodoacetic acid to react with liver alcohol dehydrogenase until 50% of the NAD+-pyrazole binding capacity remains; under these reaction conditions one [14C]carboxymethyl group is added per dimer. This partially alkylated enzyme preparation is isolated by gel filtration and has been aged sufficiently to lose NAD+-pyrazole binding ability at alkylated subunits. When solutions of native liver alcohol dehydrogenase and partially alkylated liver alcohol dehydrogenase containing the same number of unmodified active sites are allowed to react with substrate under single turnover conditions, partially alkylated enzyme is only half as reactive as native enzyme. This indicates that some molecular species in partially alkylated liver alcohol dehydrogenase that react with pyrazole and NAD+ during the active site titration do not react with substrate. These data are consistent with a model in which a subunit adjacent to an alkylated protomer in the dimeric enzyme is inactive toward substrate. In addition, NAD+-pyrazole binding at the protomers adjacent to alkylated subunits is slowly lost so that 75% of the enzyme-NAD+-pyrazole binding capacity is lost in 50% alkylated enzyme. These data supply strong evidence for subunit interactions in liver alcohol dehydrogenase.Binding experiments performed on partially alkylated liver alcohol dehydrogenase indicate that coenzyme binding is normal at a subunit adjacent to an alkylated protomer even though active ternary complexes cannot be formed. One hypothesis consistent with these results is the unavailability of zinc for substrate binding at the active site in subunits adjacent to alkylated protomers in monoalkylated dimer.  相似文献   

17.
Abstract

The complex kinetic behaviour of p-methylbenzyl hydroperoxide in its inhibitory action on horse liver alcohol dehydrogenase was examined. The kinetic patterns are markedly different at very low (<10?8 M) and high (> 10?7 M) hydroperoxide concentrations. In both cases very low inhibition constants (4nM and 14nM, respectively) were found. A possihle mechanistic model based on these results is discussed.  相似文献   

18.
Drosophila alcohol dehydrogenase (ADH) is an NAD(H)-dependent oxidoreductase that catalyzes the oxidation of alcohols and aldehydes. Structurally and biochemically distinct from all the reported ADHs (typically, the mammalian medium-chain dehydrogenase/reductase–ethanol-metabolizing enzyme), it stands as the only small-alcohol transforming system that has originated from a short-chain dehydrogenase/reductase (SDR) ancestor. The crystal structures of the apo, binary (E·NAD+) and three ternary (E·NAD+·acetone, E·NAD+·3-pentanone and E·NAD+·cyclohexanone) forms of Drosophila lebanonensis ADH have allowed us to infer the structural and kinetic features accounting for the generation of the ADH activity within the SDR lineage.  相似文献   

19.
The effect of derivatives of benzoic and cinnamic acids, quereetin,p-benzoquinone, and 2,5-dimethylbenzoquinone on oxygen consumption mitoehondrial suspensions and on the activity of some respiratory chain enzymes was studied. Benzoquinone and 2,5-dimethylbenzoquinone highly significantly inhibited the respiration and phosphorylation rates and malate- and succinate dehydrogenase activities. Chlorogenic acid, similarly as the quinones, very significantly inhibited the activities of the studied dehydrogenases but did not affect cytochrome oxidase. Oxygen consumption by intact mitochondria was not inhibited, only the oxidativo phosphorylation was significantly uncoupled. Quereetin significantly enhanced dehydrogenase activities and completely inhibited cytochrome oxidase activity. The respiration and phosphorylation activities of the mitochondria were significantly inhibited by quereetin. The effect of the other phenolic compounds studied on respiration and phosphorylation activities was not significant. Succinate dehydrogenase activity was the most affected enzyme among the respiratory chain enzymes. It was significantly inhibited by all the above phenolic compounds at 1-4M or 5 10-5M concentrations with the exception of gallic acid.  相似文献   

20.
It was found that divalent iron ions have alternative effects on the bioluminescence of the natural marine microorganism Photobacterium phosphoreum and the recombinant Escherichia coli strain with a cloned lux operon of P. leiognathi. In the presence of 0.25–5.0 mM FeSO4, the bioluminescence intensity of the former and the latter increased and decreased, respectively. To establish the causes of these differences, we studied the characteristics of the fatty acid composition of the compared microorganisms. The fatty acid profile of E. coli was characterized by a high proportion of unsaturated 11-octadecenoic (vaccenic) acid. A study of this acid in a cell-free enzyme system used for bioluminescence generation showed that it is a potent inhibitor of bacterial bioluminescence. It was found that such effects are enhanced if 11-octadecenoid acid is preincubated with Fe2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号