首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
A survey is presented of picosecond kinetics of heme-residue bond formation after photolysis of histidine, methionine, or cysteine, in a broad range of ferrous six-coordinate heme proteins. These include human neuroglobin, a bacterial heme-binding superoxide dismutase (SOD), plant cytochrome b 559, the insect nuclear receptor E75, horse heart cytochrome c and the heme domain of the bacterial sensor protein Dos. We demonstrate that the fastest and dominant phase of binding of amino acid residues to domed heme invariably takes place with a time constant in the narrow range of 5-7 ps. Remarkably, this is also the case in the heme-binding SOD, where the heme is solvent-exposed. We reason that this fast phase corresponds to barrierless formation of the heme-residue bond from a configuration close to the bound state. Only in proteins where functional ligand exchange occurs, additional slower rebinding takes place on the time scale of tens of picoseconds after residue dissociation. We propose that the presence of these slower phases reflects flexibility in the heme environment that allows external ligands (O2, CO, NO, . . .) to functionally replace the internal residue after thermal dissociation of the heme-residue bond.  相似文献   

2.
In the heme-based sensor Dos from Escherichia coli, the ferrous heme is coordinated by His-77 and Met-95. The latter residue is replaced upon oxygen binding or oxidation of the heme. Here we investigate the early signaling processes upon dissociation of the distal ligand using ultrafast spectroscopy and site-directed mutagenesis. Geminate CO rebinding to the heme domain DosH appears insensitive to replacement of Met-95, in agreement with the notion that this residue is oriented out of the heme pocket in the presence of external ligands. A uniquely slow 35-ps phase in rebinding of the flexible methionine side chain after dissociation from ferrous DosH is completely abolished in rebinding of the more rigid histidine side chain in the M95H mutant protein, where only the 7-ps phase, common to all 6-coordinate heme proteins, is observed. Temperature-dependence studies indicate that all rebinding of internal and external ligands is essentially barrierless, but that CfigsO escape from the heme pocket is an activated process. Solvent viscosity studies combined with molecular dynamics simulations show that there are two configurations in the ferrous 6-coordinate protein, involving two isomers of the Met-95 side chain, of which the structural changes extend to the solvent-exposed backbone, which is part of the flexible FG loop. One of these configurations has considerable motional freedom in the Met-95-dissociated state. We suggest that this configuration corresponds to an early signaling intermediate state, is responsible for the slow rebinding, and allows small ligands in the protein to efficiently compete for binding with the heme.  相似文献   

3.
4.
Andrew CR  Green EL  Lawson DM  Eady RR 《Biochemistry》2001,40(13):4115-4122
Resonance Raman (RR) studies have been conducted on Alcaligenes xylosoxidans cytochrome c', a mono-His ligated hemoprotein which reversibly binds NO and CO but not O(2). Recent crystallographic characterization of this protein has revealed the first example of a hemoprotein which can utilize both sides of its heme (distal and proximal) for binding exogenous ligands to its Fe center. The present RR investigation of the Fe coordination and heme pocket environments of ferrous, carbonyl, and nitrosyl forms of cytochrome c' in solution fully supports the structures determined by X-ray crystallography and offers insights into mechanisms of ligand discrimination in heme-based sensors. Ferrous cytochrome c' reacts with CO to form a six-coordinate heme-CO complex, whereas reaction with NO results in cleavage of the proximal linkage to give a five-coordinate heme-NO adduct, despite the relatively high stretching frequency (231 cm(-1)) of the ferrous Fe-N(His) bond. RR spectra of the six-coordinate CO adduct indicate that CO binds to the Fe in a nonpolar environment in line with its location in the hydrophobic distal heme pocket. On the other hand, RR data for the five-coordinate NO adduct suggest a positively polarized environment for the NO ligand, consistent with its binding close to Arg 124 on the opposite (proximal) side of the heme. Parallels between certain physicochemical properties of cytochrome c' and those of heme-based sensor proteins raise the possibility that the latter may also utilize both sides of their hemes to discriminate between NO and CO binding.  相似文献   

5.
We report the first characterization of the physical and spectroscopic properties of the Staphylococcus aureus heme-binding protein IsdA. In this study, a combination of gel filtration chromatography and analytical centrifugation experiments demonstrate that IsdA, in solution, is a monomer and adopts an extended conformation that would suggest that it has the ability to protrude from the staphylococcal cell wall and interact with the extracellular environment. IsdA efficiently scavenged intracellular heme within Escherichia coli. Gel filtration chromatography and electrospray mass spectrometry together showed that rIsdA in solution is a monomer, and each monomer binds a single heme. Magnetic circular dichroism analyses demonstrate that the heme in rIsdA is a five-coordinate high-spin ferric heme molecule, proximally coordinated by a tyrosyl residue in a cavity that restricts access to small ligands. The heme binding is unlike that in a typical heme protein, for example, myoglobin, because we report that no additional axial ligation is possible in the high-spin ferric state of IsdA. However, reduction to ferrous heme is possible which then allows CO to axially ligate to the ferrous iron. Reoxidation forms the ferric heme, which is once again isolated from exogenous ligands. In summary, rIsdA binds a five-coordinate, high-spin ferric heme which is proximally coordinated by tyrosine. Reduction results in formation of five-coordinate, high-spin ferrous heme with a neutral axial ligand, most likely a histidine. Subsequent addition of CO results in a six-coordinate low-spin ferrous heme also with histidine likely bound proximally. Reoxidation returns the tyrosine as the proximal ligand.  相似文献   

6.
The heme environments of Met(95) and His(77) mutants of the isolated heme-bound PAS domain (Escherichia coli DOS PAS) of a direct oxygen sensing protein from E. coli (E. coli DOS) were investigated with resonance Raman (RR) spectroscopy and compared with the wild type (WT) enzyme. The RR spectra of both the reduced and oxidized WT enzyme were characteristic of six-coordinate low spin heme complexes from pH 4 to 10. The time-resolved RR spectra of the photodissociated CO-WT complex had an iron-His stretching band (nu(Fe-His)) at 214 cm(-1), and the nu(Fe-CO) versus nu(CO) plot of CO-WT E. coli DOS PAS fell on the line of His-coordinated heme proteins. The photodissociated CO-H77A mutant complex did not yield the nu(Fe-His) band but gave a nu(Fe-Im) band in the presence of imidazole. The RR spectrum of the oxidized M95A mutant was that of a six-coordinate low spin complex (i.e. the same as that of the WT enzyme), whereas the reduced mutant appeared to contain a five-coordinate heme complex. Taken together, we suggest that the heme of the reduced WT enzyme is coordinated by His(77) and Met(95), and that Met(95) is displaced by CO and O(2). Presumably, the protein conformational change that occurs upon exchange of an unknown ligand for Met(95) following heme reduction may lead to activation of the phosphodiesterase domain of E. coli DOS.  相似文献   

7.
High-resolution resonance Raman spectra of the ferric, ferrous, and carbonmonoxy (CO)-bound forms of wild-type Escherichia coli-expressed Pseudomonas putida cytochrome P450cam and its P420 form are reported. The ferric and ferrous species of P450 and P420 have been studied in both the presence and absence of excess camphor substrate. In ferric, camphor-bound, P450 (mos), the E. coli-expressed P450 is found to be spectroscopically indistinguishable from the native material. Although substrate binding to P450 is known to displace water molecules from the heme pocket, altering the coordination and spin state of the heme iron, the presence of camphor substrate in P420 samples is found to have essentially no effect on the Raman spectra of the heme in either the oxidized or reduced state. A detailed study of the Raman and absorption spectra of P450 and P420 reveals that the P420 heme is in equilibrium between a high-spin, five-coordinate (HS,5C) form and low-spin six-coordinate (LS,6C) form in both the ferric and ferrous oxidation states. In the ferric P420 state, H2O evidently remains as a heme ligand, while alterations of the protein tertiary structure lead to a significant reduction in affinity for Cys(357) thiolate binding to the heme iron. Ferrous P420 also consists of an equilibrium between HS,5C and LS,6C states, with the spectroscopic evidence indicating that H2O and histidine are the most likely axial ligands. The spectral characteristics of the CO complex of P420 are found to be almost identical to those of a low pH of Mb. Moreover, we find that the 10-ns transient Raman spectrum of the photolyzed P420 CO complex possesses a band at 220 cm-1, which is strong evidence in favor of histidine ligation in the CO-bound state. The equilibrium structure of ferrous P420 does not show this band, indicating that Fe-His bond formation is favored when the iron becomes more acidic upon CO binding. Raman spectra of stationary samples of the CO complex of P450 reveal VFe-CO peaks corresponding to both substrate-bound and substrate-free species and demonstrate that substrate dissociation is coupled to CO photolysis. Analysis of the relative band intensities as a function of photolysis indicates that the CO photolysis and rebinding rates are faster than camphor rebinding and that CO binds to the heme faster when camphor is not in the distal pocket.  相似文献   

8.
We use laser flash photolysis and time-resolved Raman spectroscopy of CO-bound H93G myoglobin (Mb) mutants to study the influence of the proximal ligand on the CO rebinding kinetics. In H93G mutants, where the proximal linkage with the protein is eliminated and the heme can bind exogenous ligands (e.g., imidazole, 4-bromoimidazole, pyridine, or dibromopyridine), we observe significant effects on the CO rebinding kinetics in the 10 ns to 10 ms time window. Resonance Raman spectra of the various H93G Mb complexes are also presented to aid in the interpretation of the kinetic results. For CO-bound H93G(dibromopyridine), we observe a rapid large-amplitude geminate phase with a fundamental CO rebinding rate that is approximately 45 times faster than for wild-type MbCO at 293 K. The absence of an iron proximal ligand vibrational mode in the 10 ns photoproduct Raman spectrum of CO-bound H93G(dibromopyridine) supports the hypothesis that proximal ligation has a significant influence on the kinetics of diatomic ligand binding to the heme.  相似文献   

9.
10.
Ligand binding to the heme distal side is a paradigm of heme-protein biochemistry, the proximal axial ligand being in most cases a His residue. NO binds to the ferrous heme-Fe-atom giving rise to hexa-coordinated adducts (as in myoglobin and hemoglobin) with His and NO as proximal and distal axial ligands, respectively, or to penta-coordinated adducts (as in soluble guanylate cyclase) with NO as the axial distal ligand. Recently, the ferrous derivative of Alcaligenes xylosoxidans cytochrome c' (Axcyt c') and of cardiolipin-bound horse heart cytochrome c (CL-hhcyt c) have been reported to bind NO to the "dark side" of the heme (i.e., as the proximal axial ligand) replacing the endogenous ligand His. Conversely, CL-free hhcyt c behaves as ferrous myoglobin by binding NO to the heme distal side, keeping His as the proximal axial ligand. Moreover, the ferrous derivative of CL-hhcyt c binds CO at the heme distal side, the proximal axial ligand being His. Furthermore, CL-hhcyt c shows peroxidase activity. In contrast, CL-free hhcyt c does not bind CO and does not show peroxidase activity. This suggests that heme-proteins may utilize both sides of the heme for ligand discrimination, which appears to be modulated allosterically. Here, structural and functional aspects of NO binding to ferrous Axcyt c' and (CL-)hhcyt c are reviewed.  相似文献   

11.
M Sono 《Biochemistry》1990,29(6):1451-1460
The binding of a number of ligands to the heme protein indolamine 2,3-dioxygenase has been examined with UV-visible absorption and with natural and magnetic circular dichroism spectroscopy. Relatively large ligands (e.g., norharman) which do not readily form complexes with myoglobin and horseradish peroxidase (HRP) can bind to the dioxygenase. Except for only a few cases (e.g., 4-phenylimidazole) for the ferric dioxygenase, a direct competition for the enzyme rarely occurs between the substrate L-tryptophan (Trp) and the ligands examined. L-Trp and small heme ligands (CN-,N3-,F-) markedly enhance the affinity of each other for the ferric enzyme in a reciprocal manner, exhibiting positive cooperativity. For the ferrous enzyme, L-Trp exerts negative cooperativity with some ligands such as imidazoles, alkyl isocyanides, and CO binding to the enzyme. This likely reflects the proximity of the Trp binding site to the heme iron. Other indolamine substrates also exert similar but smaller cooperative effects on the binding of azide or ethyl isocyanide. The pH dependence of the ligand affinity of the dioxygenase is similar to that of myoglobin rather than that of HRP. These results suggest that indolamine 2,3-dioxygenase has the active-site heme pocket whose environmental structure is similar to, but whose size is considerably larger than, that of myoglobin, a typical O2-binding heme protein. Although the L-Trp affinity of the ferric cyanide and ferrous CO enzyme varies only slightly between pH 5.5 and 9.5, the unligated ferric and ferrous enzymes have considerably higher affinity for L-Trp at alkaline pH than at acidic pH. L-Trp binding to the ferrous dioxygenase is affected by an ionizable residue with a pKa value of 7.3.  相似文献   

12.
Femtosecond spectroscopy was performed on CO-liganded (fully reduced and mixed-valence states) and O(2)-liganded quinol oxidase bd from Escherichia coli. Substantial polarization effects, unprecedented for optical studies of heme proteins, were observed in the CO photodissociation spectra, implying interactions between heme d (the chlorin ligand binding site) and the close-lying heme b(595) on the picosecond time scale; this general result is fully consistent with previous work [Vos, M. H., Borisov, V. B., Liebl, U., Martin, J.-L., and Konstantinov, A. A. (2000) Proc. Natl. Acad. Sci. U.S.A. 97, 1554-1559]. Analysis of the data obtained under isotropic and anisotropic polarization conditions and additional flash photolysis nanosecond experiments on a mutant of cytochrome bd mostly lacking heme b(595) allow to attribute the features in the well-known but unusual CO dissociation spectrum of cytochrome bd to individual heme d and heme b(595) transitions. This renders it possible to compare the spectra of CO dissociation from reduced and mixed-valence cytochrome bd under static conditions and on a picosecond time scale in much more detail than previously possible. CO binding/dissociation from heme d is shown to perturb ferrous heme b(595), causing induction/loss of an absorption band centered at 435 nm. In addition, the CO photodissociation-induced absorption changes at 50 ps reveal a bathochromic shift of ferrous heme b(595) relative to the static spectrum. No evidence for transient binding of CO to heme b(595) after dissociation from heme d is found in the picosecond time range. The yield of CO photodissociation from heme d on a time scale of < 15 ps is found to be diminished more than 3-fold when heme b(595) is oxidized rather than reduced. In contrast to other known heme proteins, molecular oxygen cannot be photodissociated from the mixed-valence cytochrome bd at all, indicating a unique structural and electronic configuration of the diheme active site in the enzyme.  相似文献   

13.
We have examined the effects of active site residues on ligand binding to the heme iron of mouse neuroglobin using steady-state and time-resolved visible spectroscopy. Absorption spectra of the native protein, mutants H64L and K67L and double mutant H64L/K67L were recorded for the ferric and ferrous states over a wide pH range (pH 4-11), which allowed us to identify a number of different species with different ligands at the sixth coordination, to characterize their spectroscopic properties, and to determine the pK values of active site residues. In flash photolysis experiments on CO-ligated samples, reaction intermediates and the competition of ligands for the sixth coordination were studied. These data provide insights into structural changes in the active site and the role of the key residues His64 and Lys67. His64 interferes with exogenous ligand access to the heme iron. Lys67 sequesters the distal pocket from the solvent. The heme iron is very reactive, as inferred from the fast ligand binding kinetics and the ability to bind water or hydroxyl ligands to the ferrous heme. Fast bond formation favors geminate rebinding; yet the large fraction of bimolecular rebinding observed in the kinetics implies that ligand escape from the distal pocket is highly efficient. Even slight pH variations cause pronounced changes in the association rate of exogenous ligands near physiological pH, which may be important in functional processes.  相似文献   

14.
Ligand binding reactions and the relation between redox state and ligand binding in the hexa-heme nitrite reductase of Wolinella succinogenes have been studied using laser flash photolysis. On a picosecond time scale, a rapid excursion was observed corresponding to the breaking and reforming of an iron histidine bond. With the CO derivative, a geminate reaction was observed with a rate of 3 ns-1. On a nanosecond time scale, no slower geminate reactions were observed. For the cyanide derivative, no geminate reactions were observed at either time scale. The second order reaction of CO with the enzyme had a time course consisting of two distinct components. This time course changed in form as the enzyme came to equilibrium with CO, and the slower rebinding component was replaced by a faster rebinding component. It is suggested that CO binding enhances reduction of a heme with an unusually low redox potential and opens the structure of the active site to allow a faster second order reaction of CO. The proportion of the geminate CO reaction was unchanged, consistent with changes relatively remote from the ligand binding site. The second order reactions of cyanide also showed that redox effects influence its rebinding reaction. Adding cyanide to the CO complex of nitrite reductase showed that the two ligands have distinct heme binding sites.  相似文献   

15.
16.
Heme oxygenase (HO) catalyzes heme degradation by utilizing O(2) and reducing equivalents to produce biliverdin IX alpha, iron, and CO. To avoid product inhibition, the heme[bond]HO complex (heme[bond]HO) is structured to markedly increase its affinity for O(2) while suppressing its affinity for CO. We determined the crystal structures of rat ferrous heme[bond]HO and heme[bond]HO bound to CO, CN(-), and NO at 2.3, 1.8, 2.0, and 1.7 A resolution, respectively. The heme pocket of ferrous heme-HO has the same conformation as that of the previously determined ferric form, but no ligand is visible on the distal side of the ferrous heme. Fe[bond]CO and Fe[bond]CN(-) are tilted, whereas the Fe[bond]NO is bent. The structure of heme[bond]HO bound to NO is identical to that bound to N(3)(-), which is also bent as in the case of O(2). Notably, in the CO- and CN(-)-bound forms, the heme and its ligands shift toward the alpha-meso carbon, and the distal F-helix shifts in the opposite direction. These shifts allow CO or CN(-) to bind in a tilted fashion without a collision between the distal ligand and Gly139 O and cause disruption of one salt bridge between the heme and basic residue. The structural identity of the ferrous and ferric states of heme[bond]HO indicates that these shifts are not produced on reduction of heme iron. Neither such conformational changes nor a heme shift occurs on NO or N(3)(-) binding. Heme[bond]HO therefore recognizes CO and O(2) by their binding geometries. The marked reduction in the ratio of affinities of CO to O(2) for heme[bond]HO achieved by an increase in O(2) affinity [Migita, C. T., Matera, K. M., Ikeda-Saito, M., Olson, J. S., Fujii, H., Yoshimura, T., Zhou, H., and Yoshida, T. (1998) J. Biol. Chem. 273, 945-949] is explained by hydrogen bonding and polar interactions that are favorable for O(2) binding, as well as by characteristic structural changes in the CO-bound form.  相似文献   

17.
Heme-regulated phosphodiesterase from Escherichia coli (Ec DOS) is a gas-sensor enzyme that hydrolyzes cyclic dinucleotide-GMP, and it is activated by O(2) or CO binding to the Fe(II) heme. In contrast to other well known heme-regulated gas-sensor enzymes or proteins, Ec DOS is not specific for a single gas ligand. Because Arg(97) in the heme distal side in Ec DOS interacts with the O(2) molecule and Met(95) serves as the axial ligand on the distal side of the Fe(II) heme-bound PAS domain of Ec DOS, we explored the effect of mutating these residues on the activity and gas specificity of Ec DOS. We found that R97A, R97I, and R97E mutations do not significantly affect regulation of the phosphodiesterase activities of the Fe(II)-CO and Fe(II)-NO complexes. The phosphodiesterase activities of the Fe(II)-O(2) complexes of the mutants could not be detected due to rapid autoxidation and/or low affinity for O(2). In contrast, the activities even of the gas-free M95A and M95L mutants were similar to that of the gas-activated wild-type enzyme. Interestingly, the activity of the M95H mutant was partially activated by O(2), CO, and NO. Spectroscopic analysis indicated that the Fe(II) heme is in the 5-coordinated high-spin state in the M95A and M95L mutants but that in the M95H mutant, like wild-type Ec DOS, it is in the 6-coordinated low-spin state. These results suggest that Met(95) coordination to the Fe(II) heme is critical for locking the system and that global structural changes around Met(95) caused by the binding of the external ligands or mutations at Met(95) releases the catalytic lock and activates catalysis.  相似文献   

18.
The iron ligand, Met80, of yeast iso-1-cytochrome c has been mutated to residues that are unable to bind to the iron. The resultant proteins, Met80Ala, Ser, Asp, Glu, have been expressed and purified. All mutant proteins exhibit well defined pH dependent spectral transitions that report the binding, at high pH, of an intrinsic ligand (probably the nitrogen of an epsilon-NH(2) of a lysine) that drives the heme low-spin. The pK values are mutant dependent. All the mutant proteins bind extrinsic ligands, such as CO, in their ferrous states and we report the apparent quantum yield (phi) for CO photo-dissociation. The values of phi range from 0.004 for Met80Ala to 0.04 for Met80Asp. We also report values for the rate constant for binding the intrinsic lysine residue. The values for this constant, for phi and for the pK values are discussed in terms of the rigidity of the cytochrome structure. We also show that the mutant proteins bind with high affinity to cytochrome c oxidase, both in the ferric and ferrous states. The potential of these proteins to act as light activated electron donors for the study of electron transfer is discussed.  相似文献   

19.
Resonance Raman spectroscopy and step-scan Fourier transform infrared (FTIR) spectroscopy have been used to identify the ligation state of ferrous heme iron for the H93G proximal cavity mutant of myoglobin in the absence of exogenous ligand on the proximal side. Preparation of the H93G mutant of myoglobin has been previously reported for a variety of axial ligands to the heme iron (e.g., substituted pyridines and imidazoles) [DePillis, G., Decatur, S. M., Barrick, D., and Boxer, S. G. (1994) J. Am. Chem. Soc. 116, 6981-6982]. The present study examines the ligation states of heme in preparations of the H93G myoglobin with no exogenous ligand. In the deoxy form of H93G, resonance Raman spectroscopic evidence shows water to be the axial (fifth) ligand to the deoxy heme iron. Analysis of the infrared C-O and Raman Fe-C stretching frequencies for the CO adduct indicates that it is six-coordinate with a histidine trans ligand. Following photolysis of CO, a time-dependent change in ligation is evident in both step-scan FTIR and saturation resonance Raman spectra, leading to the conclusion that a conformationally driven ligand switch exists in the H93G protein. In the absence of exogenous nitrogenous ligands, the CO trans effect stabilizes endogenous histidine ligation, while conformational strain favors the dissociation of histidine following photolysis of CO. The replacement of histidine by water in the five-coordinate complex is estimated to occur in < 5 micros. The results demonstrate that the H93G myoglobin cavity mutant has potential utility as a model system for studying the conformational energetics of ligand switching in heme proteins such as those observed in nitrite reductase, guanylyl cyclase, and possibly cytochrome c oxidase.  相似文献   

20.
Type 1 non-symbiotic rice hemoglobin (rHb1) shows bis-histidyl heme hexacoordination and is capable of binding diatomic ligands reversibly. The biological function is as yet unclear, but the high oxygen affinity makes it unlikely to be involved in oxygen transport. In order to gain insight into possible physiological roles, we have studied CO rebinding kinetics after laser flash photolysis of rHb1 in solution and encapsulated in silica gel. CO rebinding to wt rHb1 in solution occurs through a fast geminate phase with no sign of rebinding from internal docking sites. Encapsulation in silica gel enhances migration to internal cavities. Site-directed mutagenesis of FB10, a residue known to have a key role in the regulation of hexacoordination and ligand affinity, resulted in substantial effects on the rebinding kinetics, partly inhibiting ligand exit to the solvent, enhancing geminate rebinding and enabling ligand migration within the internal cavities. The mutation of HE7, one of the histidyl residues involved in the hexacoordination, prevents hexacoordination, as expected, but also exposes ligand migration through a complex system of cavities. This article is part of a Special Issue entitled: Protein Dynamics: Experimental and Computational Approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号