首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
安全、有效、具有靶向性的病毒载体是基因治疗药物在临床上得以应用的关键。AAV是微小病毒科的一种,它能以其低的免疫原性及广泛的宿主性对人及灵长类进行感染,并且经过改造后的AAV病毒能更有效的靶向性特定组织及肿瘤细胞。重点对AAV病毒载体的衣壳蛋白基因工程修饰、转录调控修饰和转录后microRNA干扰表达修饰及衣壳蛋白化学修饰靶向机理,以及改造方法进行介绍。修饰后的AAV能改善其感染引起的性免疫反应、转染效率和肿瘤靶向性。  相似文献   

2.
核心蛋白聚糖(decorin, DCN)是广泛存在于细胞基质中的一种富含亮氨酸的蛋白多糖, 属于蛋白聚糖家族中的小分子类. DCN可作为多种细胞因子的配体, 发挥多种生物学功能. DCN在一些肿瘤组织中高水平表达,调控恶性肿瘤的生长和迁移. 腺相关病毒(AAV)是肿瘤基因治疗中常用的基因工程载体, 利用重组技术可以实现对病毒衣壳蛋白的改造, 使其感染具有靶向性. 而针对DCN高表达细胞的转导可能成为肿瘤基因治疗应用中定向导入治疗基因的有效策略. 本研究在对多种DCN结合蛋白序列保守区的分析基础上, 筛选出具有较高活性的DCN结合功能域(DB1), 并将其融合至AAV衣壳蛋白VP2编码序列的N端; 继而利用AAV的嵌合包装技术, 成功制备了衣壳展示DB1表位的重组AAV. 在过表达DCN细胞的感染实验中, 该病毒表现出针对DCN较强的靶向性. 本研究所制备的DCN靶向性腺相关病毒不仅为肿瘤治疗的应用提供了一种新型载体, 同时可作为一类特殊的基因导入工具为研究DCN在肿瘤发生发展中的作用提供帮助.  相似文献   

3.
重组腺相关病毒:很有潜力的基因治疗载体   总被引:4,自引:0,他引:4  
腺相关病毒(AAV)是细小病毒家族的一员,为无包膜的线性单链DNA病毒.由于AAV具有长期潜伏于人体而不具有任何明显致病性等优点,人们对AAV作为一种理想的基因治疗载体给予了很大期望.但是,近来发现,这类载体在应用上有许多明显的缺陷,包括某些细胞膜上病毒受体数量极少,重组AAV载体位点特异性整合不足,AAV衣壳成分和转基因产物引起宿主的免疫反应等等.这些缺陷促使人们加大对AAV生物学特性和转染过程的研究,从而更好地对AAV载体进行改进,使新一代重组AAV载体具备基因治疗所必需的安全性、高效性和靶向性,以期更广泛地应用于临床.  相似文献   

4.
腺相关病毒(AAV)是细小病毒家族一员,为无包膜的线形单链DNA病毒。由于AAV有长期潜伏于人体而不具有任何致病性等优点,人们对AAV作为基因治疗载体,基因打靶载体等方面的应用给予了很大的希望。AAV载体的安全性能已经用于帕金森病和囊性纤维病一期的治疗。目前通过不断的发展、改造病毒载体的基因结构,扩大其载体容量,提高病毒产率和转染效率,以使腺相关病毒载体更加符合实际需要。  相似文献   

5.
张丹  邱飞  刁勇 《病毒学报》2013,(5):566-572
重组腺相关病毒(Recombinant adenovirus-associated virus,rAAV)载体源于腺相关病毒(Adeno-associated virus,AAV),以其无致病性、低免疫原性、可定点整合及在宿主细胞内长期表达等优势,广泛应用于肿瘤和遗传疾病等基因治疗研究,被视为最有前途的基因治疗载体之一。但是人体内广泛存在AAV中和抗体,以及rAAV对体内特定组织或细胞的靶向性欠理想,限制了其在临床上的应用。经化学修饰的rAAV可以抵御血清中和抗体,提高转导靶向性,还可实现rAAV体内动态监测,这为解决当前rAAV载体的问题提供了新的思路和方法。本文对化学修饰的rAAV展开系统阐述,并对其未来发展趋势作出展望。  相似文献   

6.
腺相关病毒(adeno-associated virus,AAV)本身具有抗肿瘤活性,以其为基础构建的重组腺相关病毒(rAAV)作为肿瘤基因治疗载体已应用于临床试验研究。与其他的药物一样,单一的AAV基因药物,可能无法对肿瘤这一多基因、多步骤的复杂疾病发挥有效的治疗作用。国内外实验研究发现,多种化疗药物和放疗手段,不但可以提高rAAV载体的基因表达效率,也能促进AAV病毒本身的复制;反过来,AAV可以提高肿瘤细胞对放化疗的敏感性。联合AAV与其他的肿瘤治疗策略将有助于优化肿瘤治疗效果。  相似文献   

7.
腺相关病毒(AAV)作为栽体进行基因治疗已经越来越受人们的青睐,其安全性在帕金森病、囊性纤维病和视网膜疾病等单基因突变疾病临床治疗中得到证明.利用AAV栽体进行临床治疗的应用在逐渐增多,提高AAV靶向性和转染效率是人们期盼解决的一道难题.而目前对AAV衣壳蛋白基因工程的修饰,可以明显提高其转导效率和靶向性,一定程度上扫除了其广泛应用AAV的障碍.阐述重组AAV( rAAV)衣壳蛋白在基因工程修饰方面的研究进展及其对基因治疗应用前景的综述.  相似文献   

8.
杜氏肌营养不良症(Duchenne muscular dystrophy, DMD)是一种由抗肌萎缩蛋白(dystrophin)编码基因突变引起的进行性肌肉萎缩疾病,机体无法产生正常功能的dystrophin,最后由呼吸肌或心肌衰竭引发成年早期死亡。全身系统性基因治疗是最大程度治疗DMD的最有效方法。腺相关病毒(adeno-associated virus vector, AAV)是当前极具应用前景的基因治疗载体,在多种遗传性疾病的临床治疗中取得了前所未有的成功。然而,针对DMD的AAV载体基因治疗仍面临巨大挑战,包括无法容纳dystrophin全长编码序列,载体的肌肉靶向性不足且大量滞留在肝脏,AAV在体内大幅降解严重降低转导效率,机体对AAV衣壳蛋白产生免疫反应,AAV规模化制备的实施难度,以及安全性风险等。AAV载体优化旨在利用基因工程技术改变其相关特性以定制适用于DMD基因治疗的最佳载体。本文综述了AAV载体优化的方向及策略,以期跨越DMD基因治疗的障碍。  相似文献   

9.
肿瘤靶向性病毒作为一种特殊的肿瘤治疗药物和基因治疗载体近年来已得到长足发展,许多高效、靶向性病毒载体已被相继研究开发,但仍不能满足临床上肿瘤靶向治疗的需要,如何将这些靶向病毒准确而高效地运输到肿瘤病变部位仍然未得到充分解决.细胞因子诱导杀伤细胞(cytokine-inducedkillercells,CIK)作为肿瘤的细胞治疗方法之一已成功地在临床上得到了广泛应用.最近科学家使用CIK细胞作为病毒运载工具,成功地将病毒运载到肿瘤组织部位并显示出高效的抗肿瘤作用,该方法为病毒运输定位于肿瘤病变部位找到了突破口,实验资料显示其具有潜在的应用价值.  相似文献   

10.
安全、有效、具有靶向性的病毒载体是基因治疗药物在临床上得以应用的关键。microRNA是一类单链、内源性的转录后调控小分子,它的发现为开发具有靶向性调控能力的病毒载体提供了新的研究方法。以下在介绍microRNA调节病毒载体靶向性原理的基础上,着重介绍microRNA在清除复制能力病毒的污染、消除转基因特异性免疫、增强肿瘤靶向性基因治疗、开发活体疫苗等领域的应用。  相似文献   

11.
Adeno-associated virus (AAV) vectors can transduce cells by several mechanisms, including (i) gene addition by chromosomal integration or episomal transgene expression or (ii) gene targeting by modification of homologous chromosomal sequences. The latter process can be used to correct a variety of mutations in chromosomal genes with high fidelity and specificity. In this study, we used retroviral vectors to introduce mutant alkaline phosphatase reporter genes into normal human cells and subsequently corrected these mutations with AAV gene targeting vectors. We find that increasing the length of homology between the AAV vector and the target locus improves gene correction rates, as does positioning the mutation to be corrected in the center of the AAV vector genome. AAV-mediated gene targeting increases with time and multiplicity of infection, similar to AAV-mediated gene addition. However, in contrast to gene addition, genotoxic stress did not affect gene targeting rates, suggesting that different cellular factors are involved. In the course of these studies, we found that (i) vector genomes less than half of wild-type size could be packaged as monomers or dimers and (ii) packaged dimers consist of inverted repeats with covalently closed hairpins at either end. These studies should prove helpful in designing AAV gene targeting vectors for basic research or gene therapy.  相似文献   

12.
Activation of T cells to the capsid of adeno-associated virus (AAV) serotype 2 vectors has been implicated in liver toxicity in a recent human gene therapy trial of hemophilia B. To further investigate this kind of toxicity, we evaluated T-cell responses to AAV capsids after intramuscular injection of vectors into mice and nonhuman primates. High levels of T cells specific to capsids of vectors based on AAV2 and a phylogenetically related AAV variant were detected. Vectors from other AAV clades such as AAV8 (ref. 3), however, did not lead to activation of capsid-specific T cells. Through the generation of AAV2-AAV8 hybrids and the creation of site-directed mutations, we mapped the domain that directs the activation of T cells to the RXXR motif on VP3, which was previously shown to confer binding of the virion to heparan sulfate proteoglycan (HSPG). Evaluation of natural and engineered AAV variants showed direct correlations between heparin binding, uptake into human dendritic cells (DCs) and activation of capsid-specific T cells. The role of heparin binding in the activation of CD8(+) T cells may be useful in modulating the immunogenicity of antigens and improving the safety profile of existing AAV vectors for gene therapy.  相似文献   

13.
Ozawa K 《Uirusu》2007,57(1):47-55
AAV (adeno-associated virus) vectors are considered to be promising gene-delivery vehicles for gene therapy, because they are derived from non-pathogenic virus, efficiently transduce non-dividing cells, and cause long-term gene expression. Appropriate AAV serotypes are utilized depending on the type of target cells. Among various neurological disorders, Parkinson's disease (PD) is one of the most promising candidates of gene therapy. PD is a progressive neurodegenerative disorder that predominantly affects dopaminergic neurons in the substantia nigra. One of the major approaches to gene therapy of PD is the intrastriatal expression of dopamine (DA)-synthesizing enzyme genes. As for the initial step of clinical application, AAV vector-mediated AADC (aromatic L-amino acid decarboxylase; the enzyme converting L-DOPA to DA) gene transfer in combination with oral administration of L-DOPA would be appropriate, since DA production can be regulated by adjusting the dose of L-DOPA. Second, intramuscular injection of AAV vectors is appropriate to protein-supplement gene therapy. Monogenic diseases such as hemophilia and Fabry disease are suitable candidates. Regarding cancer gene therapy, AAV vectors may be utilized to inhibit tumor angiogenesis, metastasis, and invasion. When long-term transgene expression in stem cells is needed, a therapeutic gene should be introduced with a minimal risk of insertional mutagenesis. To this end, site-specific integration into the AAVS1 locus on the chromosome 19 (19q13.4) by using the integration machinery of AAV would be particularly valuable.  相似文献   

14.
We have developed a system for the targeted delivery of adeno-associated virus (AAV) vectors. Targeting is achieved via a bispecific F(ab')2 antibody that mediates a novel interaction between the AAV vector and a specific cell surface receptor expressed on human megakaryocytes. Targeted AAV vectors were able to transduce megakaryocyte cell lines, DAMI and MO7e, which were nonpermissive for normal AAV infection, 70-fold above background and at levels equivalent to permissive K562 cells. Transduction was shown to occur through the specific interaction of the AAV vector-bispecific F(ab')2 complex and cell-associated targeting receptor. Importantly, targeting appeared both selective and restrictive as the endogenous tropism of the AAV vector was significantly reduced. Binding and internalization through the alternative receptor did not alter subsequent steps (escape from endosomes, migration to nucleus, or uncoating) required to successfully transduce target cells. These results demonstrate that AAV vectors can be targeted to a specific cell population and that transduction can be achieved by circumventing the normal virus receptor.  相似文献   

15.
Characterizing the molecular diversity of the cell surface is critical for targeting gene therapy. Cell type-specific binding ligands can be used to target gene therapy vectors. However, targeting systems in which optimum eukaryotic vectors can be selected on the cells of interest are not available. Here, we introduce and validate a random adeno-associated virus (AAV) peptide library in which each virus particle displays a random peptide at the capsid surface. This library was generated in a three-step system that ensures encoding of displayed peptides by the packaged DNA. As proof-of-concept, we screened AAV-libraries on human coronary artery endothelial cells. We observed selection of particular peptide motifs. The selected peptides enhanced transduction in coronary endothelial cells but not in control nonendothelial cells. This vector targeting strategy has advantages over other combinatorial approaches such as phage display because selection occurs within the context of the capsid and may have a broad range of applications in biotechnology and medicine.  相似文献   

16.
The ability of adeno-associated virus serotype 1 to 8 (AAV1 to AAV8) vectors expressing the human immunodeficiency virus type 1 (HIV-1) Env gp160 (AAV-HIV) to induce an immune response was evaluated in BALB/c mice. The AAV5 vector showed a higher tropism for both mouse and human dendritic cells (DCs) than did the AAV2 vector, whereas other AAV serotype vectors transduced DCs only poorly. AAV1, AAV5, AAV7, and AAV8 were more highly expressed in muscle cells than AAV2. An immunogenicity study of AAV serotypes indicates that AAV1, AAV5, AAV7, and AAV8 vectors expressing the Env gp160 gene induced higher HIV-specific humoral and cell-mediated immune responses than the AAV2 vector did, with the AAV5 vector producing the best responses. Furthermore, mice injected with DCs that had been transduced ex vivo with an AAV5 vector expressing the gp160 gene elicited higher HIV-specific cell-mediated immune responses than did DCs transduced with AAV1 and AAV2 vectors. We also found that AAV vectors produced by HEK293 cells and insect cells elicit similar levels of antigen-specific immune responses. These results demonstrate that the immunogenicity of AAV vectors depends on their tropism for both antigen-presenting cells (such as DCs) and non-antigen-presenting cells (such as muscular cells) and that AAV5 is a better vector than other AAV serotypes. These results may aid in the development of AAV-based vaccine and gene therapy.  相似文献   

17.
Scalable and efficient production of high-quality recombinant adeno-associated virus (rAAV) for gene therapy remains a challenge despite recent clinical successes. We developed a new strategy for scalable and efficient rAAV production by sequestering the AAV helper genes and the rAAV vector DNA in two different subcellular compartments, made possible by using cytoplasmic vaccinia virus as a carrier for the AAV helper genes. For the first time, the contamination of replication-competent AAV particles (rcAAV) can be completely eliminated in theory by avoiding ubiquitous nonhomologous recombination. Vector DNA can be integrated into the host genomes or delivered by a nuclear targeting vector such as adenovirus. In suspension HeLa cells, the achieved vector yield per cell is similar to that from traditional triple-plasmid transfection method. The rcAAV contamination was undetectable at the limit of our assay. Furthermore, this new concept can be used not only for production of rAAV, but also for other DNA vectors.  相似文献   

18.
BACKGROUND: Gene therapy is an attractive new approach for the treatment of cancer. Therefore, the development of efficient vector systems is of crucial importance in this field. Different adeno-associated virus (AAV) serotypes have been characterized so far, which show considerable differences in tissue tropism. Consequently, we aimed to characterize the most efficient serotype for this application. METHODS: To exclude all influences other than those provided by the capsid, all serotypes contained the same transgene cassette flanked by the AAV2 inverted terminal repeats. We systematically compared these vectors for efficiency in human cancer cell directed gene transfer. In order to identify limiting steps, the influence of second-strand synthesis and proteasomal degradation of AAV in a poorly transducible cell line were examined. RESULTS: AAV2 was the most efficient serotype in all solid tumor cells and primary melanoma cells with transduction rates up to 98 +/- 0.3%. Transduction above 70% could be reached with serotypes 1 (in cervical and prostate carcinoma) and 3 (in cervical, breast, prostate and colon carcinoma) using 1000 genomic particles per cell. In the colon carcinoma cell line HT-29 proteasomal degradation limited AAV1-AAV4-mediated gene transfer. Moreover, inefficient second-strand synthesis prevents AAV2-mediated transgene expression in this cell line. CONCLUSIONS: Recent advances in AAV-vector technology suggest that AAV-based vectors can be used for cancer gene therapy. Our comparative analysis revealed that, although AAV2 is the most promising candidate for such an application, serotypes 1 and 3 are valid alternatives. Furthermore, the use of self-complementary AAV vectors and proteasome inhibitors significantly improves cancer cell transduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号