首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The concept of chordates arose from the alliance between embryology and evolution in the second half of the nineteenth century, as a result of a theoretical elaboration on Kowalevsky’s discoveries about some fundamental similarities between the ontogeny of the lancelet, a putative primitive fish, and that of ascidians, then classified as molluscs. Carrying out his embryological studies in the light of Darwin’s theory and von Baer’s account of the germ layers, Kowalevsky was influenced by the German tradition of idealistic morphology that was concerned with transformations driven by laws of form, rather than with a gradual evolution occurring by means of variation, selection and adaptation. In agreement with this tradition, Kowalevsky interpreted the vertebrate-like structures of the ascidian larva according to von Kölliker’s model of heterogeneous generation. Then, he asserted the homology of the germ layers and their derivatives in different types of animals and suggested a common descent of annelids and vertebrates, in agreement with Saint-Hilaire’s hypothesis of the unity of composition of body plans, but in contrast with Haeckel’s idea of the Chordonia (chordates). In The Descent of Man Darwin quoted Kowalevsky’s discoveries, but accepted Haeckel’s interpretation of the ascidian embryology within the frame of a monophyletic tree of life that was produced by the fundamental biogenetic law. Joining embryology to evolution in the light of idealistic morphology, the biogenetic law turned out to be instrumental in bringing forth different evolutionary hypotheses: it was used by Haeckel and Darwin to link vertebrates to invertebrates by means of the concept of chordates, and by Kowalevsky to corroborate the annelid theory of the origin of vertebrates. Yet, there was still another interpretation of Kowalevsky’s discoveries. As an adherent to empiricism and to Cuvier’s theory of types, von Baer asserted that these discoveries did not prove convincingly a dorsal position of the nervous system in the ascidian tadpole larva; hence, they could not support a homology between different animal types suggesting a kinship between ascidians and vertebrates.  相似文献   

2.
Haeckel created much of our current vocabulary in evolutionary biology, such as the term phylogeny, which is currently used to designate trees. Assuming that Haeckel gave the same meaning to this term, one often reproduces Haeckel's trees as the first illustrations of phylogenetic trees. A detailed analysis of Haeckel's own evolutionary vocabulary and theory revealed that Haeckel's trees were genealogical trees and that Haeckel's phylogeny was a morphological concept. However, phylogeny was actually the core of Haeckel's tree reconstruction, and understanding the exact meaning Haeckel gave to phylogeny is crucial to understanding the information Haeckel wanted to convey in his famous trees. Haeckel's phylogeny was a linear series of main morphological stages along the line of descent of a given species. The phylogeny of a single species would provide a trunk around which lateral branches were added as mere ornament; the phylogeny selected for drawing a tree of a given group was considered the most complete line of progress from lower to higher forms of this group, such as the phylogeny of Man for the genealogical tree of Vertebrates. Haeckel's phylogeny was mainly inspired by the idea of the scala naturae, or scale of being. Therefore, Haeckel's genealogical trees, which were only branched on the surface, mainly represented the old idea of scale of being. Even though Haeckel decided to draw genealogical trees after reading On the Origin of Species and was called the German Darwin, he did not draw Darwinian branching diagrams. Although Haeckel always saw Lamarck, Goethe, and Darwin as the three fathers of the theory of evolution, he was mainly influenced by Lamarck and Goethe in his approach to tree reconstruction.  相似文献   

3.
German biologist Ernst Haeckel (1834–1919) is often considered the most renowned Darwinian in his country since, as early as 1862, he declared that he accepted the conclusions Darwin had reached three years before in On the Origin of Species, and afterwards, he continuously proclaimed himself a supporter of the English naturalist and championed the evolutionary theory. Nevertheless, if we examine carefully his books, in particular his General Morphology (1866), we can see that he carries on a tradition very far from Darwin's thoughts. In spite of his acceptance of the idea of natural selection, that he establishes as an argument for materialism, he adopts, indeed, a conception of evolution that is, in some respects, rather close to Lamarck's views. He is, thus, a good example of the ambiguities of the reception of Darwinism in Germany in the second part of the 19th century. To cite this article: S. Schmitt, C. R. Biologies 332 (2009).  相似文献   

4.
It is well known that the contribution of Alfred Russell Wallace (1823–1913) to the development of the “Darwinian” principle of natural selection has often been neglected. Here we focus on how the three anniversaries to celebrate the origin of the Darwin–Wallace theory in Germany in 1909, in 1959 in the divided country, as well as in 2009, have represented Charles Robert Darwin’s and Alfred Russell Wallace’s contributions. We have analyzed books and proceedings volumes related to these anniversaries, and the main result is that Wallace was almost always ignored, or only mentioned in passing. In 1909, Ernst Haeckel gave a talk in Jena, later published under the title The worldview of Darwin and Lamarck (Das Weltbild von Darwin und Lamarck), but not as the Darwin–Wallace concept. Haeckel mentions Wallace only once. In two important proceedings volumes from the 1959 anniversaries, Wallace was ignored. The only fair treatment of Wallace is given in another book, a collection of documents edited by Gerhard Heberer, for which the author selected nine key documents and reprinted excerpts (1959). Three of them were articles by Wallace, including the Sarawak- and Ternate-papers of 1855 and 1858, respectively. An analysis of the dominant themes during the celebrations of 2009 shows that none of the six topics had much to do with Wallace and his work. Thus, the tendency to exclude Alfred Russell Wallace is an international phenomenon, and largely attributable to the “Darwin industry”.  相似文献   

5.
Conclusion Publication of the Vestiges and the rather primitive theory of evolution it expounded thus played a significant role in the careers of Darwin and Wallace. In addition, in spite of his poor opinion of the Vestiges, it presented Huxley with a convenient topic for critical discussion and the opportunity to focus more attention on the subject of evolution. The dynamic interactions among these leading figures of nineteenth-century natural science helped spur the development of more sophisticated models of evolution.Darwin had a proper appreciation of Chambers's contribution to evolutionary thought, although he fully recognized the shortcomings of this work. He understood the importance of allowing fresh ideas about organic change to be ventilated. However, he was primarily concerned with his own theory and viewed all developments in evolutionary biology from this perspective. If he did not give full consideration to Chambers and his book early on, it was due mainly to his feeling that the concepts in the Vestiges were very different from his own; he was therefore reluctant to embrace them as the forerunners of his own theory. As a scholar, he was also troubled by the scientific errors in the book. However, the record demonstrates that he attempted to make amends for any oversight on his part. His generous letter to Chambers's daughter, and his gracious treatment of Chambers during the brief time the latter lived in London, are ample proof of that.The attacks of Huxley, Sedgwick, and other prominent natural historians and geologists at the time, the problems inherent in Chambers's evolutionary theory, and the publication of the Origin, are the major reasons why the Vestiges became a neglected work. Nevertheless, Chambers's contribution will always stand out because, together with those of other late eighteenth- and early nineteenth-century predecessors of Darwin, it laid the foundations of modern evolutionary thought and, more importantly, helped prepare the scientific community for the more fully developed ideas of Darwin and Wallace.  相似文献   

6.
This paper investigates the relationship between the eminent 19th-century naturalists Charles Darwin and Carl Vogt. On two separate occasions, Vogt asked Darwin for permission to translate some of the latter’s books into German, and in both cases Darwin refused. It has generally been assumed that Darwin turned down Vogt as a translator because of the latter’s reputation as a radical libertine who was extremely outspoken in his defence of scientific materialism and atheism. However, this explanation does not fit the facts, since, on closer investigation, Darwin not only gave serious consideration to engaging Vogt as the German translator of two of his books, albeit ultimately rejecting him, but he also collaborated with Vogt on the French editions of his works. In this paper we argue that this was not because Darwin was unaware of Vogt’s personality and blunt writing style; rather, Darwin seems to have decided that the benefits he would gain from their association would clearly outweigh the risk of offending some of his readers: in working with Vogt, who was not only a knowledgeable scientist but also an avowed adherent of Darwinism, Darwin could be assured of the scientific quality of the translation and of an edition that would not distort his central concepts – both of which were by no means matters of course in 19th-century translations of scientific works.  相似文献   

7.
The nineteenth century theologian, author and poet Charles Kingsley was a notable populariser of Darwinian evolution. He championed Darwin’s cause and that of honesty in science for more than a decade from 1859 to 1871. Kingsley’s interpretation of evolution shaped his theology, his politics and his views on race. The relationship between men and apes set the context for Kingsley’s consideration of these issues. Having defended Darwin for a decade in 1871 Kingsley was dismayed to read Darwin’s account of the evolution of morals in Descent of Man. He subsequently distanced himself from Darwin’s conclusions even though he remained an ardent evolutionist until his death in 1875.  相似文献   

8.
Darwin’s first two, relatively complete, explicit articulations of his theorizing on evolution were his Essay of 1844 and On the Origin of Species published in 1859. A comparative analysis concludes that they espoused radically different theories despite exhibiting a continuity of strategy, much common structure and the same key idea. Both were theories of evolution by means of natural selection. In 1844, organic adaptation was confined to occasional intervals initiated and controlled by de-stabilization events. The modified descendants rebalanced the particular “plant and animal forms … unsettled by some alteration in their circumstances.” But by 1859, organic adaptation occurred continuously, potentially modifying the descendants of all organisms. Even natural selection, the persistent core of Darwin’s theorizing, does not prove to be a significant basis for theory similarity. Consequently, Darwin’s Origin theory cannot reasonably be considered as a mature version of the Essay. It is not a modification based on adjustments, further justifications and the integration of a Principle of Divergence. The Origin announced a new “scientific paradigm” while the Essay did little more than seemingly misconfigure the operation of a novel mechanism to extend varieties beyond their accepted bounds, and into the realm of possible new species. Two other collections of Darwin’s theorizing are briefly considered: his extensive notes of the late 1830s and his contributions to the famous meeting of 1 July 1858. For very different reasons, neither constitutes a challenge to the basis for this comparative study. It is concluded that, in addition to the much-debated social pressures, an unacknowledged further reason why Darwin did not publish his theorizing until 1859, could have been down to his perceptive technical judgement: wisely, he held back from rushing to publish demonstrably flawed theorizing.  相似文献   

9.
Darwin maintained that the principles of natural selection and divergence were the “keystones” of his theory. He introduced the principle of divergence to explain a fundamental feature of living nature: that organisms cluster into hierarchical groups, so as to be classifiable in the Linnaean taxonomic categories of variety, species, genus, and so on. Darwin’s formulation of the principle of divergence, however, induces many perplexities. In his Autobiography, he claimed that he had neglected the problem of divergence in his Essay of 1844 and only solved it in a flash during a carriage ride in the 1850s; yet he does seem to have stated the problem in the Essay and provided the solution. This initial conundrum sets three questions I wish to pursue in this essay: (1) What is the relationship of the principle of divergence to that of natural selection? Is it independent of selection, derivative of selection, or a type of selection, perhaps comparable to sexual selection? (2) What is the advantage of divergence that the principle implies—that is, why is increased divergence beneficial in the struggle for life? And (3) What led Darwin to believe he had discovered the principle only in the 1850s? The resolution of these questions has implications for Darwin’s other principle, natural selection, and permits us to readjust the common judgment made about Jerry Fodor’s screed against that latter principle.  相似文献   

10.
Klaus Dose 《Bio Systems》1981,13(4):253-258
In 1865/66 E. Haeckel for the first time suggested an evolutionary sequence in order to explain the origin of the first living cell. Haeckel's concept is compared with modern theories of the origin of life. It is evident that Haeckel has not as yet received the credit that he deserves for his evolutionary concept.  相似文献   

11.
Sir Joseph Dalton Hooker (1817–1911), friend and scientific confidant of Charles Darwin, lectured in 1866 on ‘Insular floras’ at the Annual Meeting of the British Association for the Advancement of Science. His interest and knowledge of islands had been aroused when he travelled to the Antarctic aboard the Erebus under Sir James Clark Ross from 1839–43. On his return, Darwin passed on to Hooker the botanical collections he had made on the Beagle voyage, including those from the Galapagos. Hooker's conclusions from these and from his own material and experiences were important to Darwin as he developed the ideas that culminated in the publication of the Origin of Species. The 1866 lecture provided a focus for subsequent and informative studies on evolution, and islands continue to provide invaluable natural laboratories for evolutionary biology and genetics. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 96 , 462–481.  相似文献   

12.
In 2009, we are celebrating the 200th anniversary of Charles Darwin and the 150th jubilee of his masterpiece, the Origin of Species. Darwin constructed the first coherent and compelling narrative of biological evolution and thus founded evolutionary biology—and modern biology in general, remembering the famous dictum of Dobzhansky. It is, however, counter-productive, and ultimately, a disservice to Darwin’s legacy, to define modern evolutionary biology as neo-Darwinism. The current picture of evolution, informed by results of comparative genomics and systems biology, is by far more complex than that presented in the Origin of Species, so that Darwinian principles, including natural selection, are incorporated into the evolving new synthesis as important but certainly not all-embracing tenets. This expansion of evolutionary biology does not denigrate Darwin in the least but rather emphasizes the fertility of his ideas.  相似文献   

13.
During 2009, while we were celebrating Charles Darwin and his The origin of species, sadly, little was said about the critical contribution of Alfred Russel Wallace (1823–1913) to the development of the theory of evolution. Like Darwin, he was a truly remarkable nineteenth century intellect and polymath and, according to a recent book by Roy Davies (The Darwin conspiracy: origins of a scientific crime), he has a stronger claim to the Theory of Evolution by Natural Selection than has Darwin. Here we present a critical comparison between the contributions of the two scientists. Sometimes referred to as ‘The other beetle-hunter’ and largely neglected for many decades, Wallace had a far greater experience of collecting and investigating animals and plants from their native habitats than had Darwin. He was furthermore much more than a pioneer biogeographer and evolutionary theorist, and also made contributions to anthropology, ethnography, geology, land reform and social issues. However, being a more modest, self-deprecating man than Darwin, and lacking the latter’s establishment connections, Wallace’s contribution to the theory of evolution was not given the recognition it deserved and he was undoubtedly shabbily treated at the time. It is time that Wallace’s relationship with Darwin is reconsidered in preparation for 2013, the centenary of Wallace’s death, and he should be recognized as at least an equal in the Wallace-Darwin theory of evolution.  相似文献   

14.
15.
16.
Alfred Russel Wallace (1823–1913) and Charles Darwin (1809–1882) are honored as the founders of modern evolutionary biology. Accordingly, much attention has focused on their relationship, from their independent development of the principle of natural selection to the receipt by Darwin of Wallace’s essay from Ternate in the spring of 1858, and the subsequent reading of the Wallace and Darwin papers at the Linnean Society on 1 July 1858. In the events of 1858 Wallace and Darwin are typically seen as central players, with Darwin’s friends Charles Lyell (1797–1875) and Joseph Dalton Hooker (1817–1911) playing supporting roles. This narrative has resulted in an under-appreciation of a more central role for Charles Lyell as both Wallace’s inspiration and foil. The extensive anti-transmutation arguments in Lyell’s landmark Principles of Geology were taken as the definitive statement on the subject. Wallace, in his quest to solve the mystery of species origins, engaged with Lyell’s arguments in his private field notebooks in a way that is concordant with his engagement with Lyell in the 1855 and 1858 papers. I show that Lyell was the object of Wallace’s Sarawak Law and Ternate papers through a consideration of the circumstances that led Wallace to send his Ternate paper to Darwin, together with an analysis of the material that Wallace drew upon from the Principles. In this view Darwin was, ironically, intended for a supporting role in mediating Wallace’s attempted dialog with Lyell.  相似文献   

17.
A critical review of Darwin's publications shows that he did not dissert much about amphibians, in comparison with the other tetrapods. However, in “A Naturalist's Voyage round the World”, Darwin described for the first time several amphibian species and was surprised by their peculiar way of life, terrestrial or euryhaline. These amphibian observations around the world led Darwin to discuss evolutionnary notions, like developmental heterochronies or evolving convergences, and later to illustrate his famous natural selection theory. This is confirmed, for example, by the publication of “On the Origin of Species” where Darwin ironically questioned creation theory, trying to explain the absence of amphibians on oceanic islands. Lamarck also considered amphibians as relevant material to illustrate his theory of acquired character heredity. These historical uses of lissamphibians as evolutionary models have been mostly realized before any amphibian fossil discovery, i.e. out of a palaeontological context.  相似文献   

18.
Why was sexual selection so important to Darwin? And why was it de-emphasized by almost all of Darwin's followers until the second half of the 20th century? These two questions shed light on the complexity of the scientific tradition named “Darwinism”. Darwin's interest in sexual selection was almost as old as his discovery of the principle of natural selection. From the beginning, sexual selection was just another “natural means of selection”, although different from standard “natural selection” in its mechanism. But it took Darwin 30 years to fully develop his theory, from the early notebooks to the 1871 book The Descent of Man, and Selection in Relation to Sex. Although there is a remarkable continuity in his basic ideas about sexual selection, he emphasized increasingly the idea that sexual selection could oppose the action of natural selection and be non adaptive. In time, he also gave more weight to mate choice (especially female choice), giving explicit arguments in favor of psychological notions such as “choice” and “aesthetic sense”. But he also argued that there was no strict demarcation line between natural and sexual selection, a major difficulty of the theory from the beginning. Female choice was the main reason why Alfred Russel Wallace, the co-discoverer of the principle of natural selection, engaged in a major controversy with Darwin about sexual selection. Wallace was suspicious about sexual selection in general, trying to minimize it by all sorts of arguments. And he denied entirely the existence of female choice, because he thought that it was both unnecessary and an anthropomorphic notion. This had something to do with his spiritualist convictions, but also with his conception of natural selection as a sufficient principle for the evolutionary explanation of all biological phenomena (except for the origin of mind). This is why Wallace proposed to redefine Darwinism in a way that excluded Darwin's principle of sexual selection. The main result of the Darwin–Wallace controversy was that most Darwinian biologists avoided the subject of sexual selection until at least the 1950 s, Ronald Fisher being a major exception. This controversy still deserves attention from modern evolutionary biologists, because the modern approach inherits from both Darwin and Wallace. The modern approach tends to present sexual selection as a special aspect of the theory of natural selection, although it also recognizes the big difficulties resulting from the inevitable interaction between these two natural processes of selection. And contra Wallace, it considers mate choice as a major process that deserves a proper evolutionary treatment. The paper's conclusion explains why sexual selection can be taken as a test case for a proper assessment of “Darwinism” as a scientific tradition. Darwin's and Wallace's attitudes towards sexual selection reveal two different interpretations of the principle of natural selection: Wallace's had an environmentalist conception of natural selection, whereas Darwin was primarily sensitive to the element of competition involved in the intimate mechanism of any natural process of selection. Sexual selection, which can lack adaptive significance, reveals this exemplarily.  相似文献   

19.
Ernst Haeckel, who first introduced the term ‘monophyly’ into the biological literature, has in the past been appealed to in adjudication of the modern use of that concept. A contextual analysis of his writings reveals an inconsistent use of the term ‘monophyly’ by Haeckel. Morphological phylogeny was decoupled in Haeckel’s thinking from the evolutionary history of taxa. Monophyly could mean the derivation of one taxon from another, ancestral one, where these taxa could be species or of supraspecific rank. Monophyly could also mean the phylogenetic differentiation of a diversity of organismal ‘forms’ (morphologies) from a common primitive ‘form’ (morphological stage). And finally, monophyly, as also polyphyly, could apply to the origin of specific anatomical structures, in which case the monophyly/polyphyly of anatomical structures needed not to correlate with the monophyly/polyphyly of the taxon characterized by these structures. With respect to the issue of the unity and reality of monophyletic taxa, Haeckel’s writings again are indeterminate as is his stance on the monophyletic origin of life.  相似文献   

20.
Following the publication of the Origin of Species in 1859, many naturalists adopted the idea that living organisms were the historical outcome of gradual transformation of lifeless matter. These views soon merged with the developments of biochemistry and cell biology and led to proposals in which the origin of protoplasm was equated with the origin of life. The heterotrophic origin of life proposed by Oparin and Haldane in the 1920s was part of this tradition, which Oparin enriched by transforming the discussion of the emergence of the first cells into a workable multidisciplinary research program.On the other hand, the scientific trend toward understanding biological phenomena at the molecular level led authors like Troland, Muller, and others to propose that single molecules or viruses represented primordial living systems. The contrast between these opposing views on the origin of life represents not only contrasting views of the nature of life itself, but also major ideological discussions that reached a surprising intensity in the years following Stanley Miller’s seminal result which showed the ease with which organic compounds of biochemical significance could be synthesized under putative primitive conditions. In fact, during the years following the Miller experiment, attempts to understand the origin of life were strongly influenced by research on DNA replication and protein biosynthesis, and, in socio-political terms, by the atmosphere created by Cold War tensions.The catalytic versatility of RNA molecules clearly merits a critical reappraisal of Muller’s viewpoint. However, the discovery of ribozymes does not imply that autocatalytic nucleic acid molecules ready to be used as primordial genes were floating in the primitive oceans, or that the RNA world emerged completely assembled from simple precursors present in the prebiotic soup. The evidence supporting the presence of a wide range of organic molecules on the primitive Earth, including membrane-forming compounds, suggests that the evolution of membrane-bounded molecular systems preceded cellular life on our planet, and that life is the evolutionary outcome of a process, not of a single, fortuitous event.It is generally assumed that early philosophers and naturalists appealed to spontaneous generation to explain the origin of life, but in fact, the possibility of life emerging directly from nonliving matter was seen at first as a nonsexual reproductive mechanism. This changed with the transformist views developed by Erasmus Darwin, Georges Louis Leclerc de Buffon, and, most importantly, by Jean-Baptiste de Lamarck, all of whom invoked spontaneous generation as the mechanism that led to the emergence of life, and not just its reproduction. “Nature, by means of of heat, light, electricity and moisture”, wrote Lamarck in 1809, “forms direct or spontaneous generation at that extremity of each kingdom of living bodies, where the simplest of these bodies are found”.Like his predecessors, Charles Darwin surmised that plants and animals arose naturally from some primordial nonliving matter. As early as 1837 he wrote in his Second Notebook that “the intimate relation of Life with laws of chemical combination, & the universality of latter render spontaneous generation not improbable.” However, Darwin included few statements about the origin of life in his books. He avoided the issue in the Origin of Species, in which he only wrote “… I should infer from analogy that probably all organic beings which have ever lived on this Earth have descended from some one primordial form, into which life was first breathed” (Peretó et al. 2009).Darwin added few remarks on the origin of life his book, and his reluctance surprised many of his friends and followers. In his monograph on the radiolaria, Haeckel wrote “The chief defect of the Darwinian theory is that it throws no light on the origin of the primitive organism—probably a simple cell—from which all the others have descended. When Darwin assumes a special creative act for this first species, he is not consistent, and, I think, not quite sincere …” (Haeckel 1862).Twelve years after the first publication of the Origin of Species, Darwin wrote the now famous letter to his friend Hooker in which the idea of a “warm little pond” was included. Mailed on February 1st, 1871, it stated that “It is often said that all the conditions for the first production of a living organism are now present, which could ever have been present. But if (and Oh! what a big if!) we could conceive in some warm little pond with all sorts of ammonia and phosphoric salts—light, heat, electricity &c. present, that a proteine compound was chemically formed, ready to undergo still more complex changes, at the present day such matter wd be instantly devoured, or absorbed, which would not have been the case before living creatures were formed.” Although Darwin refrained from any further public statements on how life may have appeared, his views established the framework that would lead to a number of attempts to explain the origin of life by introducing principles of historical explanation (Peretó et al. 2009). Here I will describe this history, and how it is guiding current research into the question of life’s origins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号