首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Interactions between plants and root‐associated fungi can affect the assembly, diversity, and relative abundances of tropical plant species. Host–symbiont compatibility and some degree of host specificity are prerequisites for these processes to occur, and these prerequisites may vary with host abundance. However, direct assessments of whether specificity of root‐associated fungi varies with host abundance are lacking. Here, in a diverse tropical forest in Los Tuxtlas, Mexico, we couple DNA metabarcoding with a sampling design that controls for host phylogeny, host age, and habitat variation, to characterize fungal communities associated with the roots of three confamilial pairs of host species that exhibit contrasting (high and low) relative abundances. We uncovered a functionally and phylogenetically diverse fungal community composed of 1,038 OTUs (operational taxonomic units with 97% genetic similarity), only 14 of which exhibited host specificity. Host species was a significant predictor of fungal community composition only for the subset of OTUs composed of putatively pathogenic fungi. We found no significant difference in the number of specialists associating with common versus rare trees, but we found that host abundance was negatively correlated with the diversity of root fungal communities. This latter result was significant for symbiotrophs (mostly arbuscular mycorrhizal fungi) and, to a lesser extent, for pathotrophs (mostly plant pathogens). Thus, root fungal communities differ between common and rare trees, which may impact the strength of conspecific negative density dependence. Further studies from other tropical sites and host lineages are warranted, given the role of root‐associated fungi in biodiversity maintenance.  相似文献   

3.
Root‐associated fungi and host‐specific pathogens are major determinants of species coexistence in forests. Phylogenetically related neighboring trees can strongly affect the fungal community structure of the host plant, which, in turn, will affect the ecological processes. Unfortunately, our understanding of the factors influencing fungal community composition in forests is still limited. In particular, investigation of the relationship between the phytopathogenic fungal community and neighboring trees is incomplete. In the current study, we tested the host specificity of members of the root‐associated fungal community collected from seven tree species and determined the influence of neighboring trees and habitat variation on the composition of the phytopathogenic fungal community of the focal plant in a subtropical evergreen forest. Using high‐throughput sequencing data with respect to the internal transcribed spacer (ITS) region, we characterized the community composition of the root‐associated fungi and found significant differences with respect to fungal groups among the seven tree species. The density of conspecific neighboring trees had a significantly positive influence on the relative abundance of phytopathogens, especially host‐specific pathogens, while the heterospecific neighbor density had a significant negative impact on the species richness of host‐specific pathogens, as well as phytopathogens. Our work provides evidence that the root‐associated phytopathogenic fungi of a host plant depend greatly on the tree neighbors of the host plant.  相似文献   

4.
Kel Cook  D. Lee Taylor 《Biotropica》2023,55(1):268-276
Epiphytes, which grow on other plants for support, make up a large portion of Earth's plant diversity. Like other plants, their surfaces and interiors are colonized by diverse assemblages of fungi that can benefit their hosts by increasing tolerance for abiotic stressors and resistance to disease or harm them as pathogens. Fungal communities associated with epiphytic plants and the processes that structure these communities are poorly known. To address this, we sampled seven epiphytic seedless plant taxa in a Costa Rican rainforest and examined the effects of host identity and microhabitat on external and endophytic fungal communities. We found low host specificity for both external and endophytic fungi and weak differentiation between epiphytic and neighboring epilithic plant hosts. High turnover in fungi within and between hosts and habitats reveals that epiphytic plant-associated fungal communities are highly diverse and suggests that they are structured by stochastic processes.  相似文献   

5.
Membrane bilayers of eukaryotic cells are an amalgam of lipids and proteins that distinguish organelles and compartmentalise cellular functions. The mammalian cell has evolved mechanisms to sense membrane tension or damage and respond as needed. In the case of the plasma membrane and phagosomal membrane, these bilayers act as a barrier to microorganisms and are a conduit by which the host interacts with pathogens, including fungi such as Candida, Cryptococcus, Aspergillus, or Histoplasma species. Due to their size, morphological flexibility, ability to produce long filaments, secrete pathogenicity factors, and their potential to replicate within the phagosome, fungi can assault host membranes in a variety of physical and biochemical ways. In addition, the recent discovery of a fungal pore‐forming peptide toxin further highlights the importance of membrane biology in the outcomes between host and fungal cells. In this review, we discuss the apparent “stretching” of membranes as a sophisticated biological response and the role of vesicular transport in combating membrane stress and damage. We also review the known pathogenicity factors and physical properties of fungal pathogens in the context of host membranes and discuss how this may contribute to pathogenic interactions between fungal and host cells.  相似文献   

6.
Schardl CL  Craven KD 《Molecular ecology》2003,12(11):2861-2873
Fungi (kingdom Mycota) and oomycetes (kingdom Stramenopila, phylum Oomycota) are crucially important in the nutrient cycles of the world. Their interactions with plants sometimes benefit and sometimes act to the detriment of humans. Many fungi establish ecologically vital mutualisms, such as in mycorrhizal fungi that enhance nutrient acquisition, and endophytes that combat insects and other herbivores. Other fungi and many oomycetes are plant pathogens that devastate natural and agricultural populations of plant species. Studies of fungal and oomycete evolution were extraordinarily difficult until the advent of molecular phylogenetics. Over the past decade, researchers applying these new tools to fungi and oomycetes have made astounding new discoveries, among which is the potential for interspecific hybridization. Consequences of hybridization among pathogens include adaptation to new niches such as new host species, and increased or decreased virulence. Hybrid mutualists may also be better adapted to new hosts and can provide greater or more diverse benefits to host plants.  相似文献   

7.
刘登义 《生态学报》1996,16(6):660-663
病原菌在自然植物种群中普遍存在,其对寄主植物的生长发育,对寄主植物种群的大小、结构、动态、遗传和进化等都有重要影响。本文着重论述:1)病原菌对寄主植物个体的影响;2)病原菌对寄主植物种群生物学的影响;3)菌病发生的空间格局;4)病原菌感染的种群模型。  相似文献   

8.
通过体外培养法,研究了药用植物温郁金内生真菌Chaetomium globosum L18对几种常见的植物病原菌的抑菌谱及其拮抗机理。结果表明,Chaetomium globosum L18对多种植物病原真菌和细菌均有不同程度的抑制作用,具有较广的抑菌谱,但对不同植物病原菌的抑制作用具有显著性差异(P<0.05),抑制率最高可达到92.9%;抑菌机制结果显示,竞争作用和重寄生作用是其主要的拮抗机制之一;发酵产物抑制作用测定发现,内生真菌Chaetomium globosum L18能够分泌产生抗菌物质抑制病原菌菌丝的生长和孢子萌发,可引起病原菌菌丝菌丝膨大成串珠状,分枝增多,分枝顶端膨胀后细胞壁破裂,原生质外溢,产生溶菌作用;使分生孢子萌发畸形,萌发率降低。  相似文献   

9.
植物与内生真菌互作的生理与分子机制研究进展   总被引:15,自引:0,他引:15  
袁志林  章初龙  林福呈 《生态学报》2008,28(9):4430-4439
在自然生态系统中,植物组织可作为许多微生物定居的生态位.内生真菌普遍存在于植物组织内,与宿主建立复杂的相互作用(互惠、拮抗和中性之间的相互转化),并且存在不同的传播方式(垂直和水平传播).内生真菌通过多样化途径来增强植物体的营养生理和抗性机能.但这种生理功能的实现有赖于双方精细的调控机制,表明宿主和真菌双方都进化形成特有的分子调控机制来维持这种互惠共生关系.环境因子(如气候、土壤性质等)、宿主种类和生理状态、真菌基因型的变化都将改变互作结果.此外,菌根真菌和真菌病毒等也可能普遍参与植物-内生真菌共生体,形成三重互作体系,最终影响宿主的表型.研究试图从形态、生理和分子水平阐述内生真菌与植物互作的基础.  相似文献   

10.
《Fungal biology》2020,124(11):915-923
Secretome represents a main target for understanding the mechanisms of fungal adaptation. In the present study, we focus on the secretomes of fungi associated with infections in humans and other mammals in order to explore relationships between the diverse morphological and phylogenetic groups. Almost all the mammalian pathogenic fungi analyzed have secretome sizes smaller than 1000 proteins and, secreted proteins comprise between 5% and 10% of the total proteome. As expected, the correlation pattern between the secretome size and the total proteome was similar to that described in previous secretome studies of fungi. With regard to the morphological groups, minimum secretome sizes of less than 250 secreted proteins and low values for the fraction of secreted proteins are shown in mammalian pathogenic fungi with reduced proteomes such as microsporidia, atypical fungi and some species of yeasts and yeast-like fungi (Malassezia). On the other hand, filamentous fungi have significantly more secreted proteins and the highest numbers are present in species of filamentous fungi that also are plant or insect pathogens (Fusarium verticilloides, Fusarium oxysporum and Basidiobolus meristosporus). With respect to phylogeny, there are also variations in secretome size across fungal subphyla: Microsporidia, Taphrinomycotina, Ustilagomycotina and Saccharomycotina contain small secretomes; whereas larger secretomes are found in Agaricomycotina, Pezizomycotina, Mucoromycotina and Entomophthoromycotina. Finally, principal component analysis (PCA) was conducted on the complete secretomes. The PCA results revealed that, in general, secretomes of fungi belonging to the same morphological group or subphyla cluster together. In conclusion, our results point out that in medically important fungi there is a relationship between the secretome and the morphological group or phylogenetic classification.  相似文献   

11.
AM真菌在植物病虫害生物防治中的作用机制   总被引:12,自引:0,他引:12  
罗巧玉  王晓娟  李媛媛  林双双  孙莉  王强  王茜  金樑 《生态学报》2013,33(19):5997-6005
丛枝菌根(Arbuscular Mycorrhizae,AM)真菌是一类广泛分布于土壤生态系统中的有益微生物,能与大约80%的陆生高等植物形成共生体。由土传病原物侵染引起的土传病害被植物病理学界认定为最难防治的病害之一。研究表明,AM真菌能够拮抗由真菌、线虫、细菌等病原体引起的土传性植物病害,诱导宿主植物增强对病虫害的耐/抗病性。当前,利用AM真菌开展病虫害的生物防治已经引起生态学家和植物病理学家的广泛关注。基于此,围绕AM真菌在植物病虫害生物防治中的最新研究进展,从AM真菌改变植物根系形态结构、调节次生代谢产物的合成、改善植物根际微环境、与病原微生物直接竞争入侵位点和营养分配、诱导植株体内抗病防御体系的形成等角度,探究AM真菌在植物病虫害防治中的作用机理,以期为利用AM真菌开展植物病虫害的生物防治提供理论依据,并对本领域未来的发展方向和应用前景进行展望。  相似文献   

12.
? Premise of study: This research seeks to advance understanding of conditions allowing movement of fungal pathogens among hosts. The family Clavicipitaceae contains fungal pathogens exploiting hosts across three kingdoms of life in a pattern that features multiple interkingdom host shifts among plants, animals, and fungi. The tribe Ustilaginoideae potentially represents a third origin of plant pathogenesis, although these species remain understudied. Fungal pathogens that cause ergot are linked morphologically with Clavicipitaceae, but are not yet included in phylogenetic studies. The placement of Ustilaginoideae and ergot pathogens will allow differentiation between the host habitat and host relatedness hypotheses as mechanisms of phylogenetic diversification of Clavicipitaceae. ? Methods: A multigene data set was assembled for Clavicipitaceae to test phylogenetic placement and ancestral character-state reconstructions for Ustilaginoidea virens and U. dichromonae as well as the ergot mycoparasite Cordyceps fratricida. Microscopic morphological observations of sexual and asexual states were also performed. ? Key results: Phylogenetic placement of U. virens and U. dichromonae represents a third acquisition of the plant pathogenic lifestyle in Clavicipitaceae. Cordyceps fratricida was also placed in Clavicipitaceae and recognized as a new genus Tyrannicordyceps. Ancestral character state reconstructions indicate initially infecting hemipteran insect hosts facilitates subsequent changes to a plant pathogenic lifestyle. The ancestor of T. fratricida is inferred to have jumped from grasses to pathogens of grasses. ? Conclusions: The host habitat hypothesis best explains the dynamic evolution of host affiliations seen in Clavicipitaceae and throughout Hypocreales. Co-occurrence in the same habitat has allowed for host shifts from animals to plants, and from plants to fungi.  相似文献   

13.
Vegetable crops are grown worldwide as a source of nutrients and fiber in the human diet. Fungal plant pathogens can cause devastation in these crops under appropriate environmental conditions. Vegetable producers confronted with the challenges of managing fungal pathogens have the opportunity to use fungi and yeasts as biological control agents. Several commercially available products have shown significant disease reduction through various mechanisms to reduce pathogen development and disease. Production of hydrolytic enzymes and antibiotics, competition for plant nutrients and niche colonization, induction of plant host defense mechanisms, and interference with pathogenicity factors in the pathogen are the most important mechanisms. Biotechnological techniques are becoming increasingly valuable to elucidate the mechanisms of action of fungi and yeasts and provide genetic characterization and molecular markers to monitor the spread of these agents.  相似文献   

14.
Plants perceive an assortment of external cues during their life cycle, including abiotic and biotic stressors. Biotic stress from a variety of pathogens, including viruses, oomycetes, fungi, and bacteria, is considered to be a substantial factor hindering plant growth and development. To hijack the host cell's defence machinery, plant pathogens have evolved sophisticated attack strategies mediated by numerous effector proteins. Several studies have indicated that plasmodesmata (PD), symplasmic pores that facilitate cell-to-cell communication between a cell and neighbouring cells, are one of the targets of pathogen effectors. However, in contrast to plant-pathogenic viruses, reports of fungal- and bacterial-encoded effectors that localize to and exploit PD are limited. Surprisingly, a recent study of PD-associated bacterial effectors has shown that a number of bacterial effectors undergo cell-to-cell movement via PD. Here we summarize and highlight recent advances in the study of PD-associated fungal/oomycete/bacterial effectors. We also discuss how pathogen effectors interfere with host defence mechanisms in the context of PD regulation.  相似文献   

15.
A majority of plant species has roots that are colonized by both arbuscular mycorrhizal (AM) and non-mycorrhizal (NM) fungi. The latter group may include plant mutualists, commensals, parasites and pathogens. The co-occurrence of these two broad groups may translate into competition for root volume as well as for plant-derived carbon (C). Here we provide evidence that the relative availability of soil nitrogen (N) and phosphorus (P) (i.e., soil nutrient stoichiometry) controls the competitive balance between these two fungal guilds. A decrease in the soil available N:P ratio resulted in a lower abundance of AM fungi and a corresponding increase in NM fungi. However, when the same fertilization treatments were applied in a soil in which AM fungi were absent, lowering the soil available N:P ratio did not affect NM fungal abundance. Taken collectively, our results suggest that the increase in NM fungal abundance was not a direct response to soil nutrient stoichiometry, but rather a competitive release from AM fungi responding negatively to higher soil P. We briefly discuss the mechanisms that may be responsible for this competitive release.  相似文献   

16.
Plants form mutualistic relationship with a variety of belowground fungal species. Such a mutualistic relationship can enhance plant growth and resistance to pathogens. Yet, we know little about how interactions between functionally diverse groups of fungal mutualists affect plant performance and competition. We experimentally determined the effects of interaction between two functional groups of belowground fungi that form mutualistic relationship with plants, arbuscular mycorrhizal (AM) fungi and Trichoderma, on interspecific competition between pairs of closely related plant species from four different genera. We hypothesized that the combination of two functionally diverse belowground fungal species would allow plants and fungi to partition their symbiotic relationships and relax plant–plant competition. Our results show that: 1) the AM fungal species consistently outcompeted the Trichoderma species independent of plant combinations; 2) the fungal species generally had limited effects on competitive interactions between plants; 3) however, the combination of fungal species relaxed interspecific competition in one of the four instances of plant–plant competition, despite the general competitive superiority of AM fungi over Trichoderma. We highlight that the competitive outcome between functionally diverse fungal species may show high consistency across a broad range of host plants and their combinations. However, despite this consistent competitive hierarchy, the consequences of their interaction for plant performance and competition can strongly vary among plant communities.  相似文献   

17.
A phylogenetically diverse array of fungi live within healthy leaf tissue of dicotyledonous plants. Many studies have examined these endophytes within a single plant species and/or at small spatial scales, but landscape‐scale variables that determine their community composition are not well understood, either across geographic space, across climatic conditions, or in the context of host plant phylogeny. Here, we evaluate the contributions of these variables to endophyte beta diversity using a survey of foliar endophytic fungi in native Hawaiian dicots sampled across the Hawaiian archipelago. We used Illumina technology to sequence fungal ITS1 amplicons to characterize foliar endophyte communities across five islands and 80 host plant genera. We found that communities of foliar endophytic fungi showed strong geographic structuring between distances of 7 and 36 km. Endophyte community structure was most strongly associated with host plant phylogeny and evapotranspiration, and was also significantly associated with NDVI, elevation and solar radiation. Additionally, our bipartite network analysis revealed that the five islands we sampled each harboured significantly specialized endophyte communities. These results demonstrate how the interaction of factors at large and small spatial and phylogenetic scales shapes fungal symbiont communities.  相似文献   

18.
戴蓬博  张荣  孙广宇 《菌物学报》2021,40(4):936-964
苹果为我国主要栽培水果,苹果产业在我国农业生产中占有重要地位.病原菌物是苹果病害的主要病原物,对我国苹果产量和品质造成严重损害.国际上病原菌物为苹果主要病原类型,其数量占苹果病原物的93.4%.我国植物病理学家和菌物学家对苹果病害的病原学进行了长期研究,描述与记载了大量国外已报道的病原真菌和病原卵菌,也描述了一些国外尚...  相似文献   

19.
高飞雁  李玲  王教瑜  王艳丽  孙国昌 《遗传》2017,39(10):908-917
过氧化物酶体(peroxisomes)是一类真核生物中普遍存在的细胞器,参与β-氧化、乙醛酸循环等多种重要的生化代谢。研究表明,过氧化物酶体在植物病原真菌侵染寄主过程中具有着举足轻重的作用。参与过氧化物酶体形成与增殖的基因,通常称为PEX基因。近年来,越来越多的PEX基因在植物病原真菌中得到鉴定,真菌过氧化物酶体的形成机制及其在植物病原真菌生长发育和致病过程中的作用越来越受到研究者的关注。本文围绕PEX 基因在过氧化物酶体形成中的作用、对过氧化物酶体相关生化代谢的影响,以及与植物病原真菌生长发育和致病性的关系进行了综述,以期为植物病原真菌致病机理研究和病害防控提供借鉴和参考。  相似文献   

20.
Endophyte fungi are ubiquitous within vascular plants and recent evidence suggests that they have a number of effects on other organisms that attack those plants, such as insects and pathogens. Endophytes produce an array of metabolites in culture and it is possible that these fungi could be used in targeted programmes of application to plants, to provide a degree of pest protection. Such programmes would be most effective if the fungi grew systemically through their hosts. To date, evidence for systemic growth is equivocal and the aim of this study was to determine whether systemic growth occurs, through a detailed study of endophytes in one host plant species. We isolated a number of endophytes from the forb Silene dioica and examined fungal interactions in dual culture. We found very little evidence for any systemic growth within leaves and none within plants. Antagonistic interactions between fungi were extremely common, suggesting that any systemic effects of these fungi on other organisms are likely to be due to chemical movement, not fungal growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号