首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We previously found that miR‐29a was significantly downregulated in Ankylosing spondylitis (AS) patients, a chronic inflammatory disease associated with bone metabolic disorder, however, the underlying mechanism remains unclear. In this study, we demonstrated that miR‐29a regulates tumor necrosis factor‐α (TNF‐α) mediated bone loss mainly by targeting DKK1 and GSK3β, thus activating the Wnt/β‐catenin pathway. Our findings may provide new insight into the pathogenesis of the bone metabolism disorder in inflammation environment and provide promising therapeutic target.  相似文献   

2.
The study aims to verify the hypothesis that up‐regulation of microRNA‐300 (miR‐300) targeting CUL4B promotes apoptosis and suppresses proliferation, migration, invasion, and epithelial‐mesenchymal transition (EMT) of pancreatic cancer cells by regulating the Wnt/β‐catenin signaling pathway. Pancreatic cancer tissues and adjacent tissues were collected from 110 pancreatic cancer patients. Expression of miR‐300, CUL4B, Wnt, β‐catenin, E‐cadherin, N‐cadherin, Snail, GSK‐3β, and CyclinD1 were detected using qRT‐PCR and Western blot. CFPAC‐1, Capan‐1, and PANC‐1 were classified into blank, negative control (NC), miR‐300 mimics, miR‐300 inhibitors, siRNA‐CUL4B, and miR‐300 inhibitors + siRNA‐CUL4B groups. The proliferation, migration, invasion abilities, the cell cycle distribution, and apoptosis rates were measured in CCK‐8 and Transwell assays. Pancreatic cancer tissues showed increased CUL4B expression but decreased miR‐300 expression. When miR‐300 was lowly expressed, CUL4B was upregulated which in‐turn activated the Wnt/β‐catenin pathway to protect the β‐catenin expression and thus induce EMT. When miR‐300 was highly expressed, CUL4B was downregulated which in‐turn inhibited the Wnt/β‐catenin pathway to prevent EMT. Weakened cell migration and invasion abilities and enhanced apoptosis were observed in the CUL4B group. The miR‐300 inhibitors group exhibited an evident increase in growth rate accompanied the largest tumor volume. Smaller tumor volume and slower growth rate were observed in the miR‐300 mimics and siRNA‐CUL4B group. Our study concludes that lowly expressed miR‐300 may contribute to highly expressed CUL4B activating the Wnt/β‐catenin signaling pathway and further stimulating EMT, thus promoting proliferation and migration but suppressing apoptosis of pancreatic cancer cells.  相似文献   

3.
Glioma is the most common brain tumor malignancy with high mortality and poor prognosis. Emerging evidence suggests that cancer stem cells are the key culprit in the development of cancer. MicroRNAs have been reported to be dysregulated in many cancers, while the mechanism underlying miR‐150‐5p in glioma progression and proportion of stem cells is unclear. The expression levels of miR‐150‐5p and catenin beta 1 (CTNNB1, which encodes β‐catenin) were measured by quantitative real‐time polymerase chain reaction (qRT‐PCR) and western blot. The expression levels of downstream genes of the Wnt/β‐catenin pathway and stem cell markers were detected by qRT‐PCR. Tumorigenesis was investigated by cell viability, colony formation, and tumor growth in vitro and in vivo. The interaction between miR‐150‐5p and β‐catenin was explored via bioinformatics analysis and luciferase activity assay. We found that miR‐150‐5p was downregulated in glioma and its overexpression inhibited cell proliferation, colony formation, and tumor growth. Moreover, miR‐150‐5p directly suppressed CTNNB1 and negatively regulated the abundances of downstream genes of the Wnt/β‐catenin pathway and stem cell markers. Furthermore, miR‐150‐5p expression was decreased and β‐catenin level was enhanced in CD133+ glioma stem cells. Knockdown of miR‐150‐5p contributed to CD133? cells with stem cell‐like phenotype, whereas overexpression of miR‐150‐5p suppressed CD133+ glioma stem cell‐like characteristics. In conclusion, miR‐150‐5p inhibited the progression of glioma by controlling stem cell‐like characteristics via regulating the Wnt/β‐catenin pathway, providing a novel target for glioma treatment.  相似文献   

4.
Due to an increasing emergence of new and drug‐resistant strains of the influenza A virus (IAV), developing novel measures to combat influenza is necessary. We have previously shown that inhibiting Wnt/β‐catenin pathway reduces IAV infection. In this study, we aimed to identify antiviral human microRNAs (miRNAs) that target the Wnt/β‐catenin signalling pathway. Using a miRNA expression library, we identified 85 miRNAs that up‐regulated and 20 miRNAs that down‐regulated the Wnt/β‐catenin signalling pathway. Fifteen miRNAs were validated to up‐regulate and five miRNAs to down‐regulate the pathway. Overexpression of four selected miRNAs (miR‐193b, miR‐548f‐1, miR‐1‐1, and miR‐509‐1) that down‐regulated the Wnt/β‐catenin signalling pathway reduced viral mRNA, protein levels in A/PR/8/34‐infected HEK293 cells, and progeny virus production. Overexpression of miR‐193b in lung epithelial A549 cells also resulted in decreases of A/PR/8/34 infection. Furthermore, miR‐193b inhibited the replication of various strains, including H1N1 (A/PR/8/34, A/WSN/33, A/Oklahoma/3052/09) and H3N2 (A/Oklahoma/309/2006), as determined by a viral reporter luciferase assay. Further studies revealed that β‐catenin was a target of miR‐193b, and β‐catenin rescued miR‐193b‐mediated suppression of IAV infection. miR‐193b induced G0/G1 cell cycle arrest and delayed vRNP nuclear import. Finally, adenovirus‐mediated gene transfer of miR‐193b to the lung reduced viral load in mice challenged by a sublethal dose of A/PR/8/34. Collectively, our findings suggest that miR‐193b represses IAV infection by inhibiting Wnt/β‐catenin signalling.  相似文献   

5.
Hypoxia–ischaemia (HI) remains a major cause of foetal brain damage presented a scarcity of effective therapeutic approaches. Dexmedetomidine (DEX) and microRNA‐140‐5p (miR‐140‐5p) have been highlighted due to its potentially significant role in the treatment of cerebral ischaemia. This study was to investigate the role by which miR‐140‐5p provides cerebral protection using DEX to treat hypoxic–ischaemic brain damage (HIBD) in neonatal rats via the Wnt/β‐catenin signalling pathway. The HIBD rat models were established and allocated into various groups with different treatment plans, and eight SD rats into sham group. The learning and memory ability of the rats was assessed. Apoptosis and pathological changes in the hippocampus CA1 region and expressions of the related genes of the Wnt/β‐catenin signalling pathway as well as the genes responsible of apoptosis were detected. Compared with the sham group, the parameters of weight, length growth, weight ratio between hemispheres, the rate of reaching standard, as well as Bcl‐2 expressions, were all increased. Furthermore, observations of increased levels of cerebral infarction volume, total mortality rate, response times, total response duration, expressions of Wnt1, β‐catenin, TCF‐4, E‐cadherin, apoptosis rate of neurons, and Bax expression were elevated. Following DEX treatment, the symptoms exhibited by HIBD rats were ameliorated. miR‐140‐5p and si‐Wnt1 were noted to attenuate the progression of HIBD. Our study demonstrates that miR‐140‐5p promotes the cerebral protective effects of DEX against HIBD in neonatal rats by targeting the Wnt1 gene through via the negative regulation of the Wnt/β‐catenin signalling pathway.  相似文献   

6.
Colorectal cancer (CRC) remains both common and fatal, and its successful treatment is greatly limited by the development of stem cell‐like characteristics (stemness) and chemoresistance. MiR‐30‐5p has been shown to function as a tumor suppressor by targeting the Wnt/β‐catenin signaling pathway, but its activity in CRC has never been assessed. We hypothesized that miR‐30‐5p exerts anti‐oncogenic effects in CRC by regulating the USP22/Wnt/β‐catenin signaling axis. In the present study, we demonstrate that tissues from CRC patients and human CRC cell lines show significantly decreased miR‐30‐5p family expression. After identifying the 3’UTR of USP22 as a potential binding site of miR‐30‐5p, we constructed a luciferase reporter containing the potential miR‐30‐5p binding site and measured the effects on USP22 expression. Western blot assays showed that miR‐30‐5p decreased USP22 protein expression in HEK293 and Caco2 CRC cells. To evaluate the effects of miR‐30‐5p on CRC cell stemness, we isolated CD133 + CRC cells (Caco2 and HCT15). We then determined that, while miR‐30‐5p is normally decreased in CD133 + CRC cells, miR‐30‐5p overexpression significantly reduces expression of stem cell markers CD133 and Sox2, sphere formation, and cell proliferation. Similarly, we found that miR‐30‐5p expression is normally reduced in 5‐fluorouracil (5‐FU) resistant CRC cells, whereas miR‐30‐5p overexpression in 5‐FU resistant cells reduces sphere formation and cell viability. Inhibition of miR‐30‐5p reversed the process. Finally, we determined that miR‐30‐5p attenuates the expression of Wnt/β‐catenin signaling target genes (Axin2 and MYC), Wnt luciferase activity, and β‐catenin protein levels in CRC stem cells.  相似文献   

7.
8.
The Wnt/β‐catenin signalling pathway is activated in pancreatic cancer initiation and progression. Dickkopf‐related protein 3 (DKK3) is a member of the human Dickkopf family and an antagonist of Wnt ligand activity. However, the function of DKK3 in this pathway in pancreatic cancer is rarely known. We examined the expression of DKK3 in six human pancreatic cancer cell lines, 75 pancreatic cancer and 75 adjacent non‐cancerous tissues. Dickkopf‐related protein 3 was frequently silenced and methylation in pancreatic cancer cell lines (3/6). The expression of DKK3 was significantly lower in pancreatic cancer tissues than in adjacent normal pancreas tissues. Further, ectopic expression of DKK3 inhibits nuclear translocation of β‐catenin induced by hypoxia in pancreatic cancer Bxpc‐3 cell. The forced expression of DKK3 markedly suppressed migration and the stem cell‐like phenotype of pancreatic cancer Bxpc‐3 cell in hypoxic conditions through reversing epithelial–mesenchymal transition (EMT). The stable expression of DKK3 sensitizes pancreatic cancer Bxpc‐3 cell to gemcitabine, delays tumour growth and augments gemcitabine therapeutic effect in pancreatic cancer xenotransplantation model. Thus, we conclude from our finding that DKK3 is a tumour suppressor and improved gemcitabine therapeutic effect through inducing apoptosis and regulating β‐catenin/EMT signalling in pancreatic cancer Bxpc‐3 cell.  相似文献   

9.
More and more studies indicate the relevance of miRNAs in inducing certain drug resistance. Our study aimed to investigate whether microRNA‐130b‐3p (miR‐130b) mediates the chemoresistance as well as proliferation of lung cancer (LC) cells. MTS assay and apoptosis analysis were conducted to determine cell proliferation and apoptosis, respectively. Binding sites were identified using a luciferase reporter system, whereas mRNA and protein expression of target genes was determined by RT‐PCR and immunoblot, respectively. Mouse xenograft model was used to evaluate the role of miR‐130b in cisplatin resistance in vivo. The rising level of miR‐130b in cisplatin resistance LC cell lines (A549/CR and H446/CR ) versus its parental cell lines, indicated its crucial relevance for LC biology. We identified PTEN as miR‐130b's major target and inversely correlated with miR‐130b expression in LC. Moreover, excessive miR‐130b expression promoted drug resistance and proliferation, decreased apoptosis of A549 cells. Suppression of miR‐130b enhanced drug cytotoxicity and reduced proliferation of A549/CR cells both internally and externally. Particularly, miR‐130b mediated Wnt/β‐catenin signalling pathway activities, chemoresistance and proliferation in LC cell, which was partially blocked following knockdown of PTEN. These findings suggest that miR‐130b targets PTEN to mediate chemoresistance, proliferation, and apoptosis via Wnt/β‐catenin pathway. The rising level of miR‐130b in cisplatin resistance LC cell lines (A549/CR and H446/CR) versus its parental cell lines, indicated its crucial relevance for LC biology. Moreover, excessive miR‐130b expression promoted drug resistance and proliferation, decreased apoptosis of A549 cells. These findings suggest that miR‐130b targets PTEN to mediate chemoresistance, proliferation, and apoptosis via Wnt/β‐catenin pathway.  相似文献   

10.
HOXA cluster antisense RNA 2 (HOXA‐AS2) is a long noncoding RNA associated with the development of numerous cancers. But, whether HOXA‐AS2 exhibits a certain function in sepsis‐engendered acute kidney injury (AKI) remains uninvestigated. We strived to unveil the role of HOXA‐AS2 in sepsis‐engendered AKI. The expression of HOXA‐AS2 in sepsis patients, animal models and lipopolysaccharide (LPS)‐impaired HK‐2 cells was primarily assessed via a real‐time quantitative polymerase chain reaction. The effects of HOXA‐AS2 on cell survival of HK‐2 cells under LPS irritation were evaluated after overexpression of HOXA‐AS2. The correlation between HOXA‐AS2 and microRNA (miR)‐106b‐5p was forecasted via bioinformatics software and verified by using a luciferase report system. Subsequently, the functions of miR‐106b‐5p in LPS‐damaged HK‐2 cells were reassessed. Western blot was used for the determination of Wnt/β‐catenin and nuclear factor‐κB (NF‐κB) pathways. HOXA‐AS2 expression was decreased in sepsis patients, animal operation group and LPS‐irritated HK‐2 cells. Overexpressed HOXA‐AS2 mollified LPS‐triggered impairment in HK‐2 cells. In addition, a negative mediatory relation between HOXA‐AS2 and miR‐106b‐5p was predicated. Synchronously, overexpressed miR‐106b‐5p counteracted the protection of HOXA‐AS2 in LPS‐damaged HK‐2 cells. Ultimately, Wnt/β‐catenin and NF‐κB pathways were hindered by HOXA‐AS2 via targeting miR‐106b‐5p. HOXA‐AS2 exhibited protection in sepsis‐engendered AKI via targeting miR‐106b‐5p and hindering the Wnt/β‐catenin and NF‐κB pathways.  相似文献   

11.
MicroRNAs (miRNAs) participate in the development and progression of melanoma. However, while dysregulation of microRNA‐378 (miR‐378) has been seen in various cancer types, its clinical importance and function in melanoma are poorly elucidated. In this work, miR‐378 expression in melanoma and in adjacent non‐cancerous tissue was evaluated with a quantitative real‐time polymerase chain reaction. A series of assays (wound healing, Transwell, and nude mouse subcutaneous tumor model) were used to investigate the implications of abnormal miR‐378 regulation on melanoma cell migration and invasion in vitro, and on tumorigenicity in vivo. Prediction and conformation of the miR‐378 target gene was undertaken using bioinformatic analysis and luciferase reporter system. Expression of miR‐378 was often increased in melanoma, and shown to potentiate its migration, invasion, and tumorigenicity. miR‐378 acted, at least partially, through inhibition of the potential target FOXN3 and via Wnt/β‐catenin pathway activation. The findings indicate that miR‐378 triggers melanoma development and progression. This miRNA could be a novel diagnostic and prognostic biological marker and provide utility for targeted treatment of melanoma.  相似文献   

12.
Acquired radioresistance is one of the main obstacles for the anti‐tumour efficacy of radiotherapy in oesophageal cancer (EC). Recent studies have proposed microRNAs (miRNAs) as important participators in the development of radioresistance in various cancers. Here, we investigated the role of miR‐1275 in acquired radioresistance and epithelial‐mesenchymal transition (EMT) in EC. Firstly, a radioresistant cell line KYSE‐150R was established, with an interesting discovery was observed that miR‐1275 was down‐regulated in KYSE‐150R cells compared to the parental cells. Functionally, miR‐1275 inhibition elevated radioresistance in KYSE‐150 cells via promoting EMT, whereas enforced expression of miR‐1275 increased radiosensitivity in KYSE‐150R cells by inhibiting EMT. Mechanically, we demonstrated that miR‐1275 directly targeted WNT1 and therefore inactivated Wnt/β‐catenin signalling pathway in EC cells. Furthermore, WNT1 depletion countervailed the promoting effect of miR‐1275 suppression on KYSE‐150 cell radioresistance through hampering EMT, whereas WNT1 overexpression rescued miR‐1275 up‐regulation‐impaired EMT to reduce the sensitivity of KYSE‐150R cells to radiation. Collectively, our findings suggested that miR‐1275 suppressed EMT to encourage radiosensitivity in EC cells via targeting WNT1‐activated Wnt/β‐catenin signalling, providing a new therapeutic outlet for overcoming radioresistance of patients with EC.  相似文献   

13.
miR‐516a‐3p has been reported to play a suppressive role in several types of human tumours. However, the expression level, biological function and fundamental mechanisms of miR‐516a‐3p in breast cancer remain unclear. In the present study, we found that miR‐516a‐3p expression was down‐regulated and Pygopus2 (Pygo2) expression was up‐regulated in human breast cancer tissues and cells. Through analysing the clinicopathological characteristics, we demonstrated that low miR‐516a‐3p expression or positive Pygo2 expression was a predictor of poor prognosis for patients with breast cancer. The results of a dual luciferase reporter assay and Western blot analysis indicated that Pygo2 was a target gene of miR‐516a‐3p. Moreover, overexpression of miR‐516a‐3p inhibited cell growth, migration and invasion as well as epithelial‐mesenchymal transition (EMT) of breast cancer cells, whereas reduced miR‐516a‐3p expression promoted breast cancer cell growth, migration, invasion and EMT. Furthermore, we showed that miR‐516a‐3p suppressed cell proliferation, metastasis and EMT of breast cancer cells by inhibiting Pygo2 expression. We confirmed that miR‐516a‐3p exerted an anti‐tumour effect by inhibiting the activation of the Wnt/β‐catenin pathway. Finally, xenograft tumour models were used to show that miR‐516a‐3p inhibited breast cancer cell growth and EMT via suppressing the Pygo2/Wnt signalling pathway. Taken together, these results show that miR‐516a‐3p inhibits breast cancer cell growth, metastasis and EMT by blocking the Pygo2/ Wnt/β‐catenin pathway.  相似文献   

14.
Temozolomide (TMZ) has been widely used in the treatment of glioblastoma (GBM), although inherent or acquired resistance restricts the application. This study was aimed to evaluate the efficacy of sulforaphane (SFN) to TMZ‐induced apoptosis in GBM cells and the potential mechanism. Biochemical assays and subcutaneous tumor establishment were used to characterize the function of SFN in TMZ‐induced apoptosis. Our results revealed that β‐catenin and miR‐21 were concordantly expressed in GBM cell lines, and SFN significantly reduced miR‐21 expression through inhibiting the Wnt/β‐catenin/TCF4 pathway. Furthermore, down‐regulation of miR‐21 enhanced the pro‐apoptotic efficacy of TMZ in GBM cells. Finally, we observed that SFN strengthened TMZ‐mediated apoptosis in a miR‐21‐dependent manner. In conclusion, SFN effectively enhances TMZ‐induced apoptosis by inhibiting miR‐21 via Wnt/β‐catenin signaling in GBM cells. These findings support the use of SFN for potential therapeutic approach to overcome TMZ resistance in GBM treatment.

  相似文献   


15.
Colorectal cancer (CRC) is the leading cause of cancer death, and its 5‐year survival rate remains unsatisfactory. Recent studies have revealed that ubiquitin‐specific protease 44 (USP44) is a cancer suppressor or oncogene depending on the type of neoplasm. However, its role in CRC remains unclear. Here, we found that the USP44 expression level was markedly decreased in CRC, and USP44 overexpression inhibited proliferation while enhancing apoptosis in CRC cells, suggesting that USP44 is a cancer suppressor in CRC. We then investigated if USP44 functioned through regulating the Wnt/β‐catenin pathway. We found that USP44 overexpression increased the Axin1 protein while decreasing β‐catenin, c‐myc, and cyclin D1 proteins, suggesting that USP44 inhibited the activation of the Wnt/β‐catenin pathway. Moreover, we found that two Wnt/β‐catenin activators, LiCl and SKL2001, both attenuated oeUSP44‐mediated proliferation and apoptosis in CRC cells. Collectively, these data points indicated that USP44 inhibited proliferation while promoting apoptosis in CRC cells by inhibiting the Wnt/β‐catenin pathway. Interestingly, we observed that USP44 overexpression did not affect the Axin1 mRNA level. Further study uncovered that USP44 interacted with Axin1 and reduced the ubiquitination of Axin1. Furthermore, Axin1 knock‐down abolished the effects of oeUSP44 on proliferation, apoptosis, and Wnt/β‐catenin activity in CRC cells. Taken together, this study demonstrates that USP44 inhibits proliferation while enhancing apoptosis in CRC cells by inactivating the Wnt/β‐catenin pathway via Axin1 deubiquitination. USP44 is a cancer suppressor in CRC and a potential target for CRC therapy.  相似文献   

16.
17.
Vascular calcification (VC) is a pathological process underpinning major cardiovascular conditions and has attracted public attention due to its high morbidity and mortality. Chronic kidney disease (CKD) is a common disease related to VC. Ginsenoside Rb1 (Rb1) has been reported to protect the cardiovascular system against vascular diseases, yet its role in VC and the underlying mechanisms remain unclear. In this study, we established a CKD‐associated VC rat model and a β‐glycerophosphate (β‐GP)‐induced vascular smooth muscle cell (VSMC) calcification model to investigate the effects of Rb1 on VC. Our results demonstrated that Rb1 ameliorated calcium deposition and VSMC osteogenic transdifferentiation both in vivo and in vitro. Rb1 treatment inhibited the Wnt/β‐catenin pathway by activating peroxisome proliferator‐activated receptor‐γ (PPAR‐γ), and confocal microscopy was used to show that Rb1 inhibited β‐catenin nuclear translocation in VSMCs. Furthermore, SKL2001, an agonist of the Wnt/β‐catenin pathway, compromised the vascular protective effect of Rb1. GW9662, a PPAR‐γ antagonist, reversed Rb1's inhibitory effect on β‐catenin. These results indicate that Rb1 exerted anticalcific properties through PPAR‐γ/Wnt/β‐catenin axis, which provides new insights into the potential theraputics of VC.  相似文献   

18.
Gypenosides have anticancer activity against many cancers. Gypenoside LI is a gypenoside monomer from Gynostemma pentaphyllum, its pharmacological functions in melanoma have not been reported. In this study, we found that gypenoside LI had a potent cytotoxic effect on melanoma cells. Gypenoside LI can induce intrinsic apoptosis along with S phase arrest. Furthermore, gypenoside LI inhibited the colony formation ability of melanoma through inhibition of the Wnt/β‐catenin signaling pathway. Interestingly, we also found that gypenoside LI can induce the upregulation of the tumor suppressor miR‐128‐3p during melanoma apoptosis. In contrast, gypenoside LI induced apoptosis, cell cycle arrest, and inhibition of the Wnt/β‐catenin signaling pathway, which were abolished by overexpression of the miR‐128‐3p inhibitor in A375 cells. Taken together, these results showed that gypenoside LI could inhibit human melanoma cells through inducing apoptosis, arresting cell cycle at the S phase and suppressing the Wnt/β‐catenin signaling pathway in a miR‐128‐3p dependent manner.  相似文献   

19.
Mediator complex subunit 19 (Med19), a RNA polymerase II‐embedded coactivator, is reported to be involved in bladder cancer (BCa) progression, but its functional contribution to this process is poorly understood. Here, we investigate the effects of Med19 on malignant behaviours of BCa, as well as to elucidate the possible mechanisms. Med19 expression in 15 BCa tissues was significantly higher than adjacent paired normal tissues using real‐time PCR and Western blot analysis. Immunohistochemical staining of 167 paraffin‐embedded BCa tissues was performed, and the results showed that high Med19 protein level was positively correlated with clinical stages and histopathological grade. Med19 was knocked down in BCa cells using short‐hairpin RNA. Functional assays showed that knocking‐down of Med19 can suppress cell proliferation and migration in T24, UM‐UC3 cells and 5637 in vitro, and inhibited BCa tumour growth in vivo. TOP/FOPflash reporter assay revealed that Med19 knockdown decreased the activity of Wnt/β‐catenin pathway, and the target genes of Wnt/β‐catenin pathway were down‐regulated, including Wnt2, β‐catenin, Cyclin‐D1 and MMP‐9. However, protein levels of Gsk3β and E‐cadherin were elevated. Our data suggest that Med19 expression correlates with aggressive characteristics of BCa and Med19 knockdown suppresses the proliferation and migration of BCa cells through down‐regulating the Wnt/β‐catenin pathway, thereby highlighting Med19 as a potential therapeutic target for BCa treatment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号