首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
氨基酸是重要的化合物,在食品、医药、化工等领域具有广泛用途.多种氨基酸可以通过蛋白质水解提取法、化学合成法以及微生物法生产,现如今大部分的氨基酸都开始尝试微生物发酵法实现工业生产.谷氨酸棒杆菌(Corynebacterium glutamicum)作为发酵生产氨基酸的先驱者,其生产的氨基酸产量已达年产数百万吨.随着合成生物学技术以及新一代基因编辑技术的兴起,谷氨酸棒杆菌能生产的氨基酸种类从传统的几种氨基酸扩大到了几乎所有氨基酸及其衍生物.本文综述了近年来利用代谢工程及合成生物学工具对谷氨酸棒杆菌的改造技术,并介绍了一些利用谷氨酸棒杆菌生产传统氨基酸以及非天然氨基酸的典型案例,为谷氨酸棒杆菌突破所有氨基酸生产瓶颈提供参考.  相似文献   

2.
吕红芳  王浩  徐宁  鞠建松  刘君 《微生物学通报》2017,44(11):2539-2546
【目的】探究外源添加不同氨基酸和相容性溶质对谷氨酸棒杆菌(Corynebacterium glutamicum)在高糖胁迫环境下生长的影响及可能的作用机理。【方法】通过在培养基中外源添加各种氨基酸和相容性溶质,研究其对谷氨酸棒杆菌在高葡萄糖和高蔗糖胁迫下生长的影响,并分析添加精氨酸对高葡萄糖胁迫下菌株糖转运和代谢途径中关键酶转录水平的影响,以及对菌株发酵产氨基酸的影响。进一步探究了碱性氨基酸在其它棒状杆菌属中抵御高葡萄糖胁迫的潜在作用。【结果】在高葡萄糖胁迫条件下,外源添加赖氨酸、精氨酸和组氨酸后谷氨酸棒杆菌的生物量分别提高54.7%、50.0%和37.6%;而在高蔗糖胁迫条件下,添加脯氨酸和四氢嘧啶后菌株生物量增加20%以上。进一步研究表明,在高葡萄糖胁迫下,外源添加精氨酸后谷氨酸棒杆菌的葡萄糖利用速率提高约2.5倍,谷氨酸的发酵产量也增加了127.5%。此外,碱性氨基酸对其它4种棒状杆菌也具有一定的渗透保护效应。【结论】精氨酸对谷氨酸棒杆菌在高葡萄糖胁迫下具有良好的渗透保护作用,可能归因于其能促进葡萄糖的转运和代谢能力,同时发现碱性氨基酸的渗透保护效应对棒状杆菌属具有一定的普遍性。  相似文献   

3.
Ebbig.  H  赵孝光 《微生物学杂志》1993,13(2):67-70
向培养基中加入前体α-酮丁酸(α-kB),谷氨酸棒杆菌(Corynebacterium glutamicum)可高效地分泌异亮氨酸(Ile)研究了不同条件下Ile分泌的几个参数,在氨基酸前体存在与否的情况下通过比较这些参数推断,谷氨酸棒杆菌中Ile的分泌是通过一个独立的,可能是主动的输出载体系统来完成。  相似文献   

4.
L?异亮氨酸属于三大支链氨基酸,是人体8种必需氨基酸之一,广泛应用于食品、药品、保健品、化妆品等领域。目前,微生物发酵法是工业生产L?异亮氨酸的主要方法,其中谷氨酸棒杆菌(Corynebacterium glutamicum)是发酵生产L?异亮氨酸的优势菌株,然而随机诱变会使产量的提高能力达到饱和,难以得到更加高产的菌株,因此针对诱变菌株进行理性改造已成为进一步提高产量的主要方式;且随着遗传操作技术在谷氨酸棒杆菌中的应用与优化,代谢工程育种已逐渐取代传统的诱变育种。综述了谷氨酸棒杆菌中L?异亮氨酸的生物合成途径、代谢调控机制和理性改造L?异亮氨酸生产菌株的策略,并对辅助因子工程应用于理性改造及对谷氨酸棒杆菌基因组整合策略进行了系统阐述,以期为工业水平稳定生产L?异亮氨酸高产菌株的基因组整合策略提供参考依据。  相似文献   

5.
谷氨酸棒杆菌Corynebacterium glutamicum作为一般被认为具有生物安全性的一种模式工业微生物,不仅在发酵工业中成功用于大规模生产氨基酸,而且具有合成多种新型化学品的潜力。谷氨酸棒杆菌菌株在生产化合物时,经常会受到各种逆境条件的胁迫,从而降低细胞活力和生产性能。合成生物学的发展为提高谷氨酸棒杆菌的鲁棒性提供了新的技术手段。本文总结了谷氨酸棒杆菌应对发酵过程中各种胁迫的耐受机制。同时,重点介绍提高谷氨酸棒杆菌底盘细胞鲁棒性和耐受性的合成生物学新策略,包括挖掘新的抗逆元件、改造转录调控因子、利用适应性进化策略挖掘抗逆功能模块等。最后,从生物传感器、转录调控因子的筛选和设计、多种调控元件利用等方面对提高谷氨酸棒杆菌底盘细胞鲁棒性进行了展望。  相似文献   

6.
王钰  郑平  孙际宾 《生物工程学报》2021,37(5):1603-1618
谷氨酸棒杆菌Corynebacterium glutamicum是重要的工业微生物,尤其是在氨基酸工业中,每年用于600余万t氨基酸的生物制造。近年来,谷氨酸棒杆菌代谢工程使能技术正在不断完善,不仅加快了细胞工厂的创建和优化,拓展了底物谱和产物谱,也推动了谷氨酸棒杆菌的基础研究,使谷氨酸棒杆菌成为代谢工程的理想底盘细胞。文中综述了近期针对谷氨酸棒杆菌开发的代谢工程使能技术,着重介绍了基于CRISPR的基因组编辑、基因表达调控、适应性进化和生物传感器等技术的开发和应用。  相似文献   

7.
肠杆菌科丝氨酸蛋白酶自动转运家族(SPATE)蛋白是指致病性肠道杆菌通过自动转运方式产生的一类毒性蛋白。此类蛋白的氨基酸同源性可达35%~55%,均由3个部分组成:N端信号肽序列,协助分泌性毒性蛋白穿越细菌内膜;中部载乘区域,是发挥各种生物学功能的主要结构域;C端转运单位,促使载乘结构域自细菌周浆间隙向胞外分泌。α螺旋的铰链区连接载乘区域和C端转运单位,其中14个氨基酸残基的组成序列EVNNLNKRMGDLRD非常保守,是蛋白酶水解位点,也是整个蛋白中最长的保守氨基酸序列,在SPATE蛋白的分泌和成熟过程中起着十分重要的作用,其改变往往会引起该蛋白家族不能正常分泌和成熟。目前,有研究将其作为药物作用的新靶点。  相似文献   

8.
琥珀酸是一种具有重要应用价值的四碳平台化合物。微生物法发酵生产琥珀酸以其社会、环境和经济优势展现出良好的发展前景。谷氨酸棒杆菌被广泛应用于氨基酸、核苷酸等高附加值化学品的工业化生产,在厌氧条件下细胞处于生长停滞状态,但仍能高效利用碳源合成有机酸,通过代谢工程改造的谷氨酸棒杆菌有望成为理想的琥珀酸生产菌株。结合近年来谷氨酸棒杆菌生产琥珀酸取得的最新成果,本文综述了构建高产琥珀酸工程菌株的代谢工程策略、底物的扩展利用,并展望了将来的研究方向。  相似文献   

9.
周宁一 《微生物学通报》2016,43(11):2539-2539
正自从1957年Kinoshita等首次描述谷氨酸棒杆菌(Corynebacterium glutamicum)为谷氨酸产生菌[1]以来,其已成为用于氨基酸生产的主要菌株。目前,全世界每年利用谷氨酸棒杆菌生产约100万t L-谷氨酸用于食品调味剂和约45万t L-赖氨酸用作食品添加剂[2]。通过谷氨酸棒状杆菌发酵获得谷氨酸的发酵水平已较高,通过进一步优化工艺来提高产量具有较大困难[3]。  相似文献   

10.
旨在提高谷氨酸棒杆菌合成尸胺的能力,将CadB克隆至谷氨酸棒杆菌中,与LDC共表达,在谷氨酸棒杆菌合成尸胺的同时,帮助尸胺转运至细胞外,解除尸胺的反馈抑制作用。谷氨酸棒杆菌能够高产赖氨酸脱羧酶的底物L-赖氨酸,但不含ldc和cadB基因,因而不能够直接合成尸胺。从E.coliK12中克隆出赖氨酸-尸胺反向转运蛋白基因,与绿色荧光蛋白基因gfp融合构建成融合表达载体pXBG,并转化至谷氨酸棒杆菌进行诱导表达,结果表明表达的CadB蛋白可以正确的定位于谷氨酸棒杆菌的细胞膜上。将基因cadB连接到含有赖氨酸脱羧酶基因的pXMJ19-ldc上,构建成能够共表达赖氨酸脱羧酶和赖氨酸-尸胺反向转运蛋白的重组质粒pXLB,并转化到谷氨酸棒杆菌中。  相似文献   

11.
谷氨酸棒杆菌是生产氨基酸、有机酸等的重要菌株,广泛应用于食品、医药领域。利用基因编辑技术对谷氨酸棒杆菌进行基因功能研究,在提高目的产物产量、发现新的基因功能等方面有重要意义。近年来,基因编辑技术发展日新月异,从基于同源重组的传统基因编辑技术到以人工核酸酶介导的基因编辑均在谷氨酸棒杆菌中得到合理应用。其中,CRISPR技术以其快速、简便、编辑效率高等优点成为现阶段研究者用于改造谷氨酸棒杆菌的主要技术,但是更为简单、高效的编辑手段依旧需要进一步研究开发,以获得优良菌株应用于工业生产中。  相似文献   

12.
L-谷氨酸是世界上第一大宗氨基酸产品,广泛应用于食品医药及化工等行业。以谷氨酸高产菌谷氨酸棒杆菌(Corynebacterium glutamicum) G01为出发菌株,首先通过敲除主要副产物丙氨酸合成相关基因-丙氨酸氨基转移酶编码基因(alaT),降低了发酵副产物丙氨酸含量。其次,α-酮戊二酸节点碳流量对谷氨酸合成起重要作用,因此,采用核糖体结合位点(ribosome-binding site,RBS)序列优化降低了α-酮戊二酸脱氢酶的活性,强化了谷氨酸合成代谢流。同时通过筛选不同来源的谷氨酸脱氢酶,加强了α-酮戊二酸内源转化为谷氨酸的能力。接着,对谷氨酸转运蛋白进行理性设计,提高了谷氨酸的外排能力。最后,对基于以上策略构建的整合菌株进行了5 L发酵罐发酵优化,通过梯度升温结合分批补料策略,谷氨酸产量为(136.33±4.68) g/L,较原始菌的产量(96.53±2.32) g/L提高了41.2%;糖酸转化率为55.8%,较原始菌的44.2%提高了11.6%;且降低了副产物丙氨酸的含量。以上策略一定程度上提高了谷氨酸的产量与糖酸转化率,可为谷氨酸生产菌株的代谢改造提供参考。  相似文献   

13.
【背景】大肠杆菌由于生长性能优良、遗传背景清晰,常被用作苏氨酸生产菌。【目的】敲除大肠杆菌Escherichia coli THR苏氨酸合成途径的非必需基因,并异源表达苏氨酸合成必需的关键酶,构建一株苏氨酸高产菌株。【方法】利用FLP/FRT重组酶系统,敲除E. coli THR中lysC、pfkB和sstT,同时进行谷氨酸棒杆菌中lysC~(fbr)、thrE和丙酮丁醇梭菌中gapC的重组质粒构建并转化到宿主菌中。【结果】以E. coli THR为出发菌株,敲除其苏氨酸合成途径中表达天冬氨酸激酶Ⅲ (AKⅢ)的基因lysC、磷酸果糖激酶Ⅱ基因pfkB及苏氨酸吸收蛋白表达基因sstT,使菌株积累苏氨酸的产量达到75.64±0.35g/L,比出发菌株增加9.9%。随后异源表达谷氨酸棒杆菌中解除了反馈抑制的天冬氨酸激酶(lysC~(fbr))、苏氨酸分泌转运蛋白(thrE)及丙酮丁醇梭菌中由gapC编码的NADP+依赖型甘油醛-3-磷酸脱氢酶,获得重组菌株E. coli THR6菌株。该菌株积累苏氨酸的产量提高到105.3±0.5 g/L,糖酸转化率提高了43.20%,单位产酸能力提高到5.76 g/g DCW,最大生物量为18.26 g DCW/L。【结论】单独敲除某个基因或改造某个途径不能使苏氨酸大量合成和积累,对多个代谢途径共同改造是构建苏氨酸工程菌的最有效方法。  相似文献   

14.
<正> 一、前言 1957年木下等发表谷氨酸棒杆菌(Corynebacterium glutamicum)进行谷氨酸的工业生产以来,日本的氨基酸发酵生产的研究有很大的进展。很多氨基酸已能用发酵法生产。谷氨酰胺和N-乙酰-I-谷氨酰胺(N-AGM)作为胃溃疡、十二指肠溃疡病等的抗溃疡病药物正在大量应用。作者等应用谷氨酸产生菌谷氨酸棒杆菌的野生株,通过控制环境因素使谷氨酸发酵转换成谷氨酰胺和N-AGM发酵,建立了这些氨基酸的工业生产方法。同时也研究了从谷氨酸发酵转换生产脯氨酸的方法。通过改变培养条件,用谷氨酸棒杆菌使发  相似文献   

15.
兴奋性氨基酸转运蛋白家族包含几种结构相似的膜蛋白,它们在终止谷氨酸的突触传递作用,维持神经系统正常的递质水平起重要作用.为了在同一物种中研究这些蛋白和基因的功能,本工作对新生小鼠脑的兴奋性氨基酸转运蛋白家族成员进行了克隆,获得了3个谷氨酸转运蛋白亚型(mGLAST-1,mGLT-1,mEAAC1)和一个中性氨基酸转运蛋白(mASCT1)的cDNA,其中在小鼠中mASCT1序列为首次发表.序列分析表明,mASCT1cDNA的长度为3787bp,编码一个532个氨基酸箴基的蛋白,和人的ASCT1蛋白序列有89.3%的同源性,用非洲爪蟾卵母细胞表达系统证实了它具有转运丝氨酸的活性.同时,我们的研究表明,兴奋性氨基酸转运蛋白mRNA的5'UTR和3'UTR普遍存在组成和长度的不均一性,这种现象可能提示该家族成员的基因表达具有转录后调控机制.  相似文献   

16.
作者由谷酸捧杆菌(C.glutami-cum)中成功地诱变并分离了对呼吸系抑制剂具有抗性的新的变异株。此变异株比过去的谷氨酸棒杆菌的 ATP 生成能力高,因此可以提高氨基酸及其它物质的发酵生产  相似文献   

17.
杆菌肽是微生物产生的由11种氨基酸残基组成的广谱性抗生素,前体物的供应可能是限制杆菌肽高产的重要因素。文中通过支链氨基酸(异亮氨酸、亮氨酸、缬氨酸)的添加实验考察了前体物质支链氨基酸对杆菌肽高产的影响,证实了异亮氨酸(Ile)和亮氨酸(Leu)的添加可以提高杆菌肽的效价,其中Ile的添加对杆菌肽效价提高的效果较为明显。随后,文中以地衣芽胞杆菌DW2为出发菌株,分别构建了支链氨基酸转运蛋白Yhd G的缺失和强化表达菌株。发酵结果表明,转运蛋白Yhd G缺失工程菌DW2△yhd G的杆菌肽效价达到917.35 U/m L,与原始菌DW2相比提高了11%,而强化Yhd G则会使杆菌肽效价下降25%。最后通过分析胞内胞外支链氨基酸含量,发现缺失转运蛋白Yhd G能够在发酵中后期显著提高胞内支链氨基酸含量,表明氨基酸转运蛋白Yhd G在地衣芽胞杆菌DW2中可能发挥着氨基酸输出的功能。综上,文中通过缺失转运蛋白Yhd G显著提高了地衣芽胞杆菌胞内支链氨基酸的供给水平,从而提高了杆菌肽效价,为杆菌肽高产菌株的构建提供了一种新的策略。  相似文献   

18.
谷氨酸是一种重要的氨基酸,其衍生出来的高值化产品具有广泛的应用,市场需求量巨大。文中通过对出发菌株谷氨酸棒杆菌Corynebacterium glutamicum E01和谷氨酸高产菌C. glutamicum G01进行转录组测序与重测序分析,挑选中心代谢途径中转录水平和基因水平上存在差异的基因进行研究,以挖掘出对谷氨酸合成影响较大的基因进一步提高谷氨酸的产量。草酰乙酸节点和α-酮戊二酸节点在谷氨酸合成中扮演着重要角色,探索研究了草酰乙酸节点和α-酮戊二酸节点对谷氨酸生产的扰动影响。综合以上实验结果构建的整合菌株,5 L发酵罐发酵过程中其菌体生长速率较原始菌略有降低,但48h的谷氨酸产量高达(136.09±5.53)g/L,较原始菌的(93.53±4.52)g/L提高了45.5%;糖酸转化率提高至58.9%,较原始菌的45.2%提高了13.7%。可见,上述实验策略的应用在一定程度上提高了谷氨酸产量和糖酸转化率,为谷氨酸棒杆菌的代谢工程改造提供了理论基础。  相似文献   

19.
【目的】通过改造谷氨酸棒杆菌JNR中双功能尿苷酰转移/去除酶GlnD,减弱尿苷酰去除酶的活性,增强NH_4~+的转运和利用,提高L-精氨酸的合成。【方法】本文对来源于谷氨酸棒杆菌的突变菌株JNR中的双功能尿苷酰转移/去除酶GlnD进行整合突变,采用同源重组的方法将H_(414)和D_(415)位点突变为两个丙氨酸AA,在此菌株的基础上过量表达PII蛋白GlnK,并对其进行尿苷酰化研究,离子色谱检测摇瓶发酵过程中NH4+的浓度,并对最终的改造菌株进行连续流加发酵分析。【结果】该双功能尿苷酰转移/去除酶在谷氨酸棒杆菌中成功进行整合突变,有效减弱了尿苷酰去除酶的活性;同时过表达PII蛋白GlnK,其酰基化程度明显增强。摇瓶发酵结果表明菌株L4消耗NH_4~+增加,L-精氨酸产量为36.2±1.2 g/L,比对照菌株L3高出22.7%。5-L发酵罐实验结果显示改造菌株L4的L-精氨酸的产量为52.2 g/L,较野生型菌株L0提高了25.3%。【结论】谷氨酸棒杆菌合成L-精氨酸的过程中氮源是必不可少的。减弱GlnD尿苷酰去除酶的活性后,胞内尿苷酰化的GlnK-UMP增加,GlnK-UMP与氮转录调控因子AmtR结合,转运至胞内的NH_4~+浓度提高,促使L-精氨酸产量显著提高。  相似文献   

20.
5-氨基乙酰丙酸 (5-aminolevulinic acid,5-ALA) 在医药和农业等领域有着广泛作用,目前主要采用大肠杆菌或谷氨酸棒杆菌以微生物发酵法合成。为了进一步提高谷氨酸棒杆菌合成5-ALA的能力,对其C4代谢途径进行了系统代谢改造。首先分别在谷氨酸棒杆菌中异源表达荚膜红杆菌和沼泽红假单胞菌的5-氨基乙酰丙酸合成酶ALAS,选择酶活相对较高的沼泽红假单胞菌的RphemA基因作为关键合成酶基因,并筛选到能显著增强RphemA的酶活性的核糖体结合位点RBS5。重组菌株ALAS的比酶活可达 (221.87±3.10) U/mg,且5-ALA产量提高了14.3%;随后通过敲除α-酮戊二酸脱氢酶抑制蛋白基因 (odhI) 和琥珀酸脱氢酶基因 (sdhA),促进了前体琥珀酰CoA向5-ALA途径的流动;通过sRNA抑制hemB表达减少了5-ALA的降解;并且过表达半胱氨酸/O-乙酰丝氨酸转运蛋白eamA提高了5-ALA的输出效率;使用重组菌株C. glutamicum 13032/?odhI/?sdhA-sRNAhemB-RBS5RphemA-eamA摇瓶发酵,5-ALA最高产量达11.90 g/L,较出发菌株提高了57%。最后,在5 L发酵罐中进行补料分批发酵,48 h内5-ALA的产量达25.05 g/L,为目前以葡萄糖为碳源发酵的最高产量。本研究构建了高产5-ALA重组谷氨酸棒杆菌,具有良好的工业应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号