首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
结核病是由结核分枝杆菌感染引起的传染病,细胞免疫中的CD_4^+T细胞、CD_8^+T细胞、Th17细胞在对抗结核分枝杆菌感染中发挥重要作用,新近研究显示抗体特定的糖链修饰有助于清除病原体,提示体液免疫也可能参与免疫保护。目前使用的疫苗——卡介苗对婴幼儿重症结核病具有良好的保护力,但是对成人肺结核保护力欠佳,所以需要研发新的疫苗。目前已有数个新型疫苗进入临床试验。本文就结核分枝杆菌的免疫保护机制作一简要介绍,主要阐述现用疫苗——卡介苗及新型疫苗的研究现状,让读者对上述知识的进展有所了解。  相似文献   

2.
ESAT-6家族蛋白是结核分枝杆菌早期分泌蛋白中具有较强免疫原性的成分之一。卡介苗中缺乏该家族的一些重要成分。近年对其分布。结构,免疫学特征以及生物学用途方面的研究较多。该蛋白在作抗结核分枝杆菌亚单位疫苗的候选抗原,DNA疫苗的候选基因以及作为结核分枝杆菌感染的免疫学诊断试剂等领域体现出良好的研究及应用前景。  相似文献   

3.
<正>背景:迫切需要抵抗结核病的新疫苗,然而由于倘无保护的相关物,故选择一种能够纳入大规模效力现场的疫苗是困难的。使用卡介苗(BCG)作为人攻击用结核杆菌的替代物是一种有助于疫苗选择的模型。方法 :健康成人被分成A组和B组(BCG初次接种)或C和D组(BCG-以往接种组),B组和D组接受MVA85A候选结核疫苗,在他们接受MVA85A疫苗接种4周后用皮内接种法攻击BCG。  相似文献   

4.
结核病是由结核分枝杆菌感染引起的慢性传染病,严重危害人类健康,卡介苗对儿童粟粒性结核和结核性脑膜炎保护效果较好,但对成人肺结核保护效果却不确定。过去十余年,众多研究人员一直致力于新型结核病疫苗的研发,但至今尚未成功。结核病的致病和免疫机制还不完全清楚,缺乏可以预测临床保护效果的指标和动物模型,动物实验结果常与临床试验结果不符,临床试验耗时漫长、成本昂贵、且需要大量结核病患者,这些都严重阻碍了结核病疫苗的研发。近年来,研究人员研发了一些新方法进行结核病疫苗临床前评价,从而缩短了进入临床试验的时间,加快了结核病疫苗的发展。综述了新型结核病疫苗的研究进展及其保护力评价方法,特别是临床前评价新方法。  相似文献   

5.
结核病是全球重要的传染性疾病之一,在全球范围内保持着较高的发病率和死亡率。卡介苗是目前临床上唯一应用的结核疫苗,虽然对儿童有较好的保护作用,但对成人的免疫保护效果并不明显。研发新的结核疫苗对于结核病的防控具有重要的意义。由于结核病的致病菌结核分枝杆菌主要通过呼吸道传播,机体的黏膜成为抵御结核分枝杆菌的第一道防线。设计稳定高效的抗结核黏膜免疫疫苗是目前结核疫苗研究的新方向之一。选择合适的黏膜免疫途径、佐剂及抗原递送系统是黏膜疫苗研发成功的关键。本文对抗结核分枝杆菌的黏膜免疫应答作简短的概述,并重点阐明黏膜免疫在结核疫苗研发中的研究进展。  相似文献   

6.
结核病是全球重要的传染性疾病之一,在全球范围内保持着较高的发病率和死亡率。卡介苗是目前临床上唯一应用的结核疫苗,虽然对儿童有较好的保护作用,但对成人的免疫保护效果并不明显。研发新的结核疫苗对于结核病的防控具有重要的意义。由于结核病的致病菌结核分枝杆菌主要通过呼吸道传播,机体的黏膜成为抵御结核分枝杆菌的第一道防线。设计稳定高效的抗结核黏膜免疫疫苗是目前结核疫苗研究的新方向之一。选择合适的黏膜免疫途径、佐剂及抗原递送系统是黏膜疫苗研发成功的关键。本文对抗结核分枝杆菌的黏膜免疫应答作简短的概述,并重点阐明黏膜免疫在结核疫苗研发中的研究进展。  相似文献   

7.
本文旨在对全球结核病疫苗研究进展进行系统综述,描述国际上目前进入临床试验不同阶段的新型疫苗,包括重组卡介苗、亚单位疫苗、治疗性疫苗等,分析我国结核病疫苗研究现状,介绍国际研究发展趋势,如人类疫苗计划、全细胞疫苗、多阶段疫苗等,并对存在的问题和挑战进行讨论,展望未来发展趋势。  相似文献   

8.
结核病是由结核分枝杆菌感染引起的传染病,是危害人类健康的主要传染病之一。目前被广泛应用的卡介苗对于新生儿和儿童的严重播散性疾病有很好的保护效果,但对于成人活动性结核病的有效性,却存在很大的争议。近年来,人们一直努力研发新疫苗并且已经取得了一些成果。这些新型结核疫苗在临床测试中的结果是非常令人兴奋和鼓舞人心的。但是,我们仍需继续探索新型结核疫苗。  相似文献   

9.
为评价乙型肝炎疫苗-卡介苗联合疫苗的安全性,分别给豚鼠皮下注射、小鼠皮内注射乙型肝炎疫苗-卡介苗联合疫苗或卡介苗,豚鼠每2周称体重一次,观察6周,解剖检查其病理变化;小鼠也进行病理检查。结果乙型肝炎疫苗-卡介苗联合疫苗接种组和卡介苗接种组的豚鼠体重均增加,疫苗注射局部及各脏器病理改变相似;小鼠接种局部皮肤病理改变也未见差异。结论为乙肝表面抗原(HBsAg)没有促使卡介苗毒力增强,乙型肝炎疫苗-卡介苗联合疫苗接种实验鼠是安全的。  相似文献   

10.
本文针对以卡介苗(bacillus Calmette-Guérin,BCG)为基础的结核分枝杆菌新疫苗本身的缺陷问题、临床前药效学评价面临的问题、临床研究可能面临的有效性评价问题及伦理问题等,对"新一代抗结核分枝杆菌疫苗将会建立在现用BCG的基础上"的观点进行评述。认为以BCG为基础的新疫苗保护力可能超过现用BCG,但要显著提高其对成人的保护效果尚有难度;新疫苗用于新生儿的临床研究因存在伦理问题而可能无法开展;针对潜伏结核感染人群的免疫预防是控制结核病的重要手段,以现用BCG为基础的新疫苗可能无法应用于此类人群。因此,新一代主流抗结核分枝杆菌疫苗将不会是建立在现用BCG基础之上的疫苗。  相似文献   

11.
In this review we discuss recent progress in the development, testing, and clinical evaluation of new vaccines against tuberculosis (TB). Over the last 20 years, tremendous progress has been made in TB vaccine research and development: from a pipeline virtually empty of new TB candidate vaccines in the early 1990s, to an era in which a dozen novel TB vaccine candidates have been and are being evaluated in human clinical trials. In addition, innovative approaches are being pursued to further improve existing vaccines, as well as discover new ones. Thus, there is good reason for optimism in the field of TB vaccines that it will be possible to develop better vaccines than BCG, which is still the only vaccine available against TB.  相似文献   

12.
There is an urgent need for an immunological correlate of protection against tuberculosis (TB) with which to evaluate candidate TB vaccines in clinical trials. Development of a human challenge model of Mycobacterium tuberculosis (M.tb) could facilitate the detection of such correlate(s). Here we propose a novel in vivo Bacille Calmette-Guérin (BCG) challenge model using BCG immunization as a surrogate for M.tb infection. Culture and quantitative PCR methods have been developed to quantify BCG in the skin, using the mouse ear as a surrogate for human skin. Candidate TB vaccines have been evaluated for their ability to protect against a BCG skin challenge, using this model, and the results indicate that protection against a BCG skin challenge is predictive of BCG vaccine efficacy against aerosol M.tb challenge. Translation of these findings to a human BCG challenge model could enable more rapid assessment and down selection of candidate TB vaccines and ultimately the identification of an immune correlate of protection.  相似文献   

13.
rBCG30, the first vaccine against tuberculosis demonstrated more potent than BCG in preclinical studies, is the prototype of a class of vaccines that utilize BCG as a host organism for expressing and secreting Mycobacterium tuberculosis major extracellular proteins. The vaccine is based on the concept that extracellular proteins of intracellular pathogens are key immunoprotective molecules. rBCG30, which expresses and secretes large amounts of the M. tuberculosis 30 kDa major secretory protein, is currently in human clinical trials.  相似文献   

14.

Background

Tuberculosis (TB) is a contagious infectious disease caused by Mycobacterium tuberculosis (Mtb). This disease with two million deaths per year has the highest mortality rate among bacterial infections. The only available vaccine against TB is BCG vaccine. BCG is an effective vaccine against TB in childhood, however, due to some limitations, has not proper efficiency in adults. Also, BCG cannot produce an adequately protective response against reactivation of latent infections.

Objective

In the present study we will review the most recent findings about contribution of HspX protein in the vaccines against tuberculosis.

Methods

Therefore, many attempts have been made to improve BCG or to find its replacement. Most of the subunit vaccines for TB in various phases of clinical trials were constructed as prophylactic vaccines using Mtb proteins expressed in the replicating stage. These vaccines might prevent active TB but not reactivation of latent tuberculosis infection (LTBI). A literature search was performed on various online databases (PubMed, Scopus, and Google Scholar) regarding the roles of HspX protein in tuberculosis vaccines.

Results

Ideal subunit post-exposure vaccines should target all forms of TB infection, including active symptomatic and dormant (latent) asymptomatic forms. Among these subunit vaccines, HspX is the most important latent phase antigen of M. tuberculosis with a strong immunological response. There are many studies that have evaluated the immunogenicity of this protein to improve TB vaccine.

Conclusion

According to the studies, HspX protein is a good candidate for development of subunit vaccines against TB infection.
  相似文献   

15.
Recombinant BCG vaccine candidates   总被引:1,自引:0,他引:1  
Given the variable protective efficacy provided by Mycobacterium bovis BCG (Bacillus Calmette-Guérin), there is a concerted effort worldwide to develop better vaccines that could be used to reduce the burden of tuberculosis. Recombinant BCG (rBCG) are vaccine candidates that offer some potential in this area. In this paper, we will discuss the molecular methods used to generate rBCG, and the results obtained with some of these new vaccines as compared with the conventional BCG vaccine in diverse animal models. Tuberculosis vaccine candidates based on rBCG are promising candidates, and some of them are now being tested in clinical trials.  相似文献   

16.
结核病是一种棘手的重大传染病.虽然存在一些有一定疗效的治疗药物,亦有预防性疫苗--卡介苗(BCG);但结核病仍在世界范围流行,且发病率和病死率居高不下.结核病的免疫病理机制及疫苗研究近年来取得了一定的进展.结核分枝杆菌通过Toll样受体(TLR)等模式识别受体,激活巨噬细胞的天然免疫反应,清除细菌和调节获得性免疫反应....  相似文献   

17.
Functional assays have long played a key role in measuring of immunogenicity of a given vaccine. This is conventionally expressed as serum bactericidal titers. Studies of serum bactericidal titers in response to childhood vaccines have enabled us to develop and validate cut-off levels for protective immune responses and such cut-offs are in routine use. No such assays have been taken forward into the routine assessment of vaccines that induce primarily cell-mediated immunity in the form of effector T cell responses, such as TB vaccines. In the animal model, the performance of a given vaccine candidate is routinely evaluated in standardized bactericidal assays, and all current novel TB-vaccine candidates have been subjected to this step in their evaluation prior to phase 1 human trials. The assessment of immunogenicity and therefore likelihood of protective efficacy of novel anti-TB vaccines should ideally undergo a similar step-wise evaluation in the human models now, including measurements in bactericidal assays.Bactericidal assays in the context of tuberculosis vaccine research are already well established in the animal models, where they are applied to screen potentially promising vaccine candidates. Reduction of bacterial load in various organs functions as the main read-out of immunogenicity. However, no such assays have been incorporated into clinical trials for novel anti-TB vaccines to date.Although there is still uncertainty about the exact mechanisms that lead to killing of mycobacteria inside human macrophages, the interaction of macrophages and T cells with mycobacteria is clearly required. The assay described in this paper represents a novel generation of bactericidal assays that enables studies of such key cellular components with all other cellular and humoral factors present in whole blood without making assumptions about their relative individual contribution. The assay described by our group uses small volumes of whole blood and has already been employed in studies of adults and children in TB-endemic settings. We have shown immunogenicity of the BCG vaccine, increased growth of mycobacteria in HIV-positive patients, as well as the effect of anti-retroviral therapy and Vitamin D on mycobacterial survival in vitro. Here we summarise the methodology, and present our reproducibility data using this relatively simple, low-cost and field-friendly model.

Note: Definitions/Abbreviations

BCG lux = M. bovis BCG, Montreal strain, transformed with shuttle plasmid pSMT1 carrying the luxAB genes from Vibrio harveyi, under the control of the mycobacterial GroEL (hsp60) promoter. CFU = Colony Forming Unit (a measure of mycobacterial viability).Download video file.(51M, mov)  相似文献   

18.
Tuberculosis vaccine development: recent progress   总被引:45,自引:0,他引:45  
Recent years have seen a renewed effort to develop new vaccines against tuberculosis. As a result, several promising avenues of research have developed, including the production of recombinant vaccines, auxotrophic vaccines, DNA vaccines and subunit vaccines. In this article we briefly review this work, as well as consider the pros and cons of the animal models needed to test these new vaccines. Screening to date has been carried out in mouse and guinea pig models, which have been used to obtain basic information such as the effect of the vaccine on bacterial load, and whether the vaccine can prevent or reduce lung pathology. The results to date lead us to be optimistic that new candidate vaccines could soon be considered for evaluation in clinical trials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号